Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | #ifndef _ALPHA_BITOPS_H |
| 2 | #define _ALPHA_BITOPS_H |
| 3 | |
| 4 | #include <linux/config.h> |
| 5 | #include <asm/compiler.h> |
| 6 | |
| 7 | /* |
| 8 | * Copyright 1994, Linus Torvalds. |
| 9 | */ |
| 10 | |
| 11 | /* |
| 12 | * These have to be done with inline assembly: that way the bit-setting |
| 13 | * is guaranteed to be atomic. All bit operations return 0 if the bit |
| 14 | * was cleared before the operation and != 0 if it was not. |
| 15 | * |
| 16 | * To get proper branch prediction for the main line, we must branch |
| 17 | * forward to code at the end of this object's .text section, then |
| 18 | * branch back to restart the operation. |
| 19 | * |
| 20 | * bit 0 is the LSB of addr; bit 64 is the LSB of (addr+1). |
| 21 | */ |
| 22 | |
| 23 | static inline void |
| 24 | set_bit(unsigned long nr, volatile void * addr) |
| 25 | { |
| 26 | unsigned long temp; |
| 27 | int *m = ((int *) addr) + (nr >> 5); |
| 28 | |
| 29 | __asm__ __volatile__( |
| 30 | "1: ldl_l %0,%3\n" |
| 31 | " bis %0,%2,%0\n" |
| 32 | " stl_c %0,%1\n" |
| 33 | " beq %0,2f\n" |
| 34 | ".subsection 2\n" |
| 35 | "2: br 1b\n" |
| 36 | ".previous" |
| 37 | :"=&r" (temp), "=m" (*m) |
| 38 | :"Ir" (1UL << (nr & 31)), "m" (*m)); |
| 39 | } |
| 40 | |
| 41 | /* |
| 42 | * WARNING: non atomic version. |
| 43 | */ |
| 44 | static inline void |
| 45 | __set_bit(unsigned long nr, volatile void * addr) |
| 46 | { |
| 47 | int *m = ((int *) addr) + (nr >> 5); |
| 48 | |
| 49 | *m |= 1 << (nr & 31); |
| 50 | } |
| 51 | |
| 52 | #define smp_mb__before_clear_bit() smp_mb() |
| 53 | #define smp_mb__after_clear_bit() smp_mb() |
| 54 | |
| 55 | static inline void |
| 56 | clear_bit(unsigned long nr, volatile void * addr) |
| 57 | { |
| 58 | unsigned long temp; |
| 59 | int *m = ((int *) addr) + (nr >> 5); |
| 60 | |
| 61 | __asm__ __volatile__( |
| 62 | "1: ldl_l %0,%3\n" |
| 63 | " bic %0,%2,%0\n" |
| 64 | " stl_c %0,%1\n" |
| 65 | " beq %0,2f\n" |
| 66 | ".subsection 2\n" |
| 67 | "2: br 1b\n" |
| 68 | ".previous" |
| 69 | :"=&r" (temp), "=m" (*m) |
| 70 | :"Ir" (1UL << (nr & 31)), "m" (*m)); |
| 71 | } |
| 72 | |
| 73 | /* |
| 74 | * WARNING: non atomic version. |
| 75 | */ |
| 76 | static __inline__ void |
| 77 | __clear_bit(unsigned long nr, volatile void * addr) |
| 78 | { |
| 79 | int *m = ((int *) addr) + (nr >> 5); |
| 80 | |
| 81 | *m &= ~(1 << (nr & 31)); |
| 82 | } |
| 83 | |
| 84 | static inline void |
| 85 | change_bit(unsigned long nr, volatile void * addr) |
| 86 | { |
| 87 | unsigned long temp; |
| 88 | int *m = ((int *) addr) + (nr >> 5); |
| 89 | |
| 90 | __asm__ __volatile__( |
| 91 | "1: ldl_l %0,%3\n" |
| 92 | " xor %0,%2,%0\n" |
| 93 | " stl_c %0,%1\n" |
| 94 | " beq %0,2f\n" |
| 95 | ".subsection 2\n" |
| 96 | "2: br 1b\n" |
| 97 | ".previous" |
| 98 | :"=&r" (temp), "=m" (*m) |
| 99 | :"Ir" (1UL << (nr & 31)), "m" (*m)); |
| 100 | } |
| 101 | |
| 102 | /* |
| 103 | * WARNING: non atomic version. |
| 104 | */ |
| 105 | static __inline__ void |
