blob: d53ce430b178e643a129d40c4a153cf392fd993b [file] [log] [blame]
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <linux/mm.h>
24#include <linux/kvm_host.h>
25#include <linux/uaccess.h>
26#include <asm/kvm_arm.h>
27#include <asm/kvm_host.h>
28#include <asm/kvm_emulate.h>
29#include <asm/kvm_coproc.h>
Marc Zyngier9d218a12014-01-15 12:50:23 +000030#include <asm/kvm_mmu.h>
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000031#include <asm/cacheflush.h>
32#include <asm/cputype.h>
Marc Zyngier0c557ed2014-04-24 10:24:46 +010033#include <asm/debug-monitors.h>
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000034#include <trace/events/kvm.h>
35
36#include "sys_regs.h"
37
38/*
39 * All of this file is extremly similar to the ARM coproc.c, but the
40 * types are different. My gut feeling is that it should be pretty
41 * easy to merge, but that would be an ABI breakage -- again. VFP
42 * would also need to be abstracted.
Marc Zyngier62a89c42013-02-07 10:32:33 +000043 *
44 * For AArch32, we only take care of what is being trapped. Anything
45 * that has to do with init and userspace access has to go via the
46 * 64bit interface.
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000047 */
48
49/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
50static u32 cache_levels;
51
52/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
53#define CSSELR_MAX 12
54
55/* Which cache CCSIDR represents depends on CSSELR value. */
56static u32 get_ccsidr(u32 csselr)
57{
58 u32 ccsidr;
59
60 /* Make sure noone else changes CSSELR during this! */
61 local_irq_disable();
62 /* Put value into CSSELR */
63 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
64 isb();
65 /* Read result out of CCSIDR */
66 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
67 local_irq_enable();
68
69 return ccsidr;
70}
71
72static void do_dc_cisw(u32 val)
73{
74 asm volatile("dc cisw, %x0" : : "r" (val));
Will Deacon98f76852014-05-02 16:24:10 +010075 dsb(ish);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000076}
77
78static void do_dc_csw(u32 val)
79{
80 asm volatile("dc csw, %x0" : : "r" (val));
Will Deacon98f76852014-05-02 16:24:10 +010081 dsb(ish);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000082}
83
84/* See note at ARM ARM B1.14.4 */
85static bool access_dcsw(struct kvm_vcpu *vcpu,
86 const struct sys_reg_params *p,
87 const struct sys_reg_desc *r)
88{
89 unsigned long val;
90 int cpu;
91
92 if (!p->is_write)
93 return read_from_write_only(vcpu, p);
94
95 cpu = get_cpu();
96
97 cpumask_setall(&vcpu->arch.require_dcache_flush);
98 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
99
100 /* If we were already preempted, take the long way around */
101 if (cpu != vcpu->arch.last_pcpu) {
102 flush_cache_all();
103 goto done;
104 }
105
106 val = *vcpu_reg(vcpu, p->Rt);
107
108 switch (p->CRm) {
109 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
110 case 14: /* DCCISW */
111 do_dc_cisw(val);
112 break;
113
114 case 10: /* DCCSW */
115 do_dc_csw(val);
116 break;
117 }
118
119done:
120 put_cpu();
121
122 return true;
123}
124
125/*
Marc Zyngier4d449232014-01-14 18:00:55 +0000126 * Generic accessor for VM registers. Only called as long as HCR_TVM
127 * is set.
128 */
129static bool access_vm_reg(struct kvm_vcpu *vcpu,
130 const struct sys_reg_params *p,
131 const struct sys_reg_desc *r)
132{
133 unsigned long val;
134
135 BUG_ON(!p->is_write);
136
137 val = *vcpu_reg(vcpu, p->Rt);
Victor Kamenskyf0a3eaf2014-07-02 17:19:30 +0100138 if (!p->is_aarch32 || !p->is_32bit)
Marc Zyngier4d449232014-01-14 18:00:55 +0000139 vcpu_sys_reg(vcpu, r->reg) = val;
Victor Kamenskyf0a3eaf2014-07-02 17:19:30 +0100140 else
141 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
142
Marc Zyngier4d449232014-01-14 18:00:55 +0000143 return true;
144}
145
146/*
147 * SCTLR_EL1 accessor. Only called as long as HCR_TVM is set. If the
148 * guest enables the MMU, we stop trapping the VM sys_regs and leave
149 * it in complete control of the caches.
