Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * linux/arch/arm/vfp/vfp.h |
| 3 | * |
| 4 | * Copyright (C) 2004 ARM Limited. |
| 5 | * Written by Deep Blue Solutions Limited. |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. |
| 10 | */ |
| 11 | |
| 12 | static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift) |
| 13 | { |
| 14 | if (shift) { |
| 15 | if (shift < 32) |
| 16 | val = val >> shift | ((val << (32 - shift)) != 0); |
| 17 | else |
| 18 | val = val != 0; |
| 19 | } |
| 20 | return val; |
| 21 | } |
| 22 | |
| 23 | static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift) |
| 24 | { |
| 25 | if (shift) { |
| 26 | if (shift < 64) |
| 27 | val = val >> shift | ((val << (64 - shift)) != 0); |
| 28 | else |
| 29 | val = val != 0; |
| 30 | } |
| 31 | return val; |
| 32 | } |
| 33 | |
| 34 | static inline u32 vfp_hi64to32jamming(u64 val) |
| 35 | { |
| 36 | u32 v; |
| 37 | |
| 38 | asm( |
| 39 | "cmp %Q1, #1 @ vfp_hi64to32jamming\n\t" |
| 40 | "movcc %0, %R1\n\t" |
| 41 | "orrcs %0, %R1, #1" |
| 42 | : "=r" (v) : "r" (val) : "cc"); |
| 43 | |
| 44 | return v; |
| 45 | } |
| 46 | |
| 47 | static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) |
| 48 | { |
| 49 | asm( "adds %Q0, %Q2, %Q4\n\t" |
| 50 | "adcs %R0, %R2, %R4\n\t" |
| 51 | "adcs %Q1, %Q3, %Q5\n\t" |
| 52 | "adc %R1, %R3, %R5" |
| 53 | : "=r" (nl), "=r" (nh) |
| 54 | : "0" (nl), "1" (nh), "r" (ml), "r" (mh) |
| 55 | : "cc"); |
| 56 | *resh = nh; |
| 57 | *resl = nl; |
| 58 | } |
| 59 | |
| 60 | static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml) |
| 61 | { |
| 62 | asm( "subs %Q0, %Q2, %Q4\n\t" |
| 63 | "sbcs %R0, %R2, %R4\n\t" |
| 64 | "sbcs %Q1, %Q3, %Q5\n\t" |
| 65 | "sbc %R1, %R3, %R5\n\t" |
| 66 | : "=r" (nl), "=r" (nh) |
| 67 | : "0" (nl), "1" (nh), "r" (ml), "r" (mh) |
| 68 | : "cc"); |
| 69 | *resh = nh; |
| 70 | *resl = nl; |
| 71 | } |
| 72 | |
| 73 | static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m) |
| 74 | { |
| 75 | u32 nh, nl, mh, ml; |
| 76 | u64 rh, rma, rmb, rl; |
| 77 | |
| 78 | nl = n; |
| 79 | ml = m; |
| 80 | rl = (u64)nl * ml; |
| 81 | |
| 82 | nh = n >> 32; |
| 83 | rma = (u64)nh * ml; |
| 84 | |
| 85 | mh = m >> 32; |
| 86 | rmb = (u64)nl * mh; |
| 87 | rma += rmb; |
| 88 | |
| 89 | rh = (u64)nh * mh; |
| 90 | rh += ((u64)(rma < rmb) << 32) + (rma >> 32); |
| 91 | |
| 92 | rma <<= 32; |
| 93 | rl += rma; |
| 94 | rh += (rl < rma); |
| 95 | |
| 96 | *resl = rl; |
| 97 | *resh = rh; |
| 98 | } |
| 99 | |
| 100 | static inline void shift64left(u64 *resh, u64 *resl, u64 n) |
| 101 | { |
| 102 | *resh = n >> 63; |
| 103 | *resl = n << 1; |
| 104 | } |
| 105 | |
| 106 | static inline u64 vfp_hi64multiply64(u64 n, u64 m) |
| 107 | { |
| 108 | u64 rh, rl; |
| 109 | mul64to128(&rh, &rl, n, m); |
| 110 | return rh | (rl != 0); |
| 111 | } |
| 112 | |
| 113 | static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m) |
| 114 | { |
| 115 | u64 mh, ml, remh, reml, termh, terml, z; |
| 116 | |
| 117 | if (nh >= m) |
| 118 | return ~0ULL; |
| 119 | mh = m >> 32; |
| 120 | z = (mh << 32 <= nh) ? 0xffffffff00000000ULL : (nh / mh) << 32; |
| 121 | mul64to128(&termh, &terml, m, z); |
| 122 | sub128(&remh, &reml, nh, nl, termh, terml); |
| 123 | ml = m << 32; |
| 124 | while ((s64)remh < 0) { |
| 125 | z -= 0x100000000ULL; |
| 126 | add128(&remh, &reml, remh, reml, mh, ml); |
| 127 | } |
| 128 | remh = (remh << 32) | (reml >> 32); |
| 129 | z |= (mh << 32 <= remh) ? 0xffffffff : remh / mh; |
| 130 | return z; |
| 131 | } |
| 132 | |
| 133 | /* |
| 134 | * Operations on unpacked elements |
| 135 | */ |
| 136 | #define vfp_sign_negate(sign) (sign ^ 0x8000) |
| 137 | |
| 138 | /* |
| 139 | * Single-precision |
| 140 | */ |
| 141 | struct vfp_single { |
| 142 | s16 exponent; |
| 143 | u16 sign; |
