Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * PowerMac G5 SMU driver |
| 3 | * |
| 4 | * Copyright 2004 J. Mayer <l_indien@magic.fr> |
| 5 | * Copyright 2005 Benjamin Herrenschmidt, IBM Corp. |
| 6 | * |
| 7 | * Released under the term of the GNU GPL v2. |
| 8 | */ |
| 9 | |
| 10 | /* |
| 11 | * For now, this driver includes: |
| 12 | * - RTC get & set |
| 13 | * - reboot & shutdown commands |
| 14 | * all synchronous with IRQ disabled (ugh) |
| 15 | * |
| 16 | * TODO: |
| 17 | * rework in a way the PMU driver works, that is asynchronous |
| 18 | * with a queue of commands. I'll do that as soon as I have an |
| 19 | * SMU based machine at hand. Some more cleanup is needed too, |
| 20 | * like maybe fitting it into a platform device, etc... |
| 21 | * Also check what's up with cache coherency, and if we really |
| 22 | * can't do better than flushing the cache, maybe build a table |
| 23 | * of command len/reply len like the PMU driver to only flush |
| 24 | * what is actually necessary. |
| 25 | * --BenH. |
| 26 | */ |
| 27 | |
| 28 | #include <linux/config.h> |
| 29 | #include <linux/types.h> |
| 30 | #include <linux/kernel.h> |
| 31 | #include <linux/device.h> |
| 32 | #include <linux/dmapool.h> |
| 33 | #include <linux/bootmem.h> |
| 34 | #include <linux/vmalloc.h> |
| 35 | #include <linux/highmem.h> |
| 36 | #include <linux/jiffies.h> |
| 37 | #include <linux/interrupt.h> |
| 38 | #include <linux/rtc.h> |
| 39 | |
| 40 | #include <asm/byteorder.h> |
| 41 | #include <asm/io.h> |
| 42 | #include <asm/prom.h> |
| 43 | #include <asm/machdep.h> |
| 44 | #include <asm/pmac_feature.h> |
| 45 | #include <asm/smu.h> |
| 46 | #include <asm/sections.h> |
| 47 | #include <asm/abs_addr.h> |
| 48 | |
| 49 | #define DEBUG_SMU 1 |
| 50 | |
| 51 | #ifdef DEBUG_SMU |
| 52 | #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0) |
| 53 | #else |
| 54 | #define DPRINTK(fmt, args...) do { } while (0) |
| 55 | #endif |
| 56 | |
| 57 | /* |
| 58 | * This is the command buffer passed to the SMU hardware |
| 59 | */ |
| 60 | struct smu_cmd_buf { |
| 61 | u8 cmd; |
| 62 | u8 length; |
| 63 | u8 data[0x0FFE]; |
| 64 | }; |
| 65 | |
| 66 | struct smu_device { |
| 67 | spinlock_t lock; |
| 68 | struct device_node *of_node; |
| 69 | int db_ack; /* doorbell ack GPIO */ |
| 70 | int db_req; /* doorbell req GPIO */ |
| 71 | u32 __iomem *db_buf; /* doorbell buffer */ |
| 72 | struct smu_cmd_buf *cmd_buf; /* command buffer virtual */ |
| 73 | u32 cmd_buf_abs; /* command buffer absolute */ |
| 74 | }; |
| 75 | |
| 76 | /* |
| 77 | * I don't think there will ever be more than one SMU, so |
| 78 | * for now, just hard code that |
| 79 | */ |
| 80 | static struct smu_device *smu; |
| 81 | |
| 82 | /* |
| 83 | * SMU low level communication stuff |
| 84 | */ |
| 85 | static inline int smu_cmd_stat(struct smu_cmd_buf *cmd_buf, u8 cmd_ack) |
| 86 | { |
| 87 | rmb(); |
| 88 | return cmd_buf->cmd == cmd_ack && cmd_buf->length != 0; |