150 */
151static bool access_sctlr(struct kvm_vcpu *vcpu,
152 const struct sys_reg_params *p,
153 const struct sys_reg_desc *r)
154{
155 access_vm_reg(vcpu, p, r);
156
Marc Zyngier9d218a12014-01-15 12:50:23 +0000157 if (vcpu_has_cache_enabled(vcpu)) { /* MMU+Caches enabled? */
Marc Zyngier4d449232014-01-14 18:00:55 +0000158 vcpu->arch.hcr_el2 &= ~HCR_TVM;
Marc Zyngier9d218a12014-01-15 12:50:23 +0000159 stage2_flush_vm(vcpu->kvm);
160 }
Marc Zyngier4d449232014-01-14 18:00:55 +0000161
162 return true;
163}
164
Marc Zyngier7609c122014-04-24 10:21:16 +0100165static bool trap_raz_wi(struct kvm_vcpu *vcpu,
166 const struct sys_reg_params *p,
167 const struct sys_reg_desc *r)
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000168{
169 if (p->is_write)
170 return ignore_write(vcpu, p);
171 else
172 return read_zero(vcpu, p);
173}
174
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100175static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
176 const struct sys_reg_params *p,
177 const struct sys_reg_desc *r)
178{
179 if (p->is_write) {
180 return ignore_write(vcpu, p);
181 } else {
182 *vcpu_reg(vcpu, p->Rt) = (1 << 3);
183 return true;
184 }
185}
186
187static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
188 const struct sys_reg_params *p,
189 const struct sys_reg_desc *r)
190{
191 if (p->is_write) {
192 return ignore_write(vcpu, p);
193 } else {
194 u32 val;
195 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
196 *vcpu_reg(vcpu, p->Rt) = val;
197 return true;
198 }
199}
200
201/*
202 * We want to avoid world-switching all the DBG registers all the
203 * time:
204 *
205 * - If we've touched any debug register, it is likely that we're
206 * going to touch more of them. It then makes sense to disable the
207 * traps and start doing the save/restore dance
208 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
209 * then mandatory to save/restore the registers, as the guest
210 * depends on them.
211 *
212 * For this, we use a DIRTY bit, indicating the guest has modified the
213 * debug registers, used as follow:
214 *
215 * On guest entry:
216 * - If the dirty bit is set (because we're coming back from trapping),
217 * disable the traps, save host registers, restore guest registers.
218 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
219 * set the dirty bit, disable the traps, save host registers,
220 * restore guest registers.
221 * - Otherwise, enable the traps
222 *
223 * On guest exit:
224 * - If the dirty bit is set, save guest registers, restore host
225 * registers and clear the dirty bit. This ensure that the host can
226 * now use the debug registers.
227 */
228static bool trap_debug_regs(struct kvm_vcpu *vcpu,
229 const struct sys_reg_params *p,
230 const struct sys_reg_desc *r)
231{
232 if (p->is_write) {
233 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
234 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
235 } else {
236 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
237 }
238
239 return true;
240}
241
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000242static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
243{
244 u64 amair;
245
246 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
247 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
248}
249
250static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
251{
252 /*
253 * Simply map the vcpu_id into the Aff0 field of the MPIDR.
