blob: 45f70c0f4a5e649b06043ee6d46034d19e7b8a29 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef __ASM_SH64_PGTABLE_H
2#define __ASM_SH64_PGTABLE_H
3
4#include <asm-generic/4level-fixup.h>
5
6/*
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file "COPYING" in the main directory of this archive
9 * for more details.
10 *
11 * include/asm-sh64/pgtable.h
12 *
13 * Copyright (C) 2000, 2001 Paolo Alberelli
14 * Copyright (C) 2003, 2004 Paul Mundt
15 * Copyright (C) 2003, 2004 Richard Curnow
16 *
17 * This file contains the functions and defines necessary to modify and use
18 * the SuperH page table tree.
19 */
20
21#ifndef __ASSEMBLY__
22#include <asm/processor.h>
23#include <asm/page.h>
24#include <linux/threads.h>
25#include <linux/config.h>
26
27extern void paging_init(void);
28
29/* We provide our own get_unmapped_area to avoid cache synonym issue */
30#define HAVE_ARCH_UNMAPPED_AREA
31
32/*
33 * Basically we have the same two-level (which is the logical three level
34 * Linux page table layout folded) page tables as the i386.
35 */
36
37/*
38 * ZERO_PAGE is a global shared page that is always zero: used
39 * for zero-mapped memory areas etc..
40 */
41extern unsigned char empty_zero_page[PAGE_SIZE];
42#define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
43
44#endif /* !__ASSEMBLY__ */
45
46/*
47 * NEFF and NPHYS related defines.
48 * FIXME : These need to be model-dependent. For now this is OK, SH5-101 and SH5-103
49 * implement 32 bits effective and 32 bits physical. But future implementations may
50 * extend beyond this.
51 */
52#define NEFF 32
53#define NEFF_SIGN (1LL << (NEFF - 1))
54#define NEFF_MASK (-1LL << NEFF)
55
56#define NPHYS 32
57#define NPHYS_SIGN (1LL << (NPHYS - 1))
58#define NPHYS_MASK (-1LL << NPHYS)
59
60/* Typically 2-level is sufficient up to 32 bits of virtual address space, beyond
61 that 3-level would be appropriate. */
62#if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
63/* For 4k pages, this contains 512 entries, i.e. 9 bits worth of address. */
64#define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long))
65#define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */
66#define PTE_SHIFT PAGE_SHIFT
67#define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE)
68
69/* top level: PMD. */
70#define PGDIR_SHIFT (PTE_SHIFT + PTE_BITS)
71#define PGD_BITS (NEFF - PGDIR_SHIFT)
72#define PTRS_PER_PGD (1<<PGD_BITS)
73
74/* middle level: PMD. This doesn't do anything for the 2-level case. */
75#define PTRS_PER_PMD (1)
76
77#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
78#define PGDIR_MASK (~(PGDIR_SIZE-1))
79#define PMD_SHIFT PGDIR_SHIFT
80#define PMD_SIZE PGDIR_SIZE
81#define PMD_MASK PGDIR_MASK
82
83#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
84/*
85 * three-level asymmetric paging structure: PGD is top level.
86 * The asymmetry comes from 32-bit pointers and 64-bit PTEs.
87 */
88/* bottom level: PTE. It's 9 bits = 512 pointers */
89#define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long))
90#define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */
91#define PTE_SHIFT PAGE_SHIFT
92#define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE)
93
94/* middle level: PMD. It's 10 bits = 1024 pointers */
95#define PTRS_PER_PMD ((1<<PAGE_SHIFT)/sizeof(unsigned long long *))
96#define PMD_MAGNITUDE 2 /* sizeof(unsigned long long *) magnit. */
97#define PMD_SHIFT (PTE_SHIFT + PTE_BITS)
98#define PMD_BITS (PAGE_SHIFT - PMD_MAGNITUDE)
99
100/* top level: PMD. It's 1 bit = 2 pointers */
101#define PGDIR_SHIFT (PMD_SHIFT + PMD_BITS)
102#define PGD_BITS (NEFF - PGDIR_SHIFT)
103#define PTRS_PER_PGD (1<<PGD_BITS)
104
105#define PMD_SIZE (1UL << PMD_SHIFT)
106#define PMD_MASK (~(PMD_SIZE-1))
107#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
108#define PGDIR_MASK (~(PGDIR_SIZE-1))
109
110#else
111#error "No defined number of page table levels"
112#endif
113
114/*
115 * Error outputs.