| 89 | } |
| 90 | |
| 91 | static inline u8 smu_save_ack_cmd(struct smu_cmd_buf *cmd_buf) |
| 92 | { |
| 93 | return (~cmd_buf->cmd) & 0xff; |
| 94 | } |
| 95 | |
| 96 | static void smu_send_cmd(struct smu_device *dev) |
| 97 | { |
| 98 | /* SMU command buf is currently cacheable, we need a physical |
| 99 | * address. This isn't exactly a DMA mapping here, I suspect |
| 100 | * the SMU is actually communicating with us via i2c to the |
| 101 | * northbridge or the CPU to access RAM. |
| 102 | */ |
| 103 | writel(dev->cmd_buf_abs, dev->db_buf); |
| 104 | |
| 105 | /* Ring the SMU doorbell */ |
| 106 | pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, dev->db_req, 4); |
| 107 | pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, dev->db_req, 4); |
| 108 | } |
| 109 | |
| 110 | static int smu_cmd_done(struct smu_device *dev) |
| 111 | { |
| 112 | unsigned long wait = 0; |
| 113 | int gpio; |
| 114 | |
| 115 | /* Check the SMU doorbell */ |
| 116 | do { |
| 117 | gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, |
| 118 | NULL, dev->db_ack); |
| 119 | if ((gpio & 7) == 7) |
| 120 | return 0; |
| 121 | udelay(100); |
| 122 | } while(++wait < 10000); |
| 123 | |
| 124 | printk(KERN_ERR "SMU timeout !\n"); |
| 125 | return -ENXIO; |
| 126 | } |
| 127 | |
| 128 | static int smu_do_cmd(struct smu_device *dev) |
| 129 | { |
| 130 | int rc; |
| 131 | u8 cmd_ack; |
| 132 | |
| 133 | DPRINTK("SMU do_cmd %02x len=%d %02x\n", |
| 134 | dev->cmd_buf->cmd, dev->cmd_buf->length, |
| 135 | dev->cmd_buf->data[0]); |
| 136 | |
| 137 | cmd_ack = smu_save_ack_cmd(dev->cmd_buf); |
| 138 | |
| 139 | /* Clear cmd_buf cache lines */ |
| 140 | flush_inval_dcache_range((unsigned long)dev->cmd_buf, |
| 141 | ((unsigned long)dev->cmd_buf) + |
| 142 | sizeof(struct smu_cmd_buf)); |
| 143 | smu_send_cmd(dev); |
| 144 | rc = smu_cmd_done(dev); |
| 145 | if (rc == 0) |
| 146 | rc = smu_cmd_stat(dev->cmd_buf, cmd_ack) ? 0 : -1; |
| 147 | |
| 148 | DPRINTK("SMU do_cmd %02x len=%d %02x => %d (%02x)\n", |
| 149 | dev->cmd_buf->cmd, dev->cmd_buf->length, |
| 150 | dev->cmd_buf->data[0], rc, cmd_ack); |
| 151 | |
| 152 | return rc; |
| 153 | } |
| 154 | |
| 155 | /* RTC low level commands */ |
| 156 | static inline int bcd2hex (int n) |
| 157 | { |
| 158 | return (((n & 0xf0) >> 4) * 10) + (n & 0xf); |
| 159 | } |
| 160 | |
| 161 | static inline int hex2bcd (int n) |
| 162 | { |
| 163 | return ((n / 10) << 4) + (n % 10); |
| 164 | } |
| 165 | |
| 166 | #if 0 |
| 167 | static inline void smu_fill_set_pwrup_timer_cmd(struct smu_cmd_buf *cmd_buf) |
| 168 | { |
| 169 | cmd_buf->cmd = 0x8e; |
| 170 | cmd_buf->length = 8; |
| 171 | cmd_buf->data[0] = 0x00; |
| 172 | memset(cmd_buf->data + 1, 0, 7); |
| 173 | } |
| 174 | |
| 175 | static inline void smu_fill_get_pwrup_timer_cmd(struct smu_cmd_buf *cmd_buf) |
| 176 | { |
| 177 | cmd_buf->cmd = 0x8e; |
| 178 | cmd_buf->length = 1; |