254 */
255 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
256}
257
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100258/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
259#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
260 /* DBGBVRn_EL1 */ \
261 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
262 trap_debug_regs, reset_val, (DBGBVR0_EL1 + (n)), 0 }, \
263 /* DBGBCRn_EL1 */ \
264 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
265 trap_debug_regs, reset_val, (DBGBCR0_EL1 + (n)), 0 }, \
266 /* DBGWVRn_EL1 */ \
267 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
268 trap_debug_regs, reset_val, (DBGWVR0_EL1 + (n)), 0 }, \
269 /* DBGWCRn_EL1 */ \
270 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
271 trap_debug_regs, reset_val, (DBGWCR0_EL1 + (n)), 0 }
272
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000273/*
274 * Architected system registers.
275 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
Marc Zyngier7609c122014-04-24 10:21:16 +0100276 *
277 * We could trap ID_DFR0 and tell the guest we don't support performance
278 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
279 * NAKed, so it will read the PMCR anyway.
280 *
281 * Therefore we tell the guest we have 0 counters. Unfortunately, we
282 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
283 * all PM registers, which doesn't crash the guest kernel at least.
284 *
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100285 * Debug handling: We do trap most, if not all debug related system
286 * registers. The implementation is good enough to ensure that a guest
287 * can use these with minimal performance degradation. The drawback is
288 * that we don't implement any of the external debug, none of the
289 * OSlock protocol. This should be revisited if we ever encounter a
290 * more demanding guest...
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000291 */
292static const struct sys_reg_desc sys_reg_descs[] = {
293 /* DC ISW */
294 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
295 access_dcsw },
296 /* DC CSW */
297 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
298 access_dcsw },
299 /* DC CISW */
300 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
301 access_dcsw },
302
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100303 DBG_BCR_BVR_WCR_WVR_EL1(0),
304 DBG_BCR_BVR_WCR_WVR_EL1(1),
305 /* MDCCINT_EL1 */
306 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
307 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
308 /* MDSCR_EL1 */
309 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
310 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
311 DBG_BCR_BVR_WCR_WVR_EL1(2),
312 DBG_BCR_BVR_WCR_WVR_EL1(3),
313 DBG_BCR_BVR_WCR_WVR_EL1(4),
314 DBG_BCR_BVR_WCR_WVR_EL1(5),
315 DBG_BCR_BVR_WCR_WVR_EL1(6),
316 DBG_BCR_BVR_WCR_WVR_EL1(7),
317 DBG_BCR_BVR_WCR_WVR_EL1(8),
318 DBG_BCR_BVR_WCR_WVR_EL1(9),
319 DBG_BCR_BVR_WCR_WVR_EL1(10),
320 DBG_BCR_BVR_WCR_WVR_EL1(11),
321 DBG_BCR_BVR_WCR_WVR_EL1(12),
322 DBG_BCR_BVR_WCR_WVR_EL1(13),
323 DBG_BCR_BVR_WCR_WVR_EL1(14),
324 DBG_BCR_BVR_WCR_WVR_EL1(15),
325
326 /* MDRAR_EL1 */
327 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
328 trap_raz_wi },
329 /* OSLAR_EL1 */
330 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
331 trap_raz_wi },
332 /* OSLSR_EL1 */
333 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
334 trap_oslsr_el1 },
335 /* OSDLR_EL1 */
336 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
337 trap_raz_wi },
338 /* DBGPRCR_EL1 */
339 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
340 trap_raz_wi },
341 /* DBGCLAIMSET_EL1 */
342 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
343 trap_raz_wi },
344 /* DBGCLAIMCLR_EL1 */
345 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
346 trap_raz_wi },
347 /* DBGAUTHSTATUS_EL1 */
348 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
349 trap_dbgauthstatus_el1 },
350
Marc Zyngier62a89c42013-02-07 10:32:33 +0000351 /* TEECR32_EL1 */
352 { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
353 NULL, reset_val, TEECR32_EL1, 0 },
354 /* TEEHBR32_EL1 */
355 { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
356 NULL, reset_val, TEEHBR32_EL1, 0 },
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100357
358 /* MDCCSR_EL1 */
359 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
360 trap_raz_wi },
361 /* DBGDTR_EL0 */
362 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
363 trap_raz_wi },
364 /* DBGDTR[TR]X_EL0 */
365 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
366 trap_raz_wi },
367
Marc Zyngier62a89c42013-02-07 10:32:33 +0000368 /* DBGVCR32_EL2 */
369 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
370 NULL, reset_val, DBGVCR32_EL2, 0 },
371
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000372 /* MPIDR_EL1 */
373 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
374 NULL, reset_mpidr, MPIDR_EL1 },
375 /* SCTLR_EL1 */