116 */
117#define pte_ERROR(e) \
118 printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e))
119#define pmd_ERROR(e) \
120 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
121#define pgd_ERROR(e) \
122 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
123
124/*
125 * Table setting routines. Used within arch/mm only.
126 */
127#define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)
128#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
129
130static __inline__ void set_pte(pte_t *pteptr, pte_t pteval)
131{
132 unsigned long long x = ((unsigned long long) pteval.pte);
133 unsigned long long *xp = (unsigned long long *) pteptr;
134 /*
135 * Sign-extend based on NPHYS.
136 */
137 *(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x;
138}
139#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
140
141static __inline__ void pmd_set(pmd_t *pmdp,pte_t *ptep)
142{
143 pmd_val(*pmdp) = (unsigned long) ptep;
144}
145
146/*
147 * PGD defines. Top level.
148 */
149
150/* To find an entry in a generic PGD. */
151#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
152#define __pgd_offset(address) pgd_index(address)
153#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
154
155/* To find an entry in a kernel PGD. */
156#define pgd_offset_k(address) pgd_offset(&init_mm, address)
157
158/*
159 * PGD level access routines.
160 *
161 * Note1:
162 * There's no need to use physical addresses since the tree walk is all
163 * in performed in software, until the PTE translation.
164 *
165 * Note 2:
166 * A PGD entry can be uninitialized (_PGD_UNUSED), generically bad,
167 * clear (_PGD_EMPTY), present. When present, lower 3 nibbles contain
168 * _KERNPG_TABLE. Being a kernel virtual pointer also bit 31 must
169 * be 1. Assuming an arbitrary clear value of bit 31 set to 0 and
170 * lower 3 nibbles set to 0xFFF (_PGD_EMPTY) any other value is a
171 * bad pgd that must be notified via printk().
172 *
173 */
174#define _PGD_EMPTY 0x0
175
176#if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
177static inline int pgd_none(pgd_t pgd) { return 0; }
178static inline int pgd_bad(pgd_t pgd) { return 0; }
179#define pgd_present(pgd) ((pgd_val(pgd) & _PAGE_PRESENT) ? 1 : 0)
180#define pgd_clear(xx) do { } while(0)
181
182#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
183#define pgd_present(pgd_entry) (1)
184#define pgd_none(pgd_entry) (pgd_val((pgd_entry)) == _PGD_EMPTY)
185/* TODO: Think later about what a useful definition of 'bad' would be now. */
186#define pgd_bad(pgd_entry) (0)
187#define pgd_clear(pgd_entry_p) (set_pgd((pgd_entry_p), __pgd(_PGD_EMPTY)))
188
189#endif
190
191
192#define pgd_page(pgd_entry) ((unsigned long) (pgd_val(pgd_entry) & PAGE_MASK))
193
194/*
195 * PMD defines. Middle level.
196 */
197
198/* PGD to PMD dereferencing */
199#if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
200static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
201{
202 return (pmd_t *) dir;
203}
204#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
205#define __pmd_offset(address) \
206 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
207#define pmd_offset(dir, addr) \
208 ((pmd_t *) ((pgd_val(*(dir))) & PAGE_MASK) + __pmd_offset((addr)))
209#endif
210
211/*
212 * PMD level access routines. Same notes as above.
