blob: a2fef8b10b960c15d29556b7dc832737c848b3b6 [file] [log] [blame]
Eric Dumazetafe4fd02013-08-29 15:49:55 -07001/*
2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3 *
4 * Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 * Meant to be mostly used for localy generated traffic :
12 * Fast classification depends on skb->sk being set before reaching us.
13 * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14 * All packets belonging to a socket are considered as a 'flow'.
15 *
16 * Flows are dynamically allocated and stored in a hash table of RB trees
17 * They are also part of one Round Robin 'queues' (new or old flows)
18 *
19 * Burst avoidance (aka pacing) capability :
20 *
21 * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22 * bunch of packets, and this packet scheduler adds delay between
23 * packets to respect rate limitation.
24 *
25 * enqueue() :
26 * - lookup one RB tree (out of 1024 or more) to find the flow.
27 * If non existent flow, create it, add it to the tree.
28 * Add skb to the per flow list of skb (fifo).
29 * - Use a special fifo for high prio packets
30 *
31 * dequeue() : serves flows in Round Robin
32 * Note : When a flow becomes empty, we do not immediately remove it from
33 * rb trees, for performance reasons (its expected to send additional packets,
34 * or SLAB cache will reuse socket for another flow)
35 */
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/jiffies.h>
41#include <linux/string.h>
42#include <linux/in.h>
43#include <linux/errno.h>
44#include <linux/init.h>
45#include <linux/skbuff.h>
46#include <linux/slab.h>
47#include <linux/rbtree.h>
48#include <linux/hash.h>
Eric Dumazet08f89b92013-08-30 09:46:43 -070049#include <linux/prefetch.h>
Eric Dumazetafe4fd02013-08-29 15:49:55 -070050#include <net/netlink.h>
51#include <net/pkt_sched.h>
52#include <net/sock.h>
53#include <net/tcp_states.h>
54
55/*
56 * Per flow structure, dynamically allocated
57 */
58struct fq_flow {
59 struct sk_buff *head; /* list of skbs for this flow : first skb */
60 union {
61 struct sk_buff *tail; /* last skb in the list */
62 unsigned long age; /* jiffies when flow was emptied, for gc */
63 };
64 struct rb_node fq_node; /* anchor in fq_root[] trees */
65 struct sock *sk;
66 int qlen; /* number of packets in flow queue */
67 int credit;
68 u32 socket_hash; /* sk_hash */
69 struct fq_flow *next; /* next pointer in RR lists, or &detached */
70
71 struct rb_node rate_node; /* anchor in q->delayed tree */
72 u64 time_next_packet;
73};
74
75struct fq_flow_head {
76 struct fq_flow *first;
77 struct fq_flow *last;
78};
79
80struct fq_sched_data {
81 struct fq_flow_head new_flows;
82
83 struct fq_flow_head old_flows;
84
85 struct rb_root delayed; /* for rate limited flows */
86 u64 time_next_delayed_flow;
87
88 struct fq_flow internal; /* for non classified or high prio packets */
89 u32 quantum;
90 u32 initial_quantum;
91 u32 flow_default_rate;/* rate per flow : bytes per second */
92 u32 flow_max_rate; /* optional max rate per flow */
93 u32 flow_plimit; /* max packets per flow */
94 struct rb_root *fq_root;
95 u8 rate_enable;
96 u8 fq_trees_log;
97
98 u32 flows;
99 u32 inactive_flows;
100 u32 throttled_flows;
101
102 u64 stat_gc_flows;
103 u64 stat_internal_packets;
104 u64 stat_tcp_retrans;
105 u64 stat_throttled;
106 u64 stat_flows_plimit;
107 u64 stat_pkts_too_long;
108 u64 stat_allocation_errors;
109 struct qdisc_watchdog watchdog;
110};
111
112/* special value to mark a detached flow (not on old/new list) */
113static struct fq_flow detached, throttled;
114
115static void fq_flow_set_detached(struct fq_flow *f)
116{
117 f->next = &detached;
118}
119
120static bool fq_flow_is_detached(const struct fq_flow *f)
121{
122 return f->next == &detached;
123}
124
125static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
126{
127 struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
128
129 while (*p) {
130 struct fq_flow *aux;
131
132 parent = *p;
133 aux = container_of(parent, struct fq_flow, rate_node);
134 if (f->time_next_packet >= aux->time_next_packet)
135 p = &parent->rb_right;
136 else
137 p = &parent->rb_left;
138 }
139 rb_link_node(&f->rate_node, parent, p);
140 rb_insert_color(&f->rate_node, &q->delayed);
