Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* +++ trees.c */ |
| 2 | /* trees.c -- output deflated data using Huffman coding |
| 3 | * Copyright (C) 1995-1996 Jean-loup Gailly |
| 4 | * For conditions of distribution and use, see copyright notice in zlib.h |
| 5 | */ |
| 6 | |
| 7 | /* |
| 8 | * ALGORITHM |
| 9 | * |
| 10 | * The "deflation" process uses several Huffman trees. The more |
| 11 | * common source values are represented by shorter bit sequences. |
| 12 | * |
| 13 | * Each code tree is stored in a compressed form which is itself |
| 14 | * a Huffman encoding of the lengths of all the code strings (in |
| 15 | * ascending order by source values). The actual code strings are |
| 16 | * reconstructed from the lengths in the inflate process, as described |
| 17 | * in the deflate specification. |
| 18 | * |
| 19 | * REFERENCES |
| 20 | * |
| 21 | * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". |
| 22 | * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc |
| 23 | * |
| 24 | * Storer, James A. |
| 25 | * Data Compression: Methods and Theory, pp. 49-50. |
| 26 | * Computer Science Press, 1988. ISBN 0-7167-8156-5. |
| 27 | * |
| 28 | * Sedgewick, R. |
| 29 | * Algorithms, p290. |
| 30 | * Addison-Wesley, 1983. ISBN 0-201-06672-6. |
| 31 | */ |
| 32 | |
| 33 | /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */ |
| 34 | |
| 35 | /* #include "deflate.h" */ |
| 36 | |
| 37 | #include <linux/zutil.h> |
| 38 | #include "defutil.h" |
| 39 | |
| 40 | #ifdef DEBUG_ZLIB |
| 41 | # include <ctype.h> |
| 42 | #endif |
| 43 | |
| 44 | /* =========================================================================== |
| 45 | * Constants |
| 46 | */ |
| 47 | |
| 48 | #define MAX_BL_BITS 7 |
| 49 | /* Bit length codes must not exceed MAX_BL_BITS bits */ |
| 50 | |
| 51 | #define END_BLOCK 256 |
| 52 | /* end of block literal code */ |
| 53 | |
| 54 | #define REP_3_6 16 |
| 55 | /* repeat previous bit length 3-6 times (2 bits of repeat count) */ |
| 56 | |
| 57 | #define REPZ_3_10 17 |
| 58 | /* repeat a zero length 3-10 times (3 bits of repeat count) */ |
| 59 | |
| 60 | #define REPZ_11_138 18 |
| 61 | /* repeat a zero length 11-138 times (7 bits of repeat count) */ |
| 62 | |
| 63 | static const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ |
| 64 | = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; |
| 65 | |
| 66 | static const int extra_dbits[D_CODES] /* extra bits for each distance code */ |
| 67 | = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; |
| 68 | |
| 69 | static const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ |
| 70 | = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; |
| 71 | |
| 72 | static const uch bl_order[BL_CODES] |
| 73 | = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; |
| 74 | /* The lengths of the bit length codes are sent in order of decreasing |
| 75 | * probability, to avoid transmitting the lengths for unused bit length codes. |
| 76 | */ |
| 77 | |
| 78 | #define Buf_size (8 * 2*sizeof(char)) |
| 79 | /* Number of bits used within bi_buf. (bi_buf might be implemented on |
| 80 | * more than 16 bits on some systems.) |
| 81 | */ |
| 82 | |
| 83 | /* =========================================================================== |
| 84 | * Local data. These are initialized only once. |
| 85 | */ |
| 86 | |
| 87 | static ct_data static_ltree[L_CODES+2]; |
| 88 | /* The static literal tree. Since the bit lengths are imposed, there is no |
| 89 | * need for the L_CODES extra codes used during heap construction. However |
| 90 | * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init |
| 91 | * below). |
| 92 | */ |
| 93 | |
| 94 | static ct_data static_dtree[D_CODES]; |
| 95 | /* The static distance tree. (Actually a trivial tree since all codes use |
| 96 | * 5 bits.) |
| 97 | */ |
| 98 | |
| 99 | static uch dist_code[512]; |
| 100 | /* distance codes. The first 256 values correspond to the distances |
| 101 | * 3 .. 258, the last 256 values correspond to the top 8 bits of |
| 102 | * the 15 bit distances. |
| 103 | */ |
| 104 | |
| 105 | static uch length_code[MAX_MATCH-MIN_MATCH+1]; |
| 106 | /* length code for each normalized match length (0 == MIN_MATCH) */ |
| 107 | |
| 108 | static int base_length[LENGTH_CODES]; |
| 109 | /* First normalized length for each code (0 = MIN_MATCH) */ |
| 110 | |
| 111 | static int base_dist[D_CODES]; |
| 112 | /* First normalized distance for each code (0 = distance of 1) */ |
| 113 | |
| 114 | struct static_tree_desc_s { |
| 115 | const ct_data *static_tree; /* static tree or NULL */ |
| 116 | const int *extra_bits; /* extra bits for each code or NULL */ |
| 117 | int extra_base; /* base index for extra_bits */ |
| 118 | int elems; /* max number of elements in the tree */ |
| 119 | int max_length; /* max bit length for the codes */ |
| 120 | }; |
| 121 | |
| 122 | static static_tree_desc static_l_desc = |
| 123 | {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; |
| 124 | |
| 125 | static static_tree_desc static_d_desc = |
| 126 | {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; |
| 127 | |
| 128 | static static_tree_desc static_bl_desc = |
| 129 | {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; |
| 130 | |
| 131 | /* =========================================================================== |
| 132 | * Local (static) routines in this file. |
| 133 | */ |
| 134 | |
| 135 | static void tr_static_init (void); |
| 136 | static void init_block (deflate_state *s); |
| 137 | static void pqdownheap (deflate_state *s, ct_data *tree, int k); |
| 138 | static void gen_bitlen (deflate_state *s, tree_desc *desc); |
| 139 | static void gen_codes (ct_data *tree, int max_code, ush *bl_count); |
| 140 | static void build_tree (deflate_state *s, tree_desc *desc); |