213 */
214#define _PMD_EMPTY 0x0
215/* Either the PMD is empty or present, it's not paged out */
216#define pmd_present(pmd_entry) (pmd_val(pmd_entry) & _PAGE_PRESENT)
217#define pmd_clear(pmd_entry_p) (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY)))
218#define pmd_none(pmd_entry) (pmd_val((pmd_entry)) == _PMD_EMPTY)
219#define pmd_bad(pmd_entry) ((pmd_val(pmd_entry) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
220
221#define pmd_page_kernel(pmd_entry) \
222 ((unsigned long) __va(pmd_val(pmd_entry) & PAGE_MASK))
223
224#define pmd_page(pmd) \
225 (virt_to_page(pmd_val(pmd)))
226
227/* PMD to PTE dereferencing */
228#define pte_index(address) \
229 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
230
231#define pte_offset_kernel(dir, addr) \
232 ((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + pte_index((addr)))
233
234#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr)
235#define pte_offset_map_nested(dir,addr) pte_offset_kernel(dir, addr)
236#define pte_unmap(pte) do { } while (0)
237#define pte_unmap_nested(pte) do { } while (0)
238
239/* Round it up ! */
240#define USER_PTRS_PER_PGD ((TASK_SIZE+PGDIR_SIZE-1)/PGDIR_SIZE)
241#define FIRST_USER_PGD_NR 0
242
243#ifndef __ASSEMBLY__
244#define VMALLOC_END 0xff000000
245#define VMALLOC_START 0xf0000000
246#define VMALLOC_VMADDR(x) ((unsigned long)(x))
247
248#define IOBASE_VADDR 0xff000000
249#define IOBASE_END 0xffffffff
250
251/*
252 * PTEL coherent flags.
253 * See Chapter 17 ST50 CPU Core Volume 1, Architecture.
254 */
255/* The bits that are required in the SH-5 TLB are placed in the h/w-defined
256 positions, to avoid expensive bit shuffling on every refill. The remaining
257 bits are used for s/w purposes and masked out on each refill.
258
259 Note, the PTE slots are used to hold data of type swp_entry_t when a page is
260 swapped out. Only the _PAGE_PRESENT flag is significant when the page is
261 swapped out, and it must be placed so that it doesn't overlap either the
262 type or offset fields of swp_entry_t. For x86, offset is at [31:8] and type
263 at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t. This
264 scheme doesn't map to SH-5 because bit [0] controls cacheability. So bit
265 [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split
266 into 2 pieces. That is handled by SWP_ENTRY and SWP_TYPE below. */
267#define _PAGE_WT 0x001 /* CB0: if cacheable, 1->write-thru, 0->write-back */
268#define _PAGE_DEVICE 0x001 /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */
269#define _PAGE_CACHABLE 0x002 /* CB1: uncachable/cachable */
270#define _PAGE_PRESENT 0x004 /* software: page referenced */
271#define _PAGE_FILE 0x004 /* software: only when !present */
272#define _PAGE_SIZE0 0x008 /* SZ0-bit : size of page */
273#define _PAGE_SIZE1 0x010 /* SZ1-bit : size of page */
274#define _PAGE_SHARED 0x020 /* software: reflects PTEH's SH */
275#define _PAGE_READ 0x040 /* PR0-bit : read access allowed */
276#define _PAGE_EXECUTE 0x080 /* PR1-bit : execute access allowed */
277#define _PAGE_WRITE 0x100 /* PR2-bit : write access allowed */
278#define _PAGE_USER 0x200 /* PR3-bit : user space access allowed */
279#define _PAGE_DIRTY 0x400 /* software: page accessed in write */
280#define _PAGE_ACCESSED 0x800 /* software: page referenced */
281
282/* Mask which drops software flags */
283#define _PAGE_FLAGS_HARDWARE_MASK 0xfffffffffffff3dbLL
284
285/*
286 * HugeTLB support
287 */
288#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
289#define _PAGE_SZHUGE (_PAGE_SIZE0)
290#elif defined(CONFIG_HUGETLB_PAGE_SIZE_1MB)
291#define _PAGE_SZHUGE (_PAGE_SIZE1)
292#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512MB)
293#define _PAGE_SZHUGE (_PAGE_SIZE0 | _PAGE_SIZE1)
294#endif
295
296/*
297 * Default flags for a Kernel page.