141 q->throttled_flows++;
142 q->stat_throttled++;
143
144 f->next = &throttled;
145 if (q->time_next_delayed_flow > f->time_next_packet)
146 q->time_next_delayed_flow = f->time_next_packet;
147}
148
149
150static struct kmem_cache *fq_flow_cachep __read_mostly;
151
152static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
153{
154 if (head->first)
155 head->last->next = flow;
156 else
157 head->first = flow;
158 head->last = flow;
159 flow->next = NULL;
160}
161
162/* limit number of collected flows per round */
163#define FQ_GC_MAX 8
164#define FQ_GC_AGE (3*HZ)
165
166static bool fq_gc_candidate(const struct fq_flow *f)
167{
168 return fq_flow_is_detached(f) &&
169 time_after(jiffies, f->age + FQ_GC_AGE);
170}
171
172static void fq_gc(struct fq_sched_data *q,
173 struct rb_root *root,
174 struct sock *sk)
175{
176 struct fq_flow *f, *tofree[FQ_GC_MAX];
177 struct rb_node **p, *parent;
178 int fcnt = 0;
179
180 p = &root->rb_node;
181 parent = NULL;
182 while (*p) {
183 parent = *p;
184
185 f = container_of(parent, struct fq_flow, fq_node);
186 if (f->sk == sk)
187 break;
188
189 if (fq_gc_candidate(f)) {
190 tofree[fcnt++] = f;
191 if (fcnt == FQ_GC_MAX)
192 break;
193 }
194
195 if (f->sk > sk)
196 p = &parent->rb_right;
197 else
198 p = &parent->rb_left;
199 }
200
201 q->flows -= fcnt;
202 q->inactive_flows -= fcnt;
203 q->stat_gc_flows += fcnt;
204 while (fcnt) {
205 struct fq_flow *f = tofree[--fcnt];
206
207 rb_erase(&f->fq_node, root);
208 kmem_cache_free(fq_flow_cachep, f);
209 }
210}
211
212static const u8 prio2band[TC_PRIO_MAX + 1] = {
213 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
214};
215
216static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
217{
218 struct rb_node **p, *parent;
219 struct sock *sk = skb->sk;
220 struct rb_root *root;
221 struct fq_flow *f;
222 int band;
223
224 /* warning: no starvation prevention... */
225 band = prio2band[skb->priority & TC_PRIO_MAX];
226 if (unlikely(band == 0))
227 return &q->internal;
228
229 if (unlikely(!sk)) {
230 /* By forcing low order bit to 1, we make sure to not
231 * collide with a local flow (socket pointers are word aligned)
232 */
233 sk = (struct sock *)(skb_get_rxhash(skb) | 1L);
234 }
235
236 root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
237
238 if (q->flows >= (2U << q->fq_trees_log) &&
239 q->inactive_flows > q->flows/2)
240 fq_gc(q, root, sk);
241
242 p = &root->rb_node;
243 parent = NULL;
244 while (*p) {
245 parent = *p;
246
247 f = container_of(parent, struct fq_flow, fq_node);
248 if (f->sk == sk) {
249 /* socket might have been reallocated, so check
250 * if its sk_hash is the same.
251 * It not, we need to refill credit with
252 * initial quantum
253 */
254 if (unlikely(skb->sk &&
255 f->socket_hash != sk->sk_hash)) {
256 f->credit = q->initial_quantum;
257 f->socket_hash = sk->sk_hash;
258 }
259 return f;
260 }
261 if (f->sk > sk)
262 p = &parent->rb_right;
263 else
264 p = &parent->rb_left;
265 }
266
267 f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
268 if (unlikely(!f)) {
269 q->stat_allocation_errors++;
270 return &q->internal;
271 }
272 fq_flow_set_detached(f);
273 f->sk = sk;
274 if (skb->sk)
275 f->socket_hash = sk->sk_hash;
276 f->credit = q->initial_quantum;
277
278 rb_link_node(&f->fq_node, parent, p);
279 rb_insert_color(&f->fq_node, root);
280
281 q->flows++;
282 q->inactive_flows++;
283 return f;
284}
285
286
287/* remove one skb from head of flow queue */
Eric Dumazet8d34ce12013-09-27 14:20:01 -0700288static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700289{
290 struct sk_buff *skb = flow->head;
291
292 if (skb) {
293 flow->head = skb->next;
294 skb->next = NULL;
295 flow->qlen--;
Eric Dumazet8d34ce12013-09-27 14:20:01 -0700296 sch->qstats.backlog -= qdisc_pkt_len(skb);
297 sch->q.qlen--;
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700298 }
299 return skb;
300}
301
302/* We might add in the future detection of retransmits
303 * For the time being, just return false
304 */
305static bool skb_is_retransmit(struct sk_buff *skb)
306{
307 return false;
308}
309
310/* add skb to flow queue
311 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
312 * We special case tcp retransmits to be transmitted before other packets.