| 141 | static void scan_tree (deflate_state *s, ct_data *tree, int max_code); |
| 142 | static void send_tree (deflate_state *s, ct_data *tree, int max_code); |
| 143 | static int build_bl_tree (deflate_state *s); |
| 144 | static void send_all_trees (deflate_state *s, int lcodes, int dcodes, |
| 145 | int blcodes); |
| 146 | static void compress_block (deflate_state *s, ct_data *ltree, |
| 147 | ct_data *dtree); |
| 148 | static void set_data_type (deflate_state *s); |
| 149 | static unsigned bi_reverse (unsigned value, int length); |
| 150 | static void bi_windup (deflate_state *s); |
| 151 | static void bi_flush (deflate_state *s); |
| 152 | static void copy_block (deflate_state *s, char *buf, unsigned len, |
| 153 | int header); |
| 154 | |
| 155 | #ifndef DEBUG_ZLIB |
| 156 | # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) |
| 157 | /* Send a code of the given tree. c and tree must not have side effects */ |
| 158 | |
| 159 | #else /* DEBUG_ZLIB */ |
| 160 | # define send_code(s, c, tree) \ |
| 161 | { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ |
| 162 | send_bits(s, tree[c].Code, tree[c].Len); } |
| 163 | #endif |
| 164 | |
| 165 | #define d_code(dist) \ |
| 166 | ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)]) |
| 167 | /* Mapping from a distance to a distance code. dist is the distance - 1 and |
| 168 | * must not have side effects. dist_code[256] and dist_code[257] are never |
| 169 | * used. |
| 170 | */ |
| 171 | |
| 172 | /* =========================================================================== |
| 173 | * Send a value on a given number of bits. |
| 174 | * IN assertion: length <= 16 and value fits in length bits. |
| 175 | */ |
| 176 | #ifdef DEBUG_ZLIB |
| 177 | static void send_bits (deflate_state *s, int value, int length); |
| 178 | |
| 179 | static void send_bits( |
| 180 | deflate_state *s, |
| 181 | int value, /* value to send */ |
| 182 | int length /* number of bits */ |
| 183 | ) |
| 184 | { |
| 185 | Tracevv((stderr," l %2d v %4x ", length, value)); |
| 186 | Assert(length > 0 && length <= 15, "invalid length"); |
| 187 | s->bits_sent += (ulg)length; |
| 188 | |
| 189 | /* If not enough room in bi_buf, use (valid) bits from bi_buf and |
| 190 | * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) |
| 191 | * unused bits in value. |
| 192 | */ |
| 193 | if (s->bi_valid > (int)Buf_size - length) { |
| 194 | s->bi_buf |= (value << s->bi_valid); |
| 195 | put_short(s, s->bi_buf); |
| 196 | s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); |
| 197 | s->bi_valid += length - Buf_size; |
| 198 | } else { |
| 199 | s->bi_buf |= value << s->bi_valid; |
| 200 | s->bi_valid += length; |
| 201 | } |
| 202 | } |
| 203 | #else /* !DEBUG_ZLIB */ |
| 204 | |
| 205 | #define send_bits(s, value, length) \ |
| 206 | { int len = length;\ |
| 207 | if (s->bi_valid > (int)Buf_size - len) {\ |
| 208 | int val = value;\ |
| 209 | s->bi_buf |= (val << s->bi_valid);\ |
| 210 | put_short(s, s->bi_buf);\ |
| 211 | s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ |
| 212 | s->bi_valid += len - Buf_size;\ |
| 213 | } else {\ |
| 214 | s->bi_buf |= (value) << s->bi_valid;\ |
| 215 | s->bi_valid += len;\ |
| 216 | }\ |
| 217 | } |
| 218 | #endif /* DEBUG_ZLIB */ |
| 219 | |
| 220 | /* =========================================================================== |
| 221 | * Initialize the various 'constant' tables. In a multi-threaded environment, |
| 222 | * this function may be called by two threads concurrently, but this is |
| 223 | * harmless since both invocations do exactly the same thing. |
| 224 | */ |
| 225 | static void tr_static_init(void) |
| 226 | { |
| 227 | static int static_init_done; |
| 228 | int n; /* iterates over tree elements */ |
| 229 | int bits; /* bit counter */ |
| 230 | int length; /* length value */ |
| 231 | int code; /* code value */ |
| 232 | int dist; /* distance index */ |
| 233 | ush bl_count[MAX_BITS+1]; |
| 234 | /* number of codes at each bit length for an optimal tree */ |
| 235 | |
| 236 | if (static_init_done) return; |
| 237 | |
| 238 | /* Initialize the mapping length (0..255) -> length code (0..28) */ |
| 239 | length = 0; |
| 240 | for (code = 0; code < LENGTH_CODES-1; code++) { |
| 241 | base_length[code] = length; |
| 242 | for (n = 0; n < (1<<extra_lbits[code]); n++) { |
| 243 | length_code[length++] = (uch)code; |
| 244 | } |
| 245 | } |
| 246 | Assert (length == 256, "tr_static_init: length != 256"); |
| 247 | /* Note that the length 255 (match length 258) can be represented |
| 248 | * in two different ways: code 284 + 5 bits or code 285, so we |
| 249 | * overwrite length_code[255] to use the best encoding: |
| 250 | */ |
| 251 | length_code[length-1] = (uch)code; |
| 252 | |
| 253 | /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ |
| 254 | dist = 0; |
| 255 | for (code = 0 ; code < 16; code++) { |
| 256 | base_dist[code] = dist; |
| 257 | for (n = 0; n < (1<<extra_dbits[code]); n++) { |
| 258 | dist_code[dist++] = (uch)code; |
| 259 | } |
| 260 | } |
| 261 | Assert (dist == 256, "tr_static_init: dist != 256"); |
| 262 | dist >>= 7; /* from now on, all distances are divided by 128 */ |
| 263 | for ( ; code < D_CODES; code++) { |
| 264 | base_dist[code] = dist << 7; |
| 265 | for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { |
| 266 | dist_code[256 + dist++] = (uch)code; |
| 267 | } |
| 268 | } |
| 269 | Assert (dist == 256, "tr_static_init: 256+dist != 512"); |
| 270 | |
| 271 | /* Construct the codes of the static literal tree */ |
| 272 | for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; |
| 273 | n = 0; |
| 274 | while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; |
| 275 | while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; |