376 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000377 access_sctlr, reset_val, SCTLR_EL1, 0x00C50078 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000378 /* CPACR_EL1 */
379 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
380 NULL, reset_val, CPACR_EL1, 0 },
381 /* TTBR0_EL1 */
382 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000383 access_vm_reg, reset_unknown, TTBR0_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000384 /* TTBR1_EL1 */
385 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
Marc Zyngier4d449232014-01-14 18:00:55 +0000386 access_vm_reg, reset_unknown, TTBR1_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000387 /* TCR_EL1 */
388 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
Marc Zyngier4d449232014-01-14 18:00:55 +0000389 access_vm_reg, reset_val, TCR_EL1, 0 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000390
391 /* AFSR0_EL1 */
392 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000393 access_vm_reg, reset_unknown, AFSR0_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000394 /* AFSR1_EL1 */
395 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
Marc Zyngier4d449232014-01-14 18:00:55 +0000396 access_vm_reg, reset_unknown, AFSR1_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000397 /* ESR_EL1 */
398 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000399 access_vm_reg, reset_unknown, ESR_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000400 /* FAR_EL1 */
401 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000402 access_vm_reg, reset_unknown, FAR_EL1 },
Marc Zyngier1bbd8052013-06-07 11:02:34 +0100403 /* PAR_EL1 */
404 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
405 NULL, reset_unknown, PAR_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000406
407 /* PMINTENSET_EL1 */
408 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
Marc Zyngier7609c122014-04-24 10:21:16 +0100409 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000410 /* PMINTENCLR_EL1 */
411 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
Marc Zyngier7609c122014-04-24 10:21:16 +0100412 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000413
414 /* MAIR_EL1 */
415 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000416 access_vm_reg, reset_unknown, MAIR_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000417 /* AMAIR_EL1 */
418 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000419 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000420
421 /* VBAR_EL1 */
422 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
423 NULL, reset_val, VBAR_EL1, 0 },
424 /* CONTEXTIDR_EL1 */
425 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
Marc Zyngier4d449232014-01-14 18:00:55 +0000426 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000427 /* TPIDR_EL1 */
428 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
429 NULL, reset_unknown, TPIDR_EL1 },
430
431 /* CNTKCTL_EL1 */
432 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
433 NULL, reset_val, CNTKCTL_EL1, 0},
434
435 /* CSSELR_EL1 */
436 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
437 NULL, reset_unknown, CSSELR_EL1 },
438
439 /* PMCR_EL0 */
440 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
Marc Zyngier7609c122014-04-24 10:21:16 +0100441 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000442 /* PMCNTENSET_EL0 */
443 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
Marc Zyngier7609c122014-04-24 10:21:16 +0100444 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000445 /* PMCNTENCLR_EL0 */
446 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
Marc Zyngier7609c122014-04-24 10:21:16 +0100447 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000448 /* PMOVSCLR_EL0 */
449 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
Marc Zyngier7609c122014-04-24 10:21:16 +0100450 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000451 /* PMSWINC_EL0 */
452 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
Marc Zyngier7609c122014-04-24 10:21:16 +0100453 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000454 /* PMSELR_EL0 */
455 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
Marc Zyngier7609c122014-04-24 10:21:16 +0100456 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000457 /* PMCEID0_EL0 */
458 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
Marc Zyngier7609c122014-04-24 10:21:16 +0100459 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000460 /* PMCEID1_EL0 */
461 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
Marc Zyngier7609c122014-04-24 10:21:16 +0100462 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000463 /* PMCCNTR_EL0 */
464 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
Marc Zyngier7609c122014-04-24 10:21:16 +0100465 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000466 /* PMXEVTYPER_EL0 */
467 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
Marc Zyngier7609c122014-04-24 10:21:16 +0100468 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000469 /* PMXEVCNTR_EL0 */
470 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
