blob: 55a02bc994a320a25a9dce034d9ebc060d75e36e [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/arm/vfp/vfp.h
3 *
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
13{
14 if (shift) {
15 if (shift < 32)
16 val = val >> shift | ((val << (32 - shift)) != 0);
17 else
18 val = val != 0;
19 }
20 return val;
21}
22
23static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
24{
25 if (shift) {
26 if (shift < 64)
27 val = val >> shift | ((val << (64 - shift)) != 0);
28 else
29 val = val != 0;
30 }
31 return val;
32}
33
34static inline u32 vfp_hi64to32jamming(u64 val)
35{
36 u32 v;
37
38 asm(
39 "cmp %Q1, #1 @ vfp_hi64to32jamming\n\t"
40 "movcc %0, %R1\n\t"
41 "orrcs %0, %R1, #1"
42 : "=r" (v) : "r" (val) : "cc");
43
44 return v;
45}
46
47static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
48{
49 asm( "adds %Q0, %Q2, %Q4\n\t"
50 "adcs %R0, %R2, %R4\n\t"
51 "adcs %Q1, %Q3, %Q5\n\t"
52 "adc %R1, %R3, %R5"
53 : "=r" (nl), "=r" (nh)
54 : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
55 : "cc");
56 *resh = nh;
57 *resl = nl;
58}
59
60static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
61{
62 asm( "subs %Q0, %Q2, %Q4\n\t"
63 "sbcs %R0, %R2, %R4\n\t"
64 "sbcs %Q1, %Q3, %Q5\n\t"
65 "sbc %R1, %R3, %R5\n\t"
66 : "=r" (nl), "=r" (nh)
67 : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
68 : "cc");
69 *resh = nh;
70 *resl = nl;
71}
72
73static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
74{
75 u32 nh, nl, mh, ml;
76 u64 rh, rma, rmb, rl;
77
78 nl = n;
79 ml = m;
80 rl = (u64)nl * ml;
81
82 nh = n >> 32;
83 rma = (u64)nh * ml;
84
85 mh = m >> 32;
86 rmb = (u64)nl * mh;
87 rma += rmb;
88
89 rh = (u64)nh * mh;
90 rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
91
92 rma <<= 32;
93 rl += rma;
94 rh += (rl < rma);
95
96 *resl = rl;
97 *resh = rh;
98}
99
100static inline void shift64left(u64 *resh, u64 *resl, u64 n)
101{
102 *resh = n >> 63;
103 *resl = n << 1;
104}
105
106static inline u64 vfp_hi64multiply64(u64 n, u64 m)
107{
108 u64 rh, rl;
109 mul64to128(&rh, &rl, n, m);
110 return rh | (rl != 0);
111}
112
113static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
114{
115 u64 mh, ml, remh, reml, termh, terml, z;
116
117 if (nh >= m)
118 return ~0ULL;
119 mh = m >> 32;
120 z = (mh << 32 <= nh) ? 0xffffffff00000000ULL : (nh / mh) << 32;
121 mul64to128(&termh, &terml, m, z);
122 sub128(&remh, &reml, nh, nl, termh, terml);
123 ml = m << 32;
124 while ((s64)remh < 0) {
125 z -= 0x100000000ULL;
126 add128(&remh, &reml, remh, reml, mh, ml);
127 }
128 remh = (remh << 32) | (reml >> 32);
129 z |= (mh << 32 <= remh) ? 0xffffffff : remh / mh;
130 return z;
131}
132
133/*
134 * Operations on unpacked elements
135 */
136#define vfp_sign_negate(sign) (sign ^ 0x8000)
137
138/*
139 * Single-precision
140 */
141struct vfp_single {
142 s16 exponent;
143 u16 sign;
144 u32 significand;
145};
146
147extern s32 vfp_get_float(unsigned int reg);
148extern void vfp_put_float(unsigned int reg, s32 val);
149
150/*
151 * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
152 * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
153 * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
154 * which are not propagated to the float upon packing.
155 */
156#define VFP_SINGLE_MANTISSA_BITS (23)
157#define VFP_SINGLE_EXPONENT_BITS (8)
158#define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2)
159#define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1)
160
161/*
162 * The bit in an unpacked float which indicates that it is a quiet NaN
163 */
164#define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
165
166/*
167 * Operations on packed single-precision numbers
168 */
169#define vfp_single_packed_sign(v) ((v) & 0x80000000)
170#define vfp_single_packed_negate(v) ((v) ^ 0x80000000)
171#define vfp_single_packed_abs(v) ((v) & ~0x80000000)
172#define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
173#define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
174
175/*
176 * Unpack a single-precision float. Note that this returns the magnitude
177 * of the single-precision float mantissa with the 1. if necessary,
178 * aligned to bit 30.