| 144 | u32 significand; |
| 145 | }; |
| 146 | |
| 147 | extern s32 vfp_get_float(unsigned int reg); |
| 148 | extern void vfp_put_float(unsigned int reg, s32 val); |
| 149 | |
| 150 | /* |
| 151 | * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa |
| 152 | * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent |
| 153 | * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand |
| 154 | * which are not propagated to the float upon packing. |
| 155 | */ |
| 156 | #define VFP_SINGLE_MANTISSA_BITS (23) |
| 157 | #define VFP_SINGLE_EXPONENT_BITS (8) |
| 158 | #define VFP_SINGLE_LOW_BITS (32 - VFP_SINGLE_MANTISSA_BITS - 2) |
| 159 | #define VFP_SINGLE_LOW_BITS_MASK ((1 << VFP_SINGLE_LOW_BITS) - 1) |
| 160 | |
| 161 | /* |
| 162 | * The bit in an unpacked float which indicates that it is a quiet NaN |
| 163 | */ |
| 164 | #define VFP_SINGLE_SIGNIFICAND_QNAN (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS)) |
| 165 | |
| 166 | /* |
| 167 | * Operations on packed single-precision numbers |
| 168 | */ |
| 169 | #define vfp_single_packed_sign(v) ((v) & 0x80000000) |
| 170 | #define vfp_single_packed_negate(v) ((v) ^ 0x80000000) |
| 171 | #define vfp_single_packed_abs(v) ((v) & ~0x80000000) |
| 172 | #define vfp_single_packed_exponent(v) (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1)) |
| 173 | #define vfp_single_packed_mantissa(v) ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1)) |
| 174 | |
| 175 | /* |
| 176 | * Unpack a single-precision float. Note that this returns the magnitude |
| 177 | * of the single-precision float mantissa with the 1. if necessary, |
| 178 | * aligned to bit 30. |
| 179 | */ |
| 180 | static inline void vfp_single_unpack(struct vfp_single *s, s32 val) |
| 181 | { |
| 182 | u32 significand; |
| 183 | |
| 184 | s->sign = vfp_single_packed_sign(val) >> 16, |
| 185 | s->exponent = vfp_single_packed_exponent(val); |
| 186 | |
| 187 | significand = (u32) val; |
| 188 | significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2; |
| 189 | if (s->exponent && s->exponent != 255) |
| 190 | significand |= 0x40000000; |
| 191 | s->significand = significand; |
| 192 | } |
| 193 | |
| 194 | /* |
| 195 | * Re-pack a single-precision float. This assumes that the float is |
| 196 | * already normalised such that the MSB is bit 30, _not_ bit 31. |
| 197 | */ |
| 198 | static inline s32 vfp_single_pack(struct vfp_single *s) |
| 199 | { |
| 200 | u32 val; |
| 201 | val = (s->sign << 16) + |
| 202 | (s->exponent << VFP_SINGLE_MANTISSA_BITS) + |
| 203 | (s->significand >> VFP_SINGLE_LOW_BITS); |
| 204 | return (s32)val; |
| 205 | } |
| 206 | |
| 207 | #define VFP_NUMBER (1<<0) |
| 208 | #define VFP_ZERO (1<<1) |
| 209 | #define VFP_DENORMAL (1<<2) |
| 210 | #define VFP_INFINITY (1<<3) |
| 211 | #define VFP_NAN (1<<4) |
| 212 | #define VFP_NAN_SIGNAL (1<<5) |
| 213 | |
| 214 | #define VFP_QNAN (VFP_NAN) |
| 215 | #define VFP_SNAN (VFP_NAN|VFP_NAN_SIGNAL) |
| 216 | |
| 217 | static inline int vfp_single_type(struct vfp_single *s) |
| 218 | { |
| 219 | int type = VFP_NUMBER; |
| 220 | if (s->exponent == 255) { |
| 221 | if (s->significand == 0) |
| 222 | type = VFP_INFINITY; |
| 223 | else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN) |
| 224 | type = VFP_QNAN; |
| 225 | else |
| 226 | type = VFP_SNAN; |
| 227 | } else if (s->exponent == 0) { |
| 228 | if (s->significand == 0) |
| 229 | type |= VFP_ZERO; |
| 230 | else |
| 231 | type |= VFP_DENORMAL; |
| 232 | } |
| 233 | return type; |
| 234 | } |
| 235 | |
| 236 | #ifndef DEBUG |
| 237 | #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except) |
| 238 | u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions); |
| 239 | #else |
| 240 | u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func); |
| 241 | #endif |