| 276 | while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; |
| 277 | while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; |
| 278 | /* Codes 286 and 287 do not exist, but we must include them in the |
| 279 | * tree construction to get a canonical Huffman tree (longest code |
| 280 | * all ones) |
| 281 | */ |
| 282 | gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); |
| 283 | |
| 284 | /* The static distance tree is trivial: */ |
| 285 | for (n = 0; n < D_CODES; n++) { |
| 286 | static_dtree[n].Len = 5; |
| 287 | static_dtree[n].Code = bi_reverse((unsigned)n, 5); |
| 288 | } |
| 289 | static_init_done = 1; |
| 290 | } |
| 291 | |
| 292 | /* =========================================================================== |
| 293 | * Initialize the tree data structures for a new zlib stream. |
| 294 | */ |
| 295 | void zlib_tr_init( |
| 296 | deflate_state *s |
| 297 | ) |
| 298 | { |
| 299 | tr_static_init(); |
| 300 | |
| 301 | s->compressed_len = 0L; |
| 302 | |
| 303 | s->l_desc.dyn_tree = s->dyn_ltree; |
| 304 | s->l_desc.stat_desc = &static_l_desc; |
| 305 | |
| 306 | s->d_desc.dyn_tree = s->dyn_dtree; |
| 307 | s->d_desc.stat_desc = &static_d_desc; |
| 308 | |
| 309 | s->bl_desc.dyn_tree = s->bl_tree; |
| 310 | s->bl_desc.stat_desc = &static_bl_desc; |
| 311 | |
| 312 | s->bi_buf = 0; |
| 313 | s->bi_valid = 0; |
| 314 | s->last_eob_len = 8; /* enough lookahead for inflate */ |
| 315 | #ifdef DEBUG_ZLIB |
| 316 | s->bits_sent = 0L; |
| 317 | #endif |
| 318 | |
| 319 | /* Initialize the first block of the first file: */ |
| 320 | init_block(s); |
| 321 | } |
| 322 | |
| 323 | /* =========================================================================== |
| 324 | * Initialize a new block. |
| 325 | */ |
| 326 | static void init_block( |
| 327 | deflate_state *s |
| 328 | ) |
| 329 | { |
| 330 | int n; /* iterates over tree elements */ |
| 331 | |
| 332 | /* Initialize the trees. */ |
| 333 | for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; |
| 334 | for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; |
| 335 | for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; |
| 336 | |
| 337 | s->dyn_ltree[END_BLOCK].Freq = 1; |
| 338 | s->opt_len = s->static_len = 0L; |
| 339 | s->last_lit = s->matches = 0; |
| 340 | } |
| 341 | |
| 342 | #define SMALLEST 1 |
| 343 | /* Index within the heap array of least frequent node in the Huffman tree */ |
| 344 | |
| 345 | |
| 346 | /* =========================================================================== |
| 347 | * Remove the smallest element from the heap and recreate the heap with |
| 348 | * one less element. Updates heap and heap_len. |
| 349 | */ |
| 350 | #define pqremove(s, tree, top) \ |
| 351 | {\ |
| 352 | top = s->heap[SMALLEST]; \ |
| 353 | s->heap[SMALLEST] = s->heap[s->heap_len--]; \ |
| 354 | pqdownheap(s, tree, SMALLEST); \ |
| 355 | } |
| 356 | |
| 357 | /* =========================================================================== |
| 358 | * Compares to subtrees, using the tree depth as tie breaker when |
| 359 | * the subtrees have equal frequency. This minimizes the worst case length. |
| 360 | */ |
| 361 | #define smaller(tree, n, m, depth) \ |
| 362 | (tree[n].Freq < tree[m].Freq || \ |
| 363 | (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) |
| 364 | |
| 365 | /* =========================================================================== |
| 366 | * Restore the heap property by moving down the tree starting at node k, |
| 367 | * exchanging a node with the smallest of its two sons if necessary, stopping |
| 368 | * when the heap property is re-established (each father smaller than its |
| 369 | * two sons). |
| 370 | */ |
| 371 | static void pqdownheap( |
| 372 | deflate_state *s, |
| 373 | ct_data *tree, /* the tree to restore */ |
| 374 | int k /* node to move down */ |
| 375 | ) |
| 376 | { |
| 377 | int v = s->heap[k]; |
| 378 | int j = k << 1; /* left son of k */ |
| 379 | while (j <= s->heap_len) { |
| 380 | /* Set j to the smallest of the two sons: */ |
| 381 | if (j < s->heap_len && |
| 382 | smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { |
| 383 | j++; |
| 384 | } |
| 385 | /* Exit if v is smaller than both sons */ |
| 386 | if (smaller(tree, v, s->heap[j], s->depth)) break; |
| 387 | |
| 388 | /* Exchange v with the smallest son */ |
| 389 | s->heap[k] = s->heap[j]; k = j; |
| 390 | |
| 391 | /* And continue down the tree, setting j to the left son of k */ |
| 392 | j <<= 1; |
| 393 | } |
| 394 | s->heap[k] = v; |
| 395 | } |
| 396 | |
| 397 | /* =========================================================================== |
| 398 | * Compute the optimal bit lengths for a tree and update the total bit length |
| 399 | * for the current block. |
| 400 | * IN assertion: the fields freq and dad are set, heap[heap_max] and |
| 401 | * above are the tree nodes sorted by increasing frequency. |
| 402 | * OUT assertions: the field len is set to the optimal bit length, the |
| 403 | * array bl_count contains the frequencies for each bit length. |
| 404 | * The length opt_len is updated; static_len is also updated if stree is |
| 405 | * not null. |
| 406 | */ |
| 407 | static void gen_bitlen( |
| 408 | deflate_state *s, |
| 409 | tree_desc *desc /* the tree descriptor */ |
| 410 | ) |
| 411 | { |
| 412 | ct_data *tree = desc->dyn_tree; |
| 413 | int max_code = desc->max_code; |
| 414 | const ct_data *stree = desc->stat_desc->static_tree; |
| 415 | const int *extra = desc->stat_desc->extra_bits; |
| 416 | int base = desc->stat_desc->extra_base; |
| 417 | int max_length = desc->stat_desc->max_length; |
| 418 | int h; /* heap index */ |
| 419 | int n, m; /* iterate over the tree elements */ |
| 420 | int bits; /* bit length */ |
| 421 | int xbits; /* extra bits */ |
| 422 | ush f; /* frequency */ |