| 179 | cmd_buf->data[0] = 0x01; |
| 180 | } |
| 181 | |
| 182 | static inline void smu_fill_dis_pwrup_timer_cmd(struct smu_cmd_buf *cmd_buf) |
| 183 | { |
| 184 | cmd_buf->cmd = 0x8e; |
| 185 | cmd_buf->length = 1; |
| 186 | cmd_buf->data[0] = 0x02; |
| 187 | } |
| 188 | #endif |
| 189 | |
| 190 | static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf, |
| 191 | struct rtc_time *time) |
| 192 | { |
| 193 | cmd_buf->cmd = 0x8e; |
| 194 | cmd_buf->length = 8; |
| 195 | cmd_buf->data[0] = 0x80; |
| 196 | cmd_buf->data[1] = hex2bcd(time->tm_sec); |
| 197 | cmd_buf->data[2] = hex2bcd(time->tm_min); |
| 198 | cmd_buf->data[3] = hex2bcd(time->tm_hour); |
| 199 | cmd_buf->data[4] = time->tm_wday; |
| 200 | cmd_buf->data[5] = hex2bcd(time->tm_mday); |
| 201 | cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1; |
| 202 | cmd_buf->data[7] = hex2bcd(time->tm_year - 100); |
| 203 | } |
| 204 | |
| 205 | static inline void smu_fill_get_rtc_cmd(struct smu_cmd_buf *cmd_buf) |
| 206 | { |
| 207 | cmd_buf->cmd = 0x8e; |
| 208 | cmd_buf->length = 1; |
| 209 | cmd_buf->data[0] = 0x81; |
| 210 | } |
| 211 | |
| 212 | static void smu_parse_get_rtc_reply(struct smu_cmd_buf *cmd_buf, |
| 213 | struct rtc_time *time) |
| 214 | { |
| 215 | time->tm_sec = bcd2hex(cmd_buf->data[0]); |
| 216 | time->tm_min = bcd2hex(cmd_buf->data[1]); |
| 217 | time->tm_hour = bcd2hex(cmd_buf->data[2]); |
| 218 | time->tm_wday = bcd2hex(cmd_buf->data[3]); |
| 219 | time->tm_mday = bcd2hex(cmd_buf->data[4]); |
| 220 | time->tm_mon = bcd2hex(cmd_buf->data[5]) - 1; |
| 221 | time->tm_year = bcd2hex(cmd_buf->data[6]) + 100; |
| 222 | } |
| 223 | |
| 224 | int smu_get_rtc_time(struct rtc_time *time) |
| 225 | { |
| 226 | unsigned long flags; |
| 227 | int rc; |
| 228 | |
| 229 | if (smu == NULL) |
| 230 | return -ENODEV; |
| 231 | |
| 232 | memset(time, 0, sizeof(struct rtc_time)); |
| 233 | spin_lock_irqsave(&smu->lock, flags); |
| 234 | smu_fill_get_rtc_cmd(smu->cmd_buf); |
| 235 | rc = smu_do_cmd(smu); |
| 236 | if (rc == 0) |
| 237 | smu_parse_get_rtc_reply(smu->cmd_buf, time); |
| 238 | spin_unlock_irqrestore(&smu->lock, flags); |
| 239 | |
| 240 | return rc; |
| 241 | } |
| 242 | |
| 243 | int smu_set_rtc_time(struct rtc_time *time) |
| 244 | { |
| 245 | unsigned long flags; |
| 246 | int rc; |
| 247 | |
| 248 | if (smu == NULL) |
| 249 | return -ENODEV; |
| 250 | |
| 251 | spin_lock_irqsave(&smu->lock, flags); |
| 252 | smu_fill_set_rtc_cmd(smu->cmd_buf, time); |
| 253 | rc = smu_do_cmd(smu); |
| 254 | spin_unlock_irqrestore(&smu->lock, flags); |
| 255 | |
| 256 | return rc; |
| 257 | } |
| 258 | |
| 259 | void smu_shutdown(void) |
| 260 | { |
| 261 | const unsigned char *command = "SHUTDOWN"; |
| 262 | unsigned long flags; |
| 263 | |
| 264 | if (smu == NULL) |
| 265 | return; |
| 266 | |
| 267 | spin_lock_irqsave(&smu->lock, flags); |
| 268 | smu->cmd_buf->cmd = 0xaa; |
| 269 | smu->cmd_buf->length = strlen(command); |