| 106 | __change_bit(unsigned long nr, volatile void * addr) |
| 107 | { |
| 108 | int *m = ((int *) addr) + (nr >> 5); |
| 109 | |
| 110 | *m ^= 1 << (nr & 31); |
| 111 | } |
| 112 | |
| 113 | static inline int |
| 114 | test_and_set_bit(unsigned long nr, volatile void *addr) |
| 115 | { |
| 116 | unsigned long oldbit; |
| 117 | unsigned long temp; |
| 118 | int *m = ((int *) addr) + (nr >> 5); |
| 119 | |
| 120 | __asm__ __volatile__( |
| 121 | "1: ldl_l %0,%4\n" |
| 122 | " and %0,%3,%2\n" |
| 123 | " bne %2,2f\n" |
| 124 | " xor %0,%3,%0\n" |
| 125 | " stl_c %0,%1\n" |
| 126 | " beq %0,3f\n" |
| 127 | "2:\n" |
| 128 | #ifdef CONFIG_SMP |
| 129 | " mb\n" |
| 130 | #endif |
| 131 | ".subsection 2\n" |
| 132 | "3: br 1b\n" |
| 133 | ".previous" |
| 134 | :"=&r" (temp), "=m" (*m), "=&r" (oldbit) |
| 135 | :"Ir" (1UL << (nr & 31)), "m" (*m) : "memory"); |
| 136 | |
| 137 | return oldbit != 0; |
| 138 | } |
| 139 | |
| 140 | /* |
| 141 | * WARNING: non atomic version. |
| 142 | */ |
| 143 | static inline int |
| 144 | __test_and_set_bit(unsigned long nr, volatile void * addr) |
| 145 | { |
| 146 | unsigned long mask = 1 << (nr & 0x1f); |
| 147 | int *m = ((int *) addr) + (nr >> 5); |
| 148 | int old = *m; |
| 149 | |
| 150 | *m = old | mask; |
| 151 | return (old & mask) != 0; |
| 152 | } |
| 153 | |
| 154 | static inline int |
| 155 | test_and_clear_bit(unsigned long nr, volatile void * addr) |
| 156 | { |
| 157 | unsigned long oldbit; |
| 158 | unsigned long temp; |
| 159 | int *m = ((int *) addr) + (nr >> 5); |
| 160 | |
| 161 | __asm__ __volatile__( |
| 162 | "1: ldl_l %0,%4\n" |
| 163 | " and %0,%3,%2\n" |
| 164 | " beq %2,2f\n" |
| 165 | " xor %0,%3,%0\n" |
| 166 | " stl_c %0,%1\n" |
| 167 | " beq %0,3f\n" |
| 168 | "2:\n" |
| 169 | #ifdef CONFIG_SMP |
| 170 | " mb\n" |
| 171 | #endif |
| 172 | ".subsection 2\n" |
| 173 | "3: br 1b\n" |
| 174 | ".previous" |
| 175 | :"=&r" (temp), "=m" (*m), "=&r" (oldbit) |
| 176 | :"Ir" (1UL << (nr & 31)), "m" (*m) : "memory"); |
| 177 | |
| 178 | return oldbit != 0; |
| 179 | } |
| 180 | |
| 181 | /* |
| 182 | * WARNING: non atomic version. |
| 183 | */ |
| 184 | static inline int |
| 185 | __test_and_clear_bit(unsigned long nr, volatile void * addr) |
| 186 | { |
| 187 | unsigned long mask = 1 << (nr & 0x1f); |
| 188 | int *m = ((int *) addr) + (nr >> 5); |
| 189 | int old = *m; |
| 190 | |
| 191 | *m = old & ~mask; |
| 192 | return (old & mask) != 0; |
| 193 | } |
| 194 | |
| 195 | static inline int |
| 196 | test_and_change_bit(unsigned long nr, volatile void * addr) |
| 197 | { |
| 198 | unsigned long oldbit; |
| 199 | unsigned long temp; |
| 200 | int *m = ((int *) addr) + (nr >> 5); |
| 201 | |
| 202 | __asm__ __volatile__( |
| 203 | "1: ldl_l %0,%4\n" |
| 204 | " and %0,%3,%2\n" |
| 205 | " xor %0,%3,%0\n" |
| 206 | " stl_c %0,%1\n" |
| 207 | " beq %0,3f\n" |
| 208 | #ifdef CONFIG_SMP |
| 209 | " mb\n" |
| 210 | #endif |
| 211 | ".subsection 2\n" |
| 212 | "3: br 1b\n" |
| 213 | ".previous" |
| 214 | :"=&r" (temp), "=m" (*m), "=&r" (oldbit) |
| 215 | :"Ir" (1UL << (nr & 31)), "m" (*m) : "memory"); |