| 423 | int overflow = 0; /* number of elements with bit length too large */ |
| 424 | |
| 425 | for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; |
| 426 | |
| 427 | /* In a first pass, compute the optimal bit lengths (which may |
| 428 | * overflow in the case of the bit length tree). |
| 429 | */ |
| 430 | tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ |
| 431 | |
| 432 | for (h = s->heap_max+1; h < HEAP_SIZE; h++) { |
| 433 | n = s->heap[h]; |
| 434 | bits = tree[tree[n].Dad].Len + 1; |
| 435 | if (bits > max_length) bits = max_length, overflow++; |
| 436 | tree[n].Len = (ush)bits; |
| 437 | /* We overwrite tree[n].Dad which is no longer needed */ |
| 438 | |
| 439 | if (n > max_code) continue; /* not a leaf node */ |
| 440 | |
| 441 | s->bl_count[bits]++; |
| 442 | xbits = 0; |
| 443 | if (n >= base) xbits = extra[n-base]; |
| 444 | f = tree[n].Freq; |
| 445 | s->opt_len += (ulg)f * (bits + xbits); |
| 446 | if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); |
| 447 | } |
| 448 | if (overflow == 0) return; |
| 449 | |
| 450 | Trace((stderr,"\nbit length overflow\n")); |
| 451 | /* This happens for example on obj2 and pic of the Calgary corpus */ |
| 452 | |
| 453 | /* Find the first bit length which could increase: */ |
| 454 | do { |
| 455 | bits = max_length-1; |
| 456 | while (s->bl_count[bits] == 0) bits--; |
| 457 | s->bl_count[bits]--; /* move one leaf down the tree */ |
| 458 | s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ |
| 459 | s->bl_count[max_length]--; |
| 460 | /* The brother of the overflow item also moves one step up, |
| 461 | * but this does not affect bl_count[max_length] |
| 462 | */ |
| 463 | overflow -= 2; |
| 464 | } while (overflow > 0); |
| 465 | |
| 466 | /* Now recompute all bit lengths, scanning in increasing frequency. |
| 467 | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all |
| 468 | * lengths instead of fixing only the wrong ones. This idea is taken |
| 469 | * from 'ar' written by Haruhiko Okumura.) |
| 470 | */ |
| 471 | for (bits = max_length; bits != 0; bits--) { |
| 472 | n = s->bl_count[bits]; |
| 473 | while (n != 0) { |
| 474 | m = s->heap[--h]; |
| 475 | if (m > max_code) continue; |
| 476 | if (tree[m].Len != (unsigned) bits) { |
| 477 | Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); |
| 478 | s->opt_len += ((long)bits - (long)tree[m].Len) |
| 479 | *(long)tree[m].Freq; |
| 480 | tree[m].Len = (ush)bits; |
| 481 | } |
| 482 | n--; |
| 483 | } |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | /* =========================================================================== |
| 488 | * Generate the codes for a given tree and bit counts (which need not be |
| 489 | * optimal). |
| 490 | * IN assertion: the array bl_count contains the bit length statistics for |
| 491 | * the given tree and the field len is set for all tree elements. |
| 492 | * OUT assertion: the field code is set for all tree elements of non |
| 493 | * zero code length. |
| 494 | */ |
| 495 | static void gen_codes( |
| 496 | ct_data *tree, /* the tree to decorate */ |
| 497 | int max_code, /* largest code with non zero frequency */ |
| 498 | ush *bl_count /* number of codes at each bit length */ |
| 499 | ) |
| 500 | { |
| 501 | ush next_code[MAX_BITS+1]; /* next code value for each bit length */ |
| 502 | ush code = 0; /* running code value */ |
| 503 | int bits; /* bit index */ |
| 504 | int n; /* code index */ |
| 505 | |
| 506 | /* The distribution counts are first used to generate the code values |
| 507 | * without bit reversal. |
| 508 | */ |
| 509 | for (bits = 1; bits <= MAX_BITS; bits++) { |
| 510 | next_code[bits] = code = (code + bl_count[bits-1]) << 1; |
| 511 | } |
| 512 | /* Check that the bit counts in bl_count are consistent. The last code |
| 513 | * must be all ones. |
| 514 | */ |
| 515 | Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, |
| 516 | "inconsistent bit counts"); |
| 517 | Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); |
| 518 | |
| 519 | for (n = 0; n <= max_code; n++) { |
| 520 | int len = tree[n].Len; |
| 521 | if (len == 0) continue; |
| 522 | /* Now reverse the bits */ |
| 523 | tree[n].Code = bi_reverse(next_code[len]++, len); |
| 524 | |
| 525 | Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", |
| 526 | n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); |
| 527 | } |
| 528 | } |
| 529 | |
| 530 | /* =========================================================================== |
| 531 | * Construct one Huffman tree and assigns the code bit strings and lengths. |
| 532 | * Update the total bit length for the current block. |
| 533 | * IN assertion: the field freq is set for all tree elements. |
| 534 | * OUT assertions: the fields len and code are set to the optimal bit length |
| 535 | * and corresponding code. The length opt_len is updated; static_len is |
| 536 | * also updated if stree is not null. The field max_code is set. |
| 537 | */ |
| 538 | static void build_tree( |
| 539 | deflate_state *s, |
| 540 | tree_desc *desc /* the tree descriptor */ |
| 541 | ) |
| 542 | { |
| 543 | ct_data *tree = desc->dyn_tree; |
| 544 | const ct_data *stree = desc->stat_desc->static_tree; |
| 545 | int elems = desc->stat_desc->elems; |
| 546 | int n, m; /* iterate over heap elements */ |
| 547 | int max_code = -1; /* largest code with non zero frequency */ |
| 548 | int node; /* new node being created */ |
| 549 | |
| 550 | /* Construct the initial heap, with least frequent element in |
| 551 | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. |
| 552 | * heap[0] is not used. |
| 553 | */ |
| 554 | s->heap_len = 0, s->heap_max = HEAP_SIZE; |
| 555 | |
| 556 | for (n = 0; n < elems; n++) { |
| 557 | if (tree[n].Freq != 0) { |
| 558 | s->heap[++(s->heap_len)] = max_code = n; |