| 270 | strcpy(smu->cmd_buf->data, command); |
| 271 | smu_do_cmd(smu); |
| 272 | for (;;) |
| 273 | ; |
| 274 | spin_unlock_irqrestore(&smu->lock, flags); |
| 275 | } |
| 276 | |
| 277 | void smu_restart(void) |
| 278 | { |
| 279 | const unsigned char *command = "RESTART"; |
| 280 | unsigned long flags; |
| 281 | |
| 282 | if (smu == NULL) |
| 283 | return; |
| 284 | |
| 285 | spin_lock_irqsave(&smu->lock, flags); |
| 286 | smu->cmd_buf->cmd = 0xaa; |
| 287 | smu->cmd_buf->length = strlen(command); |
| 288 | strcpy(smu->cmd_buf->data, command); |
| 289 | smu_do_cmd(smu); |
| 290 | for (;;) |
| 291 | ; |
| 292 | spin_unlock_irqrestore(&smu->lock, flags); |
| 293 | } |
| 294 | |
| 295 | int smu_present(void) |
| 296 | { |
| 297 | return smu != NULL; |
| 298 | } |
| 299 | |
| 300 | |
| 301 | int smu_init (void) |
| 302 | { |
| 303 | struct device_node *np; |
| 304 | u32 *data; |
| 305 | |
| 306 | np = of_find_node_by_type(NULL, "smu"); |
| 307 | if (np == NULL) |
| 308 | return -ENODEV; |
| 309 | |
| 310 | if (smu_cmdbuf_abs == 0) { |
| 311 | printk(KERN_ERR "SMU: Command buffer not allocated !\n"); |
| 312 | return -EINVAL; |
| 313 | } |
| 314 | |
| 315 | smu = alloc_bootmem(sizeof(struct smu_device)); |
| 316 | if (smu == NULL) |
| 317 | return -ENOMEM; |
| 318 | memset(smu, 0, sizeof(*smu)); |
| 319 | |
| 320 | spin_lock_init(&smu->lock); |
| 321 | smu->of_node = np; |
| 322 | /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a |
| 323 | * 32 bits value safely |
| 324 | */ |
| 325 | smu->cmd_buf_abs = (u32)smu_cmdbuf_abs; |
| 326 | smu->cmd_buf = (struct smu_cmd_buf *)abs_to_virt(smu_cmdbuf_abs); |
| 327 | |
| 328 | np = of_find_node_by_name(NULL, "smu-doorbell"); |
| 329 | if (np == NULL) { |
| 330 | printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n"); |
| 331 | goto fail; |
| 332 | } |
| 333 | data = (u32 *)get_property(np, "reg", NULL); |
| 334 | of_node_put(np); |
| 335 | if (data == NULL) { |
| 336 | printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n"); |
| 337 | goto fail; |
| 338 | } |
| 339 | |
| 340 | /* Current setup has one doorbell GPIO that does both doorbell |
| 341 | * and ack. GPIOs are at 0x50, best would be to find that out |
| 342 | * in the device-tree though. |
| 343 | */ |
| 344 | smu->db_req = 0x50 + *data; |
| 345 | smu->db_ack = 0x50 + *data; |
| 346 | |
| 347 | /* Doorbell buffer is currently hard-coded, I didn't find a proper |
| 348 | * device-tree entry giving the address. Best would probably to use |
| 349 | * an offset for K2 base though, but let's do it that way for now. |
| 350 | */ |
| 351 | smu->db_buf = ioremap(0x8000860c, 0x1000); |
| 352 | if (smu->db_buf == NULL) { |
| 353 | printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n"); |
| 354 | goto fail; |
| 355 | } |
| 356 | |
| 357 | sys_ctrler = SYS_CTRLER_SMU; |
| 358 | return 0; |
| 359 | |
| 360 | fail: |
| 361 | smu = NULL; |
| 362 | return -ENXIO; |
| 363 | |
| 364 | } |