298 * This is fundametally also SHARED because the main use of this define
299 * (other than for PGD/PMD entries) is for the VMALLOC pool which is
300 * contextless.
301 *
302 * _PAGE_EXECUTE is required for modules
303 *
304 */
305#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
306 _PAGE_EXECUTE | \
307 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \
308 _PAGE_SHARED)
309
310/* Default flags for a User page */
311#define _PAGE_TABLE (_KERNPG_TABLE | _PAGE_USER)
312
313#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
314
315#define PAGE_NONE __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED)
316#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
317 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_USER | \
318 _PAGE_SHARED)
319/* We need to include PAGE_EXECUTE in PAGE_COPY because it is the default
320 * protection mode for the stack. */
321#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
322 _PAGE_ACCESSED | _PAGE_USER | _PAGE_EXECUTE)
323#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
324 _PAGE_ACCESSED | _PAGE_USER)
325#define PAGE_KERNEL __pgprot(_KERNPG_TABLE)
326
327
328/*
329 * In ST50 we have full permissions (Read/Write/Execute/Shared).
330 * Just match'em all. These are for mmap(), therefore all at least
331 * User/Cachable/Present/Accessed. No point in making Fault on Write.
332 */
333#define __MMAP_COMMON (_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED)
334 /* sxwr */
335#define __P000 __pgprot(__MMAP_COMMON)
336#define __P001 __pgprot(__MMAP_COMMON | _PAGE_READ)
337#define __P010 __pgprot(__MMAP_COMMON)
338#define __P011 __pgprot(__MMAP_COMMON | _PAGE_READ)
339#define __P100 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
340#define __P101 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
341#define __P110 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
342#define __P111 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
343
344#define __S000 __pgprot(__MMAP_COMMON | _PAGE_SHARED)
345#define __S001 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ)
346#define __S010 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_WRITE)
347#define __S011 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ | _PAGE_WRITE)
348#define __S100 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE)
349#define __S101 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ)
350#define __S110 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_WRITE)
351#define __S111 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ | _PAGE_WRITE)
352
353/* Make it a device mapping for maximum safety (e.g. for mapping device
354 registers into user-space via /dev/map). */
355#define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE)
356#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHABLE)
357
358/*
359 * Handling allocation failures during page table setup.
360 */
361extern void __handle_bad_pmd_kernel(pmd_t * pmd);
362#define __handle_bad_pmd(x) __handle_bad_pmd_kernel(x)
363
364/*
365 * PTE level access routines.
366 *
367 * Note1:
368 * It's the tree walk leaf. This is physical address to be stored.
369 *
370 * Note 2:
371 * Regarding the choice of _PTE_EMPTY:
372
373 We must choose a bit pattern that cannot be valid, whether or not the page
374 is present. bit[2]==1 => present, bit[2]==0 => swapped out. If swapped
375 out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is
376 left for us to select. If we force bit[7]==0 when swapped out, we could use
377 the combination bit[7,2]=2'b10 to indicate an empty PTE. Alternatively, if
378 we force bit[7]==1 when swapped out, we can use all zeroes to indicate
379 empty. This is convenient, because the page tables get cleared to zero
380 when they are allocated.