| 559 | s->depth[n] = 0; |
| 560 | } else { |
| 561 | tree[n].Len = 0; |
| 562 | } |
| 563 | } |
| 564 | |
| 565 | /* The pkzip format requires that at least one distance code exists, |
| 566 | * and that at least one bit should be sent even if there is only one |
| 567 | * possible code. So to avoid special checks later on we force at least |
| 568 | * two codes of non zero frequency. |
| 569 | */ |
| 570 | while (s->heap_len < 2) { |
| 571 | node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); |
| 572 | tree[node].Freq = 1; |
| 573 | s->depth[node] = 0; |
| 574 | s->opt_len--; if (stree) s->static_len -= stree[node].Len; |
| 575 | /* node is 0 or 1 so it does not have extra bits */ |
| 576 | } |
| 577 | desc->max_code = max_code; |
| 578 | |
| 579 | /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, |
| 580 | * establish sub-heaps of increasing lengths: |
| 581 | */ |
| 582 | for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); |
| 583 | |
| 584 | /* Construct the Huffman tree by repeatedly combining the least two |
| 585 | * frequent nodes. |
| 586 | */ |
| 587 | node = elems; /* next internal node of the tree */ |
| 588 | do { |
| 589 | pqremove(s, tree, n); /* n = node of least frequency */ |
| 590 | m = s->heap[SMALLEST]; /* m = node of next least frequency */ |
| 591 | |
| 592 | s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ |
| 593 | s->heap[--(s->heap_max)] = m; |
| 594 | |
| 595 | /* Create a new node father of n and m */ |
| 596 | tree[node].Freq = tree[n].Freq + tree[m].Freq; |
| 597 | s->depth[node] = (uch) (max(s->depth[n], s->depth[m]) + 1); |
| 598 | tree[n].Dad = tree[m].Dad = (ush)node; |
| 599 | #ifdef DUMP_BL_TREE |
| 600 | if (tree == s->bl_tree) { |
| 601 | fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", |
| 602 | node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); |
| 603 | } |
| 604 | #endif |
| 605 | /* and insert the new node in the heap */ |
| 606 | s->heap[SMALLEST] = node++; |
| 607 | pqdownheap(s, tree, SMALLEST); |
| 608 | |
| 609 | } while (s->heap_len >= 2); |
| 610 | |
| 611 | s->heap[--(s->heap_max)] = s->heap[SMALLEST]; |
| 612 | |
| 613 | /* At this point, the fields freq and dad are set. We can now |
| 614 | * generate the bit lengths. |
| 615 | */ |
| 616 | gen_bitlen(s, (tree_desc *)desc); |
| 617 | |
| 618 | /* The field len is now set, we can generate the bit codes */ |
| 619 | gen_codes ((ct_data *)tree, max_code, s->bl_count); |
| 620 | } |
| 621 | |
| 622 | /* =========================================================================== |
| 623 | * Scan a literal or distance tree to determine the frequencies of the codes |
| 624 | * in the bit length tree. |
| 625 | */ |
| 626 | static void scan_tree( |
| 627 | deflate_state *s, |
| 628 | ct_data *tree, /* the tree to be scanned */ |
| 629 | int max_code /* and its largest code of non zero frequency */ |
| 630 | ) |
| 631 | { |
| 632 | int n; /* iterates over all tree elements */ |
| 633 | int prevlen = -1; /* last emitted length */ |
| 634 | int curlen; /* length of current code */ |
| 635 | int nextlen = tree[0].Len; /* length of next code */ |
| 636 | int count = 0; /* repeat count of the current code */ |
| 637 | int max_count = 7; /* max repeat count */ |
| 638 | int min_count = 4; /* min repeat count */ |
| 639 | |
| 640 | if (nextlen == 0) max_count = 138, min_count = 3; |
| 641 | tree[max_code+1].Len = (ush)0xffff; /* guard */ |
| 642 | |
| 643 | for (n = 0; n <= max_code; n++) { |
| 644 | curlen = nextlen; nextlen = tree[n+1].Len; |
| 645 | if (++count < max_count && curlen == nextlen) { |
| 646 | continue; |
| 647 | } else if (count < min_count) { |
| 648 | s->bl_tree[curlen].Freq += count; |
| 649 | } else if (curlen != 0) { |
| 650 | if (curlen != prevlen) s->bl_tree[curlen].Freq++; |
| 651 | s->bl_tree[REP_3_6].Freq++; |
| 652 | } else if (count <= 10) { |
| 653 | s->bl_tree[REPZ_3_10].Freq++; |
| 654 | } else { |
| 655 | s->bl_tree[REPZ_11_138].Freq++; |
| 656 | } |
| 657 | count = 0; prevlen = curlen; |
| 658 | if (nextlen == 0) { |
| 659 | max_count = 138, min_count = 3; |
| 660 | } else if (curlen == nextlen) { |
| 661 | max_count = 6, min_count = 3; |
| 662 | } else { |
| 663 | max_count = 7, min_count = 4; |
| 664 | } |
| 665 | } |
| 666 | } |
| 667 | |
| 668 | /* =========================================================================== |
| 669 | * Send a literal or distance tree in compressed form, using the codes in |
| 670 | * bl_tree. |
| 671 | */ |
| 672 | static void send_tree( |
| 673 | deflate_state *s, |
| 674 | ct_data *tree, /* the tree to be scanned */ |
| 675 | int max_code /* and its largest code of non zero frequency */ |
| 676 | ) |
| 677 | { |
| 678 | int n; /* iterates over all tree elements */ |
| 679 | int prevlen = -1; /* last emitted length */ |
| 680 | int curlen; /* length of current code */ |
| 681 | int nextlen = tree[0].Len; /* length of next code */ |
| 682 | int count = 0; /* repeat count of the current code */ |
| 683 | int max_count = 7; /* max repeat count */ |
| 684 | int min_count = 4; /* min repeat count */ |
| 685 | |
| 686 | /* tree[max_code+1].Len = -1; */ /* guard already set */ |
| 687 | if (nextlen == 0) max_count = 138, min_count = 3; |
| 688 | |
| 689 | for (n = 0; n <= max_code; n++) { |
| 690 | curlen = nextlen; nextlen = tree[n+1].Len; |
| 691 | if (++count < max_count && curlen == nextlen) { |
| 692 | continue; |
| 693 | } else if (count < min_count) { |
| 694 | do { send_code(s, curlen, s->bl_tree); } while (--count != 0); |
| 695 | |
| 696 | } else if (curlen != 0) { |
| 697 | if (curlen != prevlen) { |
| 698 | send_code(s, curlen, s->bl_tree); count--; |
| 699 | } |
| 700 | Assert(count >= 3 && count <= 6, " 3_6?"); |
| 701 | send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); |