313 * We rely on fact that TCP retransmits are unlikely, so we do not waste
314 * a separate queue or a pointer.
315 * head-> [retrans pkt 1]
316 * [retrans pkt 2]
317 * [ normal pkt 1]
318 * [ normal pkt 2]
319 * [ normal pkt 3]
320 * tail-> [ normal pkt 4]
321 */
322static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
323{
324 struct sk_buff *prev, *head = flow->head;
325
326 skb->next = NULL;
327 if (!head) {
328 flow->head = skb;
329 flow->tail = skb;
330 return;
331 }
332 if (likely(!skb_is_retransmit(skb))) {
333 flow->tail->next = skb;
334 flow->tail = skb;
335 return;
336 }
337
338 /* This skb is a tcp retransmit,
339 * find the last retrans packet in the queue
340 */
341 prev = NULL;
342 while (skb_is_retransmit(head)) {
343 prev = head;
344 head = head->next;
345 if (!head)
346 break;
347 }
348 if (!prev) { /* no rtx packet in queue, become the new head */
349 skb->next = flow->head;
350 flow->head = skb;
351 } else {
352 if (prev == flow->tail)
353 flow->tail = skb;
354 else
355 skb->next = prev->next;
356 prev->next = skb;
357 }
358}
359
360static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
361{
362 struct fq_sched_data *q = qdisc_priv(sch);
363 struct fq_flow *f;
364
365 if (unlikely(sch->q.qlen >= sch->limit))
366 return qdisc_drop(skb, sch);
367
368 f = fq_classify(skb, q);
369 if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
370 q->stat_flows_plimit++;
371 return qdisc_drop(skb, sch);
372 }
373
374 f->qlen++;
375 flow_queue_add(f, skb);
376 if (skb_is_retransmit(skb))
377 q->stat_tcp_retrans++;
378 sch->qstats.backlog += qdisc_pkt_len(skb);
379 if (fq_flow_is_detached(f)) {
380 fq_flow_add_tail(&q->new_flows, f);
381 if (q->quantum > f->credit)
382 f->credit = q->quantum;
383 q->inactive_flows--;
384 qdisc_unthrottled(sch);
385 }
386 if (unlikely(f == &q->internal)) {
387 q->stat_internal_packets++;
388 qdisc_unthrottled(sch);
389 }
390 sch->q.qlen++;
391
392 return NET_XMIT_SUCCESS;
393}
394
395static void fq_check_throttled(struct fq_sched_data *q, u64 now)
396{
397 struct rb_node *p;
398
399 if (q->time_next_delayed_flow > now)
400 return;
401
402 q->time_next_delayed_flow = ~0ULL;
403 while ((p = rb_first(&q->delayed)) != NULL) {
404 struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
405
406 if (f->time_next_packet > now) {
407 q->time_next_delayed_flow = f->time_next_packet;
408 break;
409 }
410 rb_erase(p, &q->delayed);
411 q->throttled_flows--;
412 fq_flow_add_tail(&q->old_flows, f);
413 }
414}
415
416static struct sk_buff *fq_dequeue(struct Qdisc *sch)
417{
418 struct fq_sched_data *q = qdisc_priv(sch);
419 u64 now = ktime_to_ns(ktime_get());
420 struct fq_flow_head *head;
421 struct sk_buff *skb;
422 struct fq_flow *f;
Eric Dumazet0eab5eb2013-10-01 09:10:16 -0700423 u32 rate;
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700424
Eric Dumazet8d34ce12013-09-27 14:20:01 -0700425 skb = fq_dequeue_head(sch, &q->internal);
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700426 if (skb)
427 goto out;
428 fq_check_throttled(q, now);
429begin:
430 head = &q->new_flows;
431 if (!head->first) {
432 head = &q->old_flows;
433 if (!head->first) {
434 if (q->time_next_delayed_flow != ~0ULL)
435 qdisc_watchdog_schedule_ns(&q->watchdog,
436 q->time_next_delayed_flow);
437 return NULL;
438 }
439 }
440 f = head->first;
441
442 if (f->credit <= 0) {
443 f->credit += q->quantum;
444 head->first = f->next;
445 fq_flow_add_tail(&q->old_flows, f);
446 goto begin;
447 }
448
449 if (unlikely(f->head && now < f->time_next_packet)) {
450 head->first = f->next;
451 fq_flow_set_throttled(q, f);
452 goto begin;