| 216 | |
| 217 | return oldbit != 0; |
| 218 | } |
| 219 | |
| 220 | /* |
| 221 | * WARNING: non atomic version. |
| 222 | */ |
| 223 | static __inline__ int |
| 224 | __test_and_change_bit(unsigned long nr, volatile void * addr) |
| 225 | { |
| 226 | unsigned long mask = 1 << (nr & 0x1f); |
| 227 | int *m = ((int *) addr) + (nr >> 5); |
| 228 | int old = *m; |
| 229 | |
| 230 | *m = old ^ mask; |
| 231 | return (old & mask) != 0; |
| 232 | } |
| 233 | |
| 234 | static inline int |
| 235 | test_bit(int nr, const volatile void * addr) |
| 236 | { |
| 237 | return (1UL & (((const int *) addr)[nr >> 5] >> (nr & 31))) != 0UL; |
| 238 | } |
| 239 | |
| 240 | /* |
| 241 | * ffz = Find First Zero in word. Undefined if no zero exists, |
| 242 | * so code should check against ~0UL first.. |
| 243 | * |
| 244 | * Do a binary search on the bits. Due to the nature of large |
| 245 | * constants on the alpha, it is worthwhile to split the search. |
| 246 | */ |
| 247 | static inline unsigned long ffz_b(unsigned long x) |
| 248 | { |
| 249 | unsigned long sum, x1, x2, x4; |
| 250 | |
| 251 | x = ~x & -~x; /* set first 0 bit, clear others */ |
| 252 | x1 = x & 0xAA; |
| 253 | x2 = x & 0xCC; |
| 254 | x4 = x & 0xF0; |
| 255 | sum = x2 ? 2 : 0; |
| 256 | sum += (x4 != 0) * 4; |
| 257 | sum += (x1 != 0); |
| 258 | |
| 259 | return sum; |
| 260 | } |
| 261 | |
| 262 | static inline unsigned long ffz(unsigned long word) |
| 263 | { |
| 264 | #if defined(__alpha_cix__) && defined(__alpha_fix__) |
| 265 | /* Whee. EV67 can calculate it directly. */ |
| 266 | return __kernel_cttz(~word); |
| 267 | #else |
| 268 | unsigned long bits, qofs, bofs; |
| 269 | |
| 270 | bits = __kernel_cmpbge(word, ~0UL); |
| 271 | qofs = ffz_b(bits); |
| 272 | bits = __kernel_extbl(word, qofs); |
| 273 | bofs = ffz_b(bits); |
| 274 | |
| 275 | return qofs*8 + bofs; |
| 276 | #endif |
| 277 | } |
| 278 | |
| 279 | /* |
| 280 | * __ffs = Find First set bit in word. Undefined if no set bit exists. |
| 281 | */ |
| 282 | static inline unsigned long __ffs(unsigned long word) |
| 283 | { |
| 284 | #if defined(__alpha_cix__) && defined(__alpha_fix__) |
| 285 | /* Whee. EV67 can calculate it directly. */ |
| 286 | return __kernel_cttz(word); |
| 287 | #else |
| 288 | unsigned long bits, qofs, bofs; |
| 289 | |
| 290 | bits = __kernel_cmpbge(0, word); |
| 291 | qofs = ffz_b(bits); |
| 292 | bits = __kernel_extbl(word, qofs); |
| 293 | bofs = ffz_b(~bits); |
| 294 | |
| 295 | return qofs*8 + bofs; |
| 296 | #endif |
| 297 | } |
| 298 | |
| 299 | #ifdef __KERNEL__ |
| 300 | |
| 301 | /* |
| 302 | * ffs: find first bit set. This is defined the same way as |
| 303 | * the libc and compiler builtin ffs routines, therefore |
| 304 | * differs in spirit from the above __ffs. |
| 305 | */ |
| 306 | |
| 307 | static inline int ffs(int word) |
| 308 | { |
| 309 | int result = __ffs(word) + 1; |
| 310 | return word ? result : 0; |
| 311 | } |
| 312 | |
| 313 | /* |
| 314 | * fls: find last bit set. |
| 315 | */ |