| 702 | |
| 703 | } else if (count <= 10) { |
| 704 | send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); |
| 705 | |
| 706 | } else { |
| 707 | send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); |
| 708 | } |
| 709 | count = 0; prevlen = curlen; |
| 710 | if (nextlen == 0) { |
| 711 | max_count = 138, min_count = 3; |
| 712 | } else if (curlen == nextlen) { |
| 713 | max_count = 6, min_count = 3; |
| 714 | } else { |
| 715 | max_count = 7, min_count = 4; |
| 716 | } |
| 717 | } |
| 718 | } |
| 719 | |
| 720 | /* =========================================================================== |
| 721 | * Construct the Huffman tree for the bit lengths and return the index in |
| 722 | * bl_order of the last bit length code to send. |
| 723 | */ |
| 724 | static int build_bl_tree( |
| 725 | deflate_state *s |
| 726 | ) |
| 727 | { |
| 728 | int max_blindex; /* index of last bit length code of non zero freq */ |
| 729 | |
| 730 | /* Determine the bit length frequencies for literal and distance trees */ |
| 731 | scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); |
| 732 | scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); |
| 733 | |
| 734 | /* Build the bit length tree: */ |
| 735 | build_tree(s, (tree_desc *)(&(s->bl_desc))); |
| 736 | /* opt_len now includes the length of the tree representations, except |
| 737 | * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. |
| 738 | */ |
| 739 | |
| 740 | /* Determine the number of bit length codes to send. The pkzip format |
| 741 | * requires that at least 4 bit length codes be sent. (appnote.txt says |
| 742 | * 3 but the actual value used is 4.) |
| 743 | */ |
| 744 | for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { |
| 745 | if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; |
| 746 | } |
| 747 | /* Update opt_len to include the bit length tree and counts */ |
| 748 | s->opt_len += 3*(max_blindex+1) + 5+5+4; |
| 749 | Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", |
| 750 | s->opt_len, s->static_len)); |
| 751 | |
| 752 | return max_blindex; |
| 753 | } |
| 754 | |
| 755 | /* =========================================================================== |
| 756 | * Send the header for a block using dynamic Huffman trees: the counts, the |
| 757 | * lengths of the bit length codes, the literal tree and the distance tree. |
| 758 | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. |
| 759 | */ |
| 760 | static void send_all_trees( |
| 761 | deflate_state *s, |
| 762 | int lcodes, /* number of codes for each tree */ |
| 763 | int dcodes, /* number of codes for each tree */ |
| 764 | int blcodes /* number of codes for each tree */ |
| 765 | ) |
| 766 | { |
| 767 | int rank; /* index in bl_order */ |
| 768 | |
| 769 | Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); |
| 770 | Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, |
| 771 | "too many codes"); |
| 772 | Tracev((stderr, "\nbl counts: ")); |
| 773 | send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ |
| 774 | send_bits(s, dcodes-1, 5); |
| 775 | send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ |
| 776 | for (rank = 0; rank < blcodes; rank++) { |
| 777 | Tracev((stderr, "\nbl code %2d ", bl_order[rank])); |
| 778 | send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); |
| 779 | } |
| 780 | Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); |
| 781 | |
| 782 | send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ |
| 783 | Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); |
| 784 | |
| 785 | send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ |
| 786 | Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); |
| 787 | } |
| 788 | |
| 789 | /* =========================================================================== |
| 790 | * Send a stored block |
| 791 | */ |
| 792 | void zlib_tr_stored_block( |
| 793 | deflate_state *s, |
| 794 | char *buf, /* input block */ |
| 795 | ulg stored_len, /* length of input block */ |
| 796 | int eof /* true if this is the last block for a file */ |
| 797 | ) |
| 798 | { |
| 799 | send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */ |
| 800 | s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; |
| 801 | s->compressed_len += (stored_len + 4) << 3; |
| 802 | |
| 803 | copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ |
| 804 | } |
| 805 | |
| 806 | /* Send just the `stored block' type code without any length bytes or data. |
| 807 | */ |
| 808 | void zlib_tr_stored_type_only( |
| 809 | deflate_state *s |
| 810 | ) |
| 811 | { |
| 812 | send_bits(s, (STORED_BLOCK << 1), 3); |
| 813 | bi_windup(s); |
| 814 | s->compressed_len = (s->compressed_len + 3) & ~7L; |
| 815 | } |
| 816 | |
| 817 | |
| 818 | /* =========================================================================== |
| 819 | * Send one empty static block to give enough lookahead for inflate. |
| 820 | * This takes 10 bits, of which 7 may remain in the bit buffer. |
| 821 | * The current inflate code requires 9 bits of lookahead. If the |
| 822 | * last two codes for the previous block (real code plus EOB) were coded |
| 823 | * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode |
| 824 | * the last real code. In this case we send two empty static blocks instead |
| 825 | * of one. (There are no problems if the previous block is stored or fixed.) |
| 826 | * To simplify the code, we assume the worst case of last real code encoded |
| 827 | * on one bit only. |
| 828 | */ |
| 829 | void zlib_tr_align( |
| 830 | deflate_state *s |
| 831 | ) |
| 832 | { |
| 833 | send_bits(s, STATIC_TREES<<1, 3); |
| 834 | send_code(s, END_BLOCK, static_ltree); |
| 835 | s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ |
| 836 | bi_flush(s); |