453 }
454
Eric Dumazet8d34ce12013-09-27 14:20:01 -0700455 skb = fq_dequeue_head(sch, f);
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700456 if (!skb) {
457 head->first = f->next;
458 /* force a pass through old_flows to prevent starvation */
459 if ((head == &q->new_flows) && q->old_flows.first) {
460 fq_flow_add_tail(&q->old_flows, f);
461 } else {
462 fq_flow_set_detached(f);
463 f->age = jiffies;
464 q->inactive_flows++;
465 }
466 goto begin;
467 }
Eric Dumazet08f89b92013-08-30 09:46:43 -0700468 prefetch(&skb->end);
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700469 f->time_next_packet = now;
470 f->credit -= qdisc_pkt_len(skb);
471
Eric Dumazet0eab5eb2013-10-01 09:10:16 -0700472 if (f->credit > 0 || !q->rate_enable)
473 goto out;
474
475 if (skb->sk && skb->sk->sk_state != TCP_TIME_WAIT) {
476 rate = skb->sk->sk_pacing_rate ?: q->flow_default_rate;
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700477
478 rate = min(rate, q->flow_max_rate);
Eric Dumazet0eab5eb2013-10-01 09:10:16 -0700479 } else {
480 rate = q->flow_max_rate;
481 if (rate == ~0U)
482 goto out;
483 }
484 if (rate) {
485 u32 plen = max(qdisc_pkt_len(skb), q->quantum);
486 u64 len = (u64)plen * NSEC_PER_SEC;
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700487
Eric Dumazet0eab5eb2013-10-01 09:10:16 -0700488 do_div(len, rate);
489 /* Since socket rate can change later,
490 * clamp the delay to 125 ms.
491 * TODO: maybe segment the too big skb, as in commit
492 * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
493 */
494 if (unlikely(len > 125 * NSEC_PER_MSEC)) {
495 len = 125 * NSEC_PER_MSEC;
496 q->stat_pkts_too_long++;
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700497 }
Eric Dumazet0eab5eb2013-10-01 09:10:16 -0700498
499 f->time_next_packet = now + len;
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700500 }
501out:
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700502 qdisc_bstats_update(sch, skb);
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700503 qdisc_unthrottled(sch);
504 return skb;
505}
506
507static void fq_reset(struct Qdisc *sch)
508{
Eric Dumazet8d34ce12013-09-27 14:20:01 -0700509 struct fq_sched_data *q = qdisc_priv(sch);
510 struct rb_root *root;
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700511 struct sk_buff *skb;
Eric Dumazet8d34ce12013-09-27 14:20:01 -0700512 struct rb_node *p;
513 struct fq_flow *f;
514 unsigned int idx;
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700515
Eric Dumazet8d34ce12013-09-27 14:20:01 -0700516 while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700517 kfree_skb(skb);
Eric Dumazet8d34ce12013-09-27 14:20:01 -0700518
519 if (!q->fq_root)
520 return;
521
522 for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
523 root = &q->fq_root[idx];
524 while ((p = rb_first(root)) != NULL) {
525 f = container_of(p, struct fq_flow, fq_node);
526 rb_erase(p, root);
527
528 while ((skb = fq_dequeue_head(sch, f)) != NULL)
529 kfree_skb(skb);
530
531 kmem_cache_free(fq_flow_cachep, f);
532 }
533 }
534 q->new_flows.first = NULL;
535 q->old_flows.first = NULL;
536 q->delayed = RB_ROOT;
537 q->flows = 0;
538 q->inactive_flows = 0;
539 q->throttled_flows = 0;
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700540}
541
542static void fq_rehash(struct fq_sched_data *q,
543 struct rb_root *old_array, u32 old_log,
544 struct rb_root *new_array, u32 new_log)
545{
546 struct rb_node *op, **np, *parent;
547 struct rb_root *oroot, *nroot;
548 struct fq_flow *of, *nf;
549 int fcnt = 0;
550 u32 idx;
551
552 for (idx = 0; idx < (1U << old_log); idx++) {
553 oroot = &old_array[idx];