| 316 | #if defined(__alpha_cix__) && defined(__alpha_fix__) |
| 317 | static inline int fls(int word) |
| 318 | { |
| 319 | return 64 - __kernel_ctlz(word & 0xffffffff); |
| 320 | } |
| 321 | #else |
| 322 | #define fls generic_fls |
| 323 | #endif |
| 324 | |
| 325 | /* Compute powers of two for the given integer. */ |
| 326 | static inline long floor_log2(unsigned long word) |
| 327 | { |
| 328 | #if defined(__alpha_cix__) && defined(__alpha_fix__) |
| 329 | return 63 - __kernel_ctlz(word); |
| 330 | #else |
| 331 | long bit; |
| 332 | for (bit = -1; word ; bit++) |
| 333 | word >>= 1; |
| 334 | return bit; |
| 335 | #endif |
| 336 | } |
| 337 | |
| 338 | static inline long ceil_log2(unsigned long word) |
| 339 | { |
| 340 | long bit = floor_log2(word); |
| 341 | return bit + (word > (1UL << bit)); |
| 342 | } |
| 343 | |
| 344 | /* |
| 345 | * hweightN: returns the hamming weight (i.e. the number |
| 346 | * of bits set) of a N-bit word |
| 347 | */ |
| 348 | |
| 349 | #if defined(__alpha_cix__) && defined(__alpha_fix__) |
| 350 | /* Whee. EV67 can calculate it directly. */ |
| 351 | static inline unsigned long hweight64(unsigned long w) |
| 352 | { |
| 353 | return __kernel_ctpop(w); |
| 354 | } |
| 355 | |
| 356 | #define hweight32(x) (unsigned int) hweight64((x) & 0xfffffffful) |
| 357 | #define hweight16(x) (unsigned int) hweight64((x) & 0xfffful) |
| 358 | #define hweight8(x) (unsigned int) hweight64((x) & 0xfful) |
| 359 | #else |
| 360 | static inline unsigned long hweight64(unsigned long w) |
| 361 | { |
| 362 | unsigned long result; |
| 363 | for (result = 0; w ; w >>= 1) |
| 364 | result += (w & 1); |
| 365 | return result; |
| 366 | } |
| 367 | |
| 368 | #define hweight32(x) generic_hweight32(x) |
| 369 | #define hweight16(x) generic_hweight16(x) |
| 370 | #define hweight8(x) generic_hweight8(x) |
| 371 | #endif |
| 372 | |
| 373 | #endif /* __KERNEL__ */ |
| 374 | |
| 375 | /* |
| 376 | * Find next zero bit in a bitmap reasonably efficiently.. |
| 377 | */ |
| 378 | static inline unsigned long |
| 379 | find_next_zero_bit(const void *addr, unsigned long size, unsigned long offset) |
| 380 | { |
| 381 | const unsigned long *p = addr; |
| 382 | unsigned long result = offset & ~63UL; |
| 383 | unsigned long tmp; |
| 384 | |
| 385 | p += offset >> 6; |
| 386 | if (offset >= size) |
| 387 | return size; |
| 388 | size -= result; |
| 389 | offset &= 63UL; |
| 390 | if (offset) { |
| 391 | tmp = *(p++); |
| 392 | tmp |= ~0UL >> (64-offset); |
| 393 | if (size < 64) |
| 394 | goto found_first; |
| 395 | if (~tmp) |
| 396 | goto found_middle; |
| 397 | size -= 64; |
| 398 | result += 64; |
| 399 | } |
| 400 | while (size & ~63UL) { |
| 401 | if (~(tmp = *(p++))) |
| 402 | goto found_middle; |
| 403 | result += 64; |
| 404 | size -= 64; |
| 405 | } |
| 406 | if (!size) |
| 407 | return result; |
| 408 | tmp = *p; |
| 409 | found_first: |
| 410 | tmp |= ~0UL << size; |
| 411 | if (tmp == ~0UL) /* Are any bits zero? */ |
| 412 | return result + size; /* Nope. */ |
| 413 | found_middle: |
| 414 | return result + ffz(tmp); |
| 415 | } |