| 837 | /* Of the 10 bits for the empty block, we have already sent |
| 838 | * (10 - bi_valid) bits. The lookahead for the last real code (before |
| 839 | * the EOB of the previous block) was thus at least one plus the length |
| 840 | * of the EOB plus what we have just sent of the empty static block. |
| 841 | */ |
| 842 | if (1 + s->last_eob_len + 10 - s->bi_valid < 9) { |
| 843 | send_bits(s, STATIC_TREES<<1, 3); |
| 844 | send_code(s, END_BLOCK, static_ltree); |
| 845 | s->compressed_len += 10L; |
| 846 | bi_flush(s); |
| 847 | } |
| 848 | s->last_eob_len = 7; |
| 849 | } |
| 850 | |
| 851 | /* =========================================================================== |
| 852 | * Determine the best encoding for the current block: dynamic trees, static |
| 853 | * trees or store, and output the encoded block to the zip file. This function |
| 854 | * returns the total compressed length for the file so far. |
| 855 | */ |
| 856 | ulg zlib_tr_flush_block( |
| 857 | deflate_state *s, |
| 858 | char *buf, /* input block, or NULL if too old */ |
| 859 | ulg stored_len, /* length of input block */ |
| 860 | int eof /* true if this is the last block for a file */ |
| 861 | ) |
| 862 | { |
| 863 | ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ |
| 864 | int max_blindex = 0; /* index of last bit length code of non zero freq */ |
| 865 | |
| 866 | /* Build the Huffman trees unless a stored block is forced */ |
| 867 | if (s->level > 0) { |
| 868 | |
| 869 | /* Check if the file is ascii or binary */ |
| 870 | if (s->data_type == Z_UNKNOWN) set_data_type(s); |
| 871 | |
| 872 | /* Construct the literal and distance trees */ |
| 873 | build_tree(s, (tree_desc *)(&(s->l_desc))); |
| 874 | Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, |
| 875 | s->static_len)); |
| 876 | |
| 877 | build_tree(s, (tree_desc *)(&(s->d_desc))); |
| 878 | Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, |
| 879 | s->static_len)); |
| 880 | /* At this point, opt_len and static_len are the total bit lengths of |
| 881 | * the compressed block data, excluding the tree representations. |
| 882 | */ |
| 883 | |
| 884 | /* Build the bit length tree for the above two trees, and get the index |
| 885 | * in bl_order of the last bit length code to send. |
| 886 | */ |
| 887 | max_blindex = build_bl_tree(s); |
| 888 | |
| 889 | /* Determine the best encoding. Compute first the block length in bytes*/ |
| 890 | opt_lenb = (s->opt_len+3+7)>>3; |
| 891 | static_lenb = (s->static_len+3+7)>>3; |
| 892 | |
| 893 | Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", |
| 894 | opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, |
| 895 | s->last_lit)); |
| 896 | |
| 897 | if (static_lenb <= opt_lenb) opt_lenb = static_lenb; |
| 898 | |
| 899 | } else { |
| 900 | Assert(buf != (char*)0, "lost buf"); |
| 901 | opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ |
| 902 | } |
| 903 | |
| 904 | /* If compression failed and this is the first and last block, |
| 905 | * and if the .zip file can be seeked (to rewrite the local header), |
| 906 | * the whole file is transformed into a stored file: |
| 907 | */ |
| 908 | #ifdef STORED_FILE_OK |
| 909 | # ifdef FORCE_STORED_FILE |
| 910 | if (eof && s->compressed_len == 0L) { /* force stored file */ |
| 911 | # else |
| 912 | if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) { |
| 913 | # endif |
| 914 | /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */ |
| 915 | if (buf == (char*)0) error ("block vanished"); |
| 916 | |
| 917 | copy_block(s, buf, (unsigned)stored_len, 0); /* without header */ |
| 918 | s->compressed_len = stored_len << 3; |
| 919 | s->method = STORED; |
| 920 | } else |
| 921 | #endif /* STORED_FILE_OK */ |
| 922 | |
| 923 | #ifdef FORCE_STORED |
| 924 | if (buf != (char*)0) { /* force stored block */ |
| 925 | #else |
| 926 | if (stored_len+4 <= opt_lenb && buf != (char*)0) { |
| 927 | /* 4: two words for the lengths */ |
| 928 | #endif |
| 929 | /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. |
| 930 | * Otherwise we can't have processed more than WSIZE input bytes since |
| 931 | * the last block flush, because compression would have been |
| 932 | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to |
| 933 | * transform a block into a stored block. |
| 934 | */ |
| 935 | zlib_tr_stored_block(s, buf, stored_len, eof); |
| 936 | |
| 937 | #ifdef FORCE_STATIC |
| 938 | } else if (static_lenb >= 0) { /* force static trees */ |
| 939 | #else |
| 940 | } else if (static_lenb == opt_lenb) { |
| 941 | #endif |
| 942 | send_bits(s, (STATIC_TREES<<1)+eof, 3); |
| 943 | compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); |
| 944 | s->compressed_len += 3 + s->static_len; |
| 945 | } else { |
| 946 | send_bits(s, (DYN_TREES<<1)+eof, 3); |
| 947 | send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, |
| 948 | max_blindex+1); |
| 949 | compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); |
| 950 | s->compressed_len += 3 + s->opt_len; |
| 951 | } |
| 952 | Assert (s->compressed_len == s->bits_sent, "bad compressed size"); |
| 953 | init_block(s); |
| 954 | |
| 955 | if (eof) { |
| 956 | bi_windup(s); |
| 957 | s->compressed_len += 7; /* align on byte boundary */ |
| 958 | } |
| 959 | Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, |
| 960 | s->compressed_len-7*eof)); |
| 961 | |
| 962 | return s->compressed_len >> 3; |
| 963 | } |
| 964 | |
| 965 | /* =========================================================================== |
| 966 | * Save the match info and tally the frequency counts. Return true if |
| 967 | * the current block must be flushed. |
| 968 | */ |
| 969 | int zlib_tr_tally( |
| 970 | deflate_state *s, |
| 971 | unsigned dist, /* distance of matched string */ |