554 while ((op = rb_first(oroot)) != NULL) {
555 rb_erase(op, oroot);
556 of = container_of(op, struct fq_flow, fq_node);
557 if (fq_gc_candidate(of)) {
558 fcnt++;
559 kmem_cache_free(fq_flow_cachep, of);
560 continue;
561 }
562 nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
563
564 np = &nroot->rb_node;
565 parent = NULL;
566 while (*np) {
567 parent = *np;
568
569 nf = container_of(parent, struct fq_flow, fq_node);
570 BUG_ON(nf->sk == of->sk);
571
572 if (nf->sk > of->sk)
573 np = &parent->rb_right;
574 else
575 np = &parent->rb_left;
576 }
577
578 rb_link_node(&of->fq_node, parent, np);
579 rb_insert_color(&of->fq_node, nroot);
580 }
581 }
582 q->flows -= fcnt;
583 q->inactive_flows -= fcnt;
584 q->stat_gc_flows += fcnt;
585}
586
587static int fq_resize(struct fq_sched_data *q, u32 log)
588{
589 struct rb_root *array;
590 u32 idx;
591
592 if (q->fq_root && log == q->fq_trees_log)
593 return 0;
594
595 array = kmalloc(sizeof(struct rb_root) << log, GFP_KERNEL);
596 if (!array)
597 return -ENOMEM;
598
599 for (idx = 0; idx < (1U << log); idx++)
600 array[idx] = RB_ROOT;
601
602 if (q->fq_root) {
603 fq_rehash(q, q->fq_root, q->fq_trees_log, array, log);
604 kfree(q->fq_root);
605 }
606 q->fq_root = array;
607 q->fq_trees_log = log;
608
609 return 0;
610}
611
612static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
613 [TCA_FQ_PLIMIT] = { .type = NLA_U32 },
614 [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
615 [TCA_FQ_QUANTUM] = { .type = NLA_U32 },
616 [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
617 [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
618 [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
619 [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
620 [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
621};
622
623static int fq_change(struct Qdisc *sch, struct nlattr *opt)
624{
625 struct fq_sched_data *q = qdisc_priv(sch);
626 struct nlattr *tb[TCA_FQ_MAX + 1];
627 int err, drop_count = 0;
628 u32 fq_log;
629
630 if (!opt)
631 return -EINVAL;
632
633 err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
634 if (err < 0)
635 return err;
636
637 sch_tree_lock(sch);
638
639 fq_log = q->fq_trees_log;
640
641 if (tb[TCA_FQ_BUCKETS_LOG]) {
642 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
643
644 if (nval >= 1 && nval <= ilog2(256*1024))
645 fq_log = nval;
646 else
647 err = -EINVAL;
648 }
649 if (tb[TCA_FQ_PLIMIT])
650 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
651
652 if (tb[TCA_FQ_FLOW_PLIMIT])
653 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
654
655 if (tb[TCA_FQ_QUANTUM])
656 q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
657
658 if (tb[TCA_FQ_INITIAL_QUANTUM])
659 q->quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
660
661 if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
662 q->flow_default_rate = nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]);
663
664 if (tb[TCA_FQ_FLOW_MAX_RATE])
665 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
666
667 if (tb[TCA_FQ_RATE_ENABLE]) {
668 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
669
670 if (enable <= 1)
671 q->rate_enable = enable;
672 else
673 err = -EINVAL;
674 }
675
676 if (!err)
677 err = fq_resize(q, fq_log);
678
679 while (sch->q.qlen > sch->limit) {
680 struct sk_buff *skb = fq_dequeue(sch);
681
Eric Dumazet8d34ce12013-09-27 14:20:01 -0700682 if (!skb)
683 break;
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700684 kfree_skb(skb);
685 drop_count++;
686 }
687 qdisc_tree_decrease_qlen(sch, drop_count);
688
689 sch_tree_unlock(sch);
690 return err;