| 416 | |
| 417 | /* |
| 418 | * Find next one bit in a bitmap reasonably efficiently. |
| 419 | */ |
| 420 | static inline unsigned long |
| 421 | find_next_bit(const void * addr, unsigned long size, unsigned long offset) |
| 422 | { |
| 423 | const unsigned long *p = addr; |
| 424 | unsigned long result = offset & ~63UL; |
| 425 | unsigned long tmp; |
| 426 | |
| 427 | p += offset >> 6; |
| 428 | if (offset >= size) |
| 429 | return size; |
| 430 | size -= result; |
| 431 | offset &= 63UL; |
| 432 | if (offset) { |
| 433 | tmp = *(p++); |
| 434 | tmp &= ~0UL << offset; |
| 435 | if (size < 64) |
| 436 | goto found_first; |
| 437 | if (tmp) |
| 438 | goto found_middle; |
| 439 | size -= 64; |
| 440 | result += 64; |
| 441 | } |
| 442 | while (size & ~63UL) { |
| 443 | if ((tmp = *(p++))) |
| 444 | goto found_middle; |
| 445 | result += 64; |
| 446 | size -= 64; |
| 447 | } |
| 448 | if (!size) |
| 449 | return result; |
| 450 | tmp = *p; |
| 451 | found_first: |
| 452 | tmp &= ~0UL >> (64 - size); |
| 453 | if (!tmp) |
| 454 | return result + size; |
| 455 | found_middle: |
| 456 | return result + __ffs(tmp); |
| 457 | } |
| 458 | |
| 459 | /* |
| 460 | * The optimizer actually does good code for this case. |
| 461 | */ |
| 462 | #define find_first_zero_bit(addr, size) \ |
| 463 | find_next_zero_bit((addr), (size), 0) |
| 464 | #define find_first_bit(addr, size) \ |
| 465 | find_next_bit((addr), (size), 0) |
| 466 | |
| 467 | #ifdef __KERNEL__ |
| 468 | |
| 469 | /* |
| 470 | * Every architecture must define this function. It's the fastest |
| 471 | * way of searching a 140-bit bitmap where the first 100 bits are |
| 472 | * unlikely to be set. It's guaranteed that at least one of the 140 |
| 473 | * bits is set. |
| 474 | */ |
| 475 | static inline unsigned long |
| 476 | sched_find_first_bit(unsigned long b[3]) |
| 477 | { |
| 478 | unsigned long b0 = b[0], b1 = b[1], b2 = b[2]; |
| 479 | unsigned long ofs; |
| 480 | |
| 481 | ofs = (b1 ? 64 : 128); |
| 482 | b1 = (b1 ? b1 : b2); |
| 483 | ofs = (b0 ? 0 : ofs); |
| 484 | b0 = (b0 ? b0 : b1); |
| 485 | |
| 486 | return __ffs(b0) + ofs; |
| 487 | } |
| 488 | |
| 489 | |
| 490 | #define ext2_set_bit __test_and_set_bit |
| 491 | #define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a) |
| 492 | #define ext2_clear_bit __test_and_clear_bit |
| 493 | #define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a) |
| 494 | #define ext2_test_bit test_bit |
| 495 | #define ext2_find_first_zero_bit find_first_zero_bit |
| 496 | #define ext2_find_next_zero_bit find_next_zero_bit |
| 497 | |
| 498 | /* Bitmap functions for the minix filesystem. */ |
| 499 | #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr) |
| 500 | #define minix_set_bit(nr,addr) __set_bit(nr,addr) |
| 501 | #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr) |
| 502 | #define minix_test_bit(nr,addr) test_bit(nr,addr) |
| 503 | #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) |
| 504 | |
| 505 | #endif /* __KERNEL__ */ |
| 506 | |
| 507 | #endif /* _ALPHA_BITOPS_H */ |