| 972 | unsigned lc /* match length-MIN_MATCH or unmatched char (if dist==0) */ |
| 973 | ) |
| 974 | { |
| 975 | s->d_buf[s->last_lit] = (ush)dist; |
| 976 | s->l_buf[s->last_lit++] = (uch)lc; |
| 977 | if (dist == 0) { |
| 978 | /* lc is the unmatched char */ |
| 979 | s->dyn_ltree[lc].Freq++; |
| 980 | } else { |
| 981 | s->matches++; |
| 982 | /* Here, lc is the match length - MIN_MATCH */ |
| 983 | dist--; /* dist = match distance - 1 */ |
| 984 | Assert((ush)dist < (ush)MAX_DIST(s) && |
| 985 | (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && |
| 986 | (ush)d_code(dist) < (ush)D_CODES, "zlib_tr_tally: bad match"); |
| 987 | |
| 988 | s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++; |
| 989 | s->dyn_dtree[d_code(dist)].Freq++; |
| 990 | } |
| 991 | |
| 992 | /* Try to guess if it is profitable to stop the current block here */ |
| 993 | if ((s->last_lit & 0xfff) == 0 && s->level > 2) { |
| 994 | /* Compute an upper bound for the compressed length */ |
| 995 | ulg out_length = (ulg)s->last_lit*8L; |
| 996 | ulg in_length = (ulg)((long)s->strstart - s->block_start); |
| 997 | int dcode; |
| 998 | for (dcode = 0; dcode < D_CODES; dcode++) { |
| 999 | out_length += (ulg)s->dyn_dtree[dcode].Freq * |
| 1000 | (5L+extra_dbits[dcode]); |
| 1001 | } |
| 1002 | out_length >>= 3; |
| 1003 | Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", |
| 1004 | s->last_lit, in_length, out_length, |
| 1005 | 100L - out_length*100L/in_length)); |
| 1006 | if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; |
| 1007 | } |
| 1008 | return (s->last_lit == s->lit_bufsize-1); |
| 1009 | /* We avoid equality with lit_bufsize because of wraparound at 64K |
| 1010 | * on 16 bit machines and because stored blocks are restricted to |
| 1011 | * 64K-1 bytes. |
| 1012 | */ |
| 1013 | } |
| 1014 | |
| 1015 | /* =========================================================================== |
| 1016 | * Send the block data compressed using the given Huffman trees |
| 1017 | */ |
| 1018 | static void compress_block( |
| 1019 | deflate_state *s, |
| 1020 | ct_data *ltree, /* literal tree */ |
| 1021 | ct_data *dtree /* distance tree */ |
| 1022 | ) |
| 1023 | { |
| 1024 | unsigned dist; /* distance of matched string */ |
| 1025 | int lc; /* match length or unmatched char (if dist == 0) */ |
| 1026 | unsigned lx = 0; /* running index in l_buf */ |
| 1027 | unsigned code; /* the code to send */ |
| 1028 | int extra; /* number of extra bits to send */ |
| 1029 | |
| 1030 | if (s->last_lit != 0) do { |
| 1031 | dist = s->d_buf[lx]; |
| 1032 | lc = s->l_buf[lx++]; |
| 1033 | if (dist == 0) { |
| 1034 | send_code(s, lc, ltree); /* send a literal byte */ |
| 1035 | Tracecv(isgraph(lc), (stderr," '%c' ", lc)); |
| 1036 | } else { |
| 1037 | /* Here, lc is the match length - MIN_MATCH */ |
| 1038 | code = length_code[lc]; |
| 1039 | send_code(s, code+LITERALS+1, ltree); /* send the length code */ |
| 1040 | extra = extra_lbits[code]; |
| 1041 | if (extra != 0) { |
| 1042 | lc -= base_length[code]; |
| 1043 | send_bits(s, lc, extra); /* send the extra length bits */ |
| 1044 | } |
| 1045 | dist--; /* dist is now the match distance - 1 */ |
| 1046 | code = d_code(dist); |
| 1047 | Assert (code < D_CODES, "bad d_code"); |
| 1048 | |
| 1049 | send_code(s, code, dtree); /* send the distance code */ |
| 1050 | extra = extra_dbits[code]; |
| 1051 | if (extra != 0) { |
| 1052 | dist -= base_dist[code]; |
| 1053 | send_bits(s, dist, extra); /* send the extra distance bits */ |
| 1054 | } |
| 1055 | } /* literal or match pair ? */ |
| 1056 | |
| 1057 | /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ |
| 1058 | Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow"); |
| 1059 | |
| 1060 | } while (lx < s->last_lit); |
| 1061 | |
| 1062 | send_code(s, END_BLOCK, ltree); |
| 1063 | s->last_eob_len = ltree[END_BLOCK].Len; |
| 1064 | } |
| 1065 | |
| 1066 | /* =========================================================================== |
| 1067 | * Set the data type to ASCII or BINARY, using a crude approximation: |
| 1068 | * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. |
| 1069 | * IN assertion: the fields freq of dyn_ltree are set and the total of all |
| 1070 | * frequencies does not exceed 64K (to fit in an int on 16 bit machines). |
| 1071 | */ |
| 1072 | static void set_data_type( |
| 1073 | deflate_state *s |
| 1074 | ) |
| 1075 | { |
| 1076 | int n = 0; |
| 1077 | unsigned ascii_freq = 0; |
| 1078 | unsigned bin_freq = 0; |
| 1079 | while (n < 7) bin_freq += s->dyn_ltree[n++].Freq; |
| 1080 | while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq; |
| 1081 | while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq; |
| 1082 | s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII); |
| 1083 | } |
| 1084 | |
| 1085 | /* =========================================================================== |
| 1086 | * Copy a stored block, storing first the length and its |
| 1087 | * one's complement if requested. |
| 1088 | */ |
| 1089 | static void copy_block( |
| 1090 | deflate_state *s, |
| 1091 | char *buf, /* the input data */ |
| 1092 | unsigned len, /* its length */ |
| 1093 | int header /* true if block header must be written */ |
| 1094 | ) |
| 1095 | { |
| 1096 | bi_windup(s); /* align on byte boundary */ |
| 1097 | s->last_eob_len = 8; /* enough lookahead for inflate */ |
| 1098 | |
| 1099 | if (header) { |
| 1100 | put_short(s, (ush)len); |
| 1101 | put_short(s, (ush)~len); |
| 1102 | #ifdef DEBUG_ZLIB |
| 1103 | s->bits_sent += 2*16; |
| 1104 | #endif |
| 1105 | } |
| 1106 | #ifdef DEBUG_ZLIB |
| 1107 | s->bits_sent += (ulg)len<<3; |
| 1108 | #endif |
| 1109 | /* bundle up the put_byte(s, *buf++) calls */ |
| 1110 | memcpy(&s->pending_buf[s->pending], buf, len); |
| 1111 | s->pending += len; |
| 1112 | } |
| 1113 | |