381
382 */
383#define _PTE_EMPTY 0x0
384#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
385#define pte_clear(mm,addr,xp) (set_pte_at(mm, addr, xp, __pte(_PTE_EMPTY)))
386#define pte_none(x) (pte_val(x) == _PTE_EMPTY)
387
388/*
389 * Some definitions to translate between mem_map, PTEs, and page
390 * addresses:
391 */
392
393/*
394 * Given a PTE, return the index of the mem_map[] entry corresponding
395 * to the page frame the PTE. Get the absolute physical address, make
396 * a relative physical address and translate it to an index.
397 */
398#define pte_pagenr(x) (((unsigned long) (pte_val(x)) - \
399 __MEMORY_START) >> PAGE_SHIFT)
400
401/*
402 * Given a PTE, return the "struct page *".
403 */
404#define pte_page(x) (mem_map + pte_pagenr(x))
405
406/*
407 * Return number of (down rounded) MB corresponding to x pages.
408 */
409#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
410
411
412/*
413 * The following have defined behavior only work if pte_present() is true.
414 */
415static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
416static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXECUTE; }
417static inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; }
418static inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; }
419static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
420static inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE; }
421
422extern inline pte_t pte_rdprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_READ)); return pte; }
423extern inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; }
424extern inline pte_t pte_exprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_EXECUTE)); return pte; }
425extern inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
426extern inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
427
428extern inline pte_t pte_mkread(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_READ)); return pte; }
429extern inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; }
430extern inline pte_t pte_mkexec(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_EXECUTE)); return pte; }
431extern inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
432extern inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
433
434/*
435 * Conversion functions: convert a page and protection to a page entry.
436 *
437 * extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
438 */
439#define mk_pte(page,pgprot) \
440({ \
441 pte_t __pte; \
442 \
443 set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | \
444 __MEMORY_START | pgprot_val((pgprot)))); \
445 __pte; \
446})
447
448/*
449 * This takes a (absolute) physical page address that is used
450 * by the remapping functions
451 */
452#define mk_pte_phys(physpage, pgprot) \
453({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; })
454
455extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
456{ set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; }
457
458#define page_pte_prot(page, prot) mk_pte(page, prot)
459#define page_pte(page) page_pte_prot(page, __pgprot(0))
460
461typedef pte_t *pte_addr_t;
462#define pgtable_cache_init() do { } while (0)
463
464extern void update_mmu_cache(struct vm_area_struct * vma,
465 unsigned long address, pte_t pte);
466
467/* Encode and decode a swap entry */
468#define __swp_type(x) (((x).val & 3) + (((x).val >> 1) & 0x3c))
469#define __swp_offset(x) ((x).val >> 8)
470#define __swp_entry(type, offset) ((swp_entry_t) { ((offset << 8) + ((type & 0x3c) << 1) + (type & 3)) })
471#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
472#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
473
474/* Encode and decode a nonlinear file mapping entry */
475#define PTE_FILE_MAX_BITS 29
476#define pte_to_pgoff(pte) (pte_val(pte))
477#define pgoff_to_pte(off) ((pte_t) { (off) | _PAGE_FILE })
478
479/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
480#define PageSkip(page) (0)
481#define kern_addr_valid(addr) (1)
482
483#define io_remap_page_range(vma, vaddr, paddr, size, prot) \
484 remap_pfn_range(vma, vaddr, (paddr) >> PAGE_SHIFT, size, prot)
485
486#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
487 remap_pfn_range(vma, vaddr, pfn, size, prot)
488
489#define MK_IOSPACE_PFN(space, pfn) (pfn)
490#define GET_IOSPACE(pfn) 0
491#define GET_PFN(pfn) (pfn)
492
493#endif /* !__ASSEMBLY__ */
494
495/*
496 * No page table caches to initialise
497 */
498#define pgtable_cache_init() do { } while (0)
499
500#define pte_pfn(x) (((unsigned long)((x).pte)) >> PAGE_SHIFT)
501#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
502#define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
503
504extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
505
506#include <asm-generic/pgtable.h>
507
508#endif /* __ASM_SH64_PGTABLE_H */