| 242 | |
| 243 | /* |
| 244 | * Double-precision |
| 245 | */ |
| 246 | struct vfp_double { |
| 247 | s16 exponent; |
| 248 | u16 sign; |
| 249 | u64 significand; |
| 250 | }; |
| 251 | |
| 252 | /* |
| 253 | * VFP_REG_ZERO is a special register number for vfp_get_double |
| 254 | * which returns (double)0.0. This is useful for the compare with |
| 255 | * zero instructions. |
| 256 | */ |
| 257 | #define VFP_REG_ZERO 16 |
| 258 | extern u64 vfp_get_double(unsigned int reg); |
| 259 | extern void vfp_put_double(unsigned int reg, u64 val); |
| 260 | |
| 261 | #define VFP_DOUBLE_MANTISSA_BITS (52) |
| 262 | #define VFP_DOUBLE_EXPONENT_BITS (11) |
| 263 | #define VFP_DOUBLE_LOW_BITS (64 - VFP_DOUBLE_MANTISSA_BITS - 2) |
| 264 | #define VFP_DOUBLE_LOW_BITS_MASK ((1 << VFP_DOUBLE_LOW_BITS) - 1) |
| 265 | |
| 266 | /* |
| 267 | * The bit in an unpacked double which indicates that it is a quiet NaN |
| 268 | */ |
| 269 | #define VFP_DOUBLE_SIGNIFICAND_QNAN (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS)) |
| 270 | |
| 271 | /* |
| 272 | * Operations on packed single-precision numbers |
| 273 | */ |
| 274 | #define vfp_double_packed_sign(v) ((v) & (1ULL << 63)) |
| 275 | #define vfp_double_packed_negate(v) ((v) ^ (1ULL << 63)) |
| 276 | #define vfp_double_packed_abs(v) ((v) & ~(1ULL << 63)) |
| 277 | #define vfp_double_packed_exponent(v) (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1)) |
| 278 | #define vfp_double_packed_mantissa(v) ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1)) |
| 279 | |
| 280 | /* |
| 281 | * Unpack a double-precision float. Note that this returns the magnitude |
| 282 | * of the double-precision float mantissa with the 1. if necessary, |
| 283 | * aligned to bit 62. |
| 284 | */ |
| 285 | static inline void vfp_double_unpack(struct vfp_double *s, s64 val) |
| 286 | { |
| 287 | u64 significand; |
| 288 | |
| 289 | s->sign = vfp_double_packed_sign(val) >> 48; |
| 290 | s->exponent = vfp_double_packed_exponent(val); |
| 291 | |
| 292 | significand = (u64) val; |
| 293 | significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2; |
| 294 | if (s->exponent && s->exponent != 2047) |
| 295 | significand |= (1ULL << 62); |
| 296 | s->significand = significand; |
| 297 | } |
| 298 | |
| 299 | /* |
| 300 | * Re-pack a double-precision float. This assumes that the float is |
| 301 | * already normalised such that the MSB is bit 30, _not_ bit 31. |
| 302 | */ |
| 303 | static inline s64 vfp_double_pack(struct vfp_double *s) |
| 304 | { |
| 305 | u64 val; |
| 306 | val = ((u64)s->sign << 48) + |
| 307 | ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) + |
| 308 | (s->significand >> VFP_DOUBLE_LOW_BITS); |
| 309 | return (s64)val; |
| 310 | } |
| 311 | |
| 312 | static inline int vfp_double_type(struct vfp_double *s) |
| 313 | { |
| 314 | int type = VFP_NUMBER; |
| 315 | if (s->exponent == 2047) { |
| 316 | if (s->significand == 0) |
| 317 | type = VFP_INFINITY; |
| 318 | else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN) |
| 319 | type = VFP_QNAN; |
| 320 | else |
| 321 | type = VFP_SNAN; |
| 322 | } else if (s->exponent == 0) { |
| 323 | if (s->significand == 0) |
| 324 | type |= VFP_ZERO; |
| 325 | else |
| 326 | type |= VFP_DENORMAL; |
| 327 | } |
| 328 | return type; |
| 329 | } |
| 330 | |
| 331 | u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func); |
| 332 | |
| 333 | /* |
| 334 | * System registers |
| 335 | */ |
| 336 | extern u32 vfp_get_sys(unsigned int reg); |
| 337 | extern void vfp_put_sys(unsigned int reg, u32 val); |
| 338 | |
| 339 | u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand); |
| 340 | |
| 341 | /* |
| 342 | * A special flag to tell the normalisation code not to normalise. |
| 343 | */ |
| 344 | #define VFP_NAN_FLAG 0x100 |