691}
692
693static void fq_destroy(struct Qdisc *sch)
694{
695 struct fq_sched_data *q = qdisc_priv(sch);
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700696
Eric Dumazet8d34ce12013-09-27 14:20:01 -0700697 fq_reset(sch);
698 kfree(q->fq_root);
Eric Dumazetafe4fd02013-08-29 15:49:55 -0700699 qdisc_watchdog_cancel(&q->watchdog);
700}
701
702static int fq_init(struct Qdisc *sch, struct nlattr *opt)
703{
704 struct fq_sched_data *q = qdisc_priv(sch);
705 int err;
706
707 sch->limit = 10000;
708 q->flow_plimit = 100;
709 q->quantum = 2 * psched_mtu(qdisc_dev(sch));
710 q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
711 q->flow_default_rate = 0;
712 q->flow_max_rate = ~0U;
713 q->rate_enable = 1;
714 q->new_flows.first = NULL;
715 q->old_flows.first = NULL;
716 q->delayed = RB_ROOT;
717 q->fq_root = NULL;
718 q->fq_trees_log = ilog2(1024);
719 qdisc_watchdog_init(&q->watchdog, sch);
720
721 if (opt)
722 err = fq_change(sch, opt);
723 else
724 err = fq_resize(q, q->fq_trees_log);
725
726 return err;
727}
728
729static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
730{
731 struct fq_sched_data *q = qdisc_priv(sch);
732 struct nlattr *opts;
733
734 opts = nla_nest_start(skb, TCA_OPTIONS);
735 if (opts == NULL)
736 goto nla_put_failure;
737
738 if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
739 nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
740 nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
741 nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
742 nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
743 nla_put_u32(skb, TCA_FQ_FLOW_DEFAULT_RATE, q->flow_default_rate) ||
744 nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
745 nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
746 goto nla_put_failure;
747
748 nla_nest_end(skb, opts);
749 return skb->len;
750
751nla_put_failure:
752 return -1;
753}
754
755static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
756{
757 struct fq_sched_data *q = qdisc_priv(sch);
758 u64 now = ktime_to_ns(ktime_get());
759 struct tc_fq_qd_stats st = {
760 .gc_flows = q->stat_gc_flows,
761 .highprio_packets = q->stat_internal_packets,
762 .tcp_retrans = q->stat_tcp_retrans,
763 .throttled = q->stat_throttled,
764 .flows_plimit = q->stat_flows_plimit,
765 .pkts_too_long = q->stat_pkts_too_long,
766 .allocation_errors = q->stat_allocation_errors,
767 .flows = q->flows,
768 .inactive_flows = q->inactive_flows,
769 .throttled_flows = q->throttled_flows,
770 .time_next_delayed_flow = q->time_next_delayed_flow - now,
771 };
772
773 return gnet_stats_copy_app(d, &st, sizeof(st));
774}
775
776static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
777 .id = "fq",
778 .priv_size = sizeof(struct fq_sched_data),
779
780 .enqueue = fq_enqueue,
781 .dequeue = fq_dequeue,
782 .peek = qdisc_peek_dequeued,
783 .init = fq_init,
784 .reset = fq_reset,
785 .destroy = fq_destroy,
786 .change = fq_change,
787 .dump = fq_dump,
788 .dump_stats = fq_dump_stats,
789 .owner = THIS_MODULE,
790};
791
792static int __init fq_module_init(void)
793{
794 int ret;
795
796 fq_flow_cachep = kmem_cache_create("fq_flow_cache",
797 sizeof(struct fq_flow),
798 0, 0, NULL);
799 if (!fq_flow_cachep)
800 return -ENOMEM;
801
802 ret = register_qdisc(&fq_qdisc_ops);
803 if (ret)
804 kmem_cache_destroy(fq_flow_cachep);
805 return ret;
806}
807
808static void __exit fq_module_exit(void)
809{
810 unregister_qdisc(&fq_qdisc_ops);
811 kmem_cache_destroy(fq_flow_cachep);
812}
813
814module_init(fq_module_init)
815module_exit(fq_module_exit)
816MODULE_AUTHOR("Eric Dumazet");
817MODULE_LICENSE("GPL");