179 */
180static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
181{
182 u32 significand;
183
184 s->sign = vfp_single_packed_sign(val) >> 16,
185 s->exponent = vfp_single_packed_exponent(val);
186
187 significand = (u32) val;
188 significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
189 if (s->exponent && s->exponent != 255)
190 significand |= 0x40000000;
191 s->significand = significand;
192}
193
194/*
195 * Re-pack a single-precision float. This assumes that the float is
196 * already normalised such that the MSB is bit 30, _not_ bit 31.
197 */
198static inline s32 vfp_single_pack(struct vfp_single *s)
199{
200 u32 val;
201 val = (s->sign << 16) +
202 (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
203 (s->significand >> VFP_SINGLE_LOW_BITS);
204 return (s32)val;
205}
206
207#define VFP_NUMBER (1<<0)
208#define VFP_ZERO (1<<1)
209#define VFP_DENORMAL (1<<2)
210#define VFP_INFINITY (1<<3)
211#define VFP_NAN (1<<4)
212#define VFP_NAN_SIGNAL (1<<5)
213
214#define VFP_QNAN (VFP_NAN)
215#define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL)
216
217static inline int vfp_single_type(struct vfp_single *s)
218{
219 int type = VFP_NUMBER;
220 if (s->exponent == 255) {
221 if (s->significand == 0)
222 type = VFP_INFINITY;
223 else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
224 type = VFP_QNAN;
225 else
226 type = VFP_SNAN;
227 } else if (s->exponent == 0) {
228 if (s->significand == 0)
229 type |= VFP_ZERO;
230 else
231 type |= VFP_DENORMAL;
232 }
233 return type;
234}
235
236#ifndef DEBUG
237#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
238u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
239#else
240u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
241#endif
242
243/*
244 * Double-precision
245 */
246struct vfp_double {
247 s16 exponent;
248 u16 sign;
249 u64 significand;
250};
251
252/*
253 * VFP_REG_ZERO is a special register number for vfp_get_double
254 * which returns (double)0.0. This is useful for the compare with
255 * zero instructions.
256 */
257#define VFP_REG_ZERO 16
258extern u64 vfp_get_double(unsigned int reg);
259extern void vfp_put_double(unsigned int reg, u64 val);
260
261#define VFP_DOUBLE_MANTISSA_BITS (52)
262#define VFP_DOUBLE_EXPONENT_BITS (11)
263#define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2)
264#define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1)
265
266/*
267 * The bit in an unpacked double which indicates that it is a quiet NaN
268 */
269#define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
270
271/*
272 * Operations on packed single-precision numbers
273 */
274#define vfp_double_packed_sign(v) ((v) & (1ULL << 63))
275#define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63))
276#define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63))
277#define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
278#define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
279
280/*
281 * Unpack a double-precision float. Note that this returns the magnitude
282 * of the double-precision float mantissa with the 1. if necessary,
283 * aligned to bit 62.
284 */
285static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
286{
287 u64 significand;
288
289 s->sign = vfp_double_packed_sign(val) >> 48;
290 s->exponent = vfp_double_packed_exponent(val);
291
292 significand = (u64) val;
293 significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
294 if (s->exponent && s->exponent != 2047)
295 significand |= (1ULL << 62);
296 s->significand = significand;
297}
298
299/*
300 * Re-pack a double-precision float. This assumes that the float is
301 * already normalised such that the MSB is bit 30, _not_ bit 31.
302 */
303static inline s64 vfp_double_pack(struct vfp_double *s)
304{
305 u64 val;
306 val = ((u64)s->sign << 48) +
307 ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
308 (s->significand >> VFP_DOUBLE_LOW_BITS);
309 return (s64)val;
310}
311
312static inline int vfp_double_type(struct vfp_double *s)
313{
314 int type = VFP_NUMBER;
315 if (s->exponent == 2047) {
316 if (s->significand == 0)
317 type = VFP_INFINITY;
318 else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
319 type = VFP_QNAN;
320 else
321 type = VFP_SNAN;
322 } else if (s->exponent == 0) {
323 if (s->significand == 0)
324 type |= VFP_ZERO;
325 else
326 type |= VFP_DENORMAL;
327 }
328 return type;
329}
330
331u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
332
333/*
334 * System registers
335 */
336extern u32 vfp_get_sys(unsigned int reg);
337extern void vfp_put_sys(unsigned int reg, u32 val);
338
339u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
340
341/*
342 * A special flag to tell the normalisation code not to normalise.
343 */
344#define VFP_NAN_FLAG 0x100