Marc Zyngier7609c122014-04-24 10:21:16 +0100471 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000472 /* PMUSERENR_EL0 */
473 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
Marc Zyngier7609c122014-04-24 10:21:16 +0100474 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000475 /* PMOVSSET_EL0 */
476 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
Marc Zyngier7609c122014-04-24 10:21:16 +0100477 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000478
479 /* TPIDR_EL0 */
480 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
481 NULL, reset_unknown, TPIDR_EL0 },
482 /* TPIDRRO_EL0 */
483 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
484 NULL, reset_unknown, TPIDRRO_EL0 },
Marc Zyngier62a89c42013-02-07 10:32:33 +0000485
486 /* DACR32_EL2 */
487 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
488 NULL, reset_unknown, DACR32_EL2 },
489 /* IFSR32_EL2 */
490 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
491 NULL, reset_unknown, IFSR32_EL2 },
492 /* FPEXC32_EL2 */
493 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
494 NULL, reset_val, FPEXC32_EL2, 0x70 },
495};
496
Marc Zyngier4d449232014-01-14 18:00:55 +0000497/*
498 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
499 * depending on the way they are accessed (as a 32bit or a 64bit
500 * register).
501 */
Marc Zyngier62a89c42013-02-07 10:32:33 +0000502static const struct sys_reg_desc cp15_regs[] = {
Marc Zyngier4d449232014-01-14 18:00:55 +0000503 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
504 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
505 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
506 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
507 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
508 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
509 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
510 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
511 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
512 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
513 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
514 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
515
Marc Zyngier62a89c42013-02-07 10:32:33 +0000516 /*
517 * DC{C,I,CI}SW operations:
518 */
519 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
520 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
521 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
Marc Zyngier4d449232014-01-14 18:00:55 +0000522
Marc Zyngier7609c122014-04-24 10:21:16 +0100523 /* PMU */
524 { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
525 { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
526 { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
527 { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
528 { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
529 { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
530 { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
531 { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
532 { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
533 { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
534 { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
535 { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
536 { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
Marc Zyngier4d449232014-01-14 18:00:55 +0000537
538 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
539 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
540 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
541 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
542 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
543
544 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000545};
546
547/* Target specific emulation tables */
548static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
549
550void kvm_register_target_sys_reg_table(unsigned int target,
551 struct kvm_sys_reg_target_table *table)
552{
553 target_tables[target] = table;
554}
555
556/* Get specific register table for this target. */
Marc Zyngier62a89c42013-02-07 10:32:33 +0000557static const struct sys_reg_desc *get_target_table(unsigned target,
558 bool mode_is_64,
559 size_t *num)
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000560{
561 struct kvm_sys_reg_target_table *table;
562
563 table = target_tables[target];
Marc Zyngier62a89c42013-02-07 10:32:33 +0000564 if (mode_is_64) {
565 *num = table->table64.num;
566 return table->table64.table;
567 } else {
568 *num = table->table32.num;
569 return table->table32.table;
570 }
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000571}
572
573static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
574 const struct sys_reg_desc table[],
575 unsigned int num)
576{
577 unsigned int i;
578
579 for (i = 0; i < num; i++) {
580 const struct sys_reg_desc *r = &table[i];
581
582 if (params->Op0 != r->Op0)
583 continue;
584 if (params->Op1 != r->Op1)
585 continue;
586 if (params->CRn != r->CRn)
587 continue;
588 if (params->CRm != r->CRm)
589 continue;
590 if (params->Op2 != r->Op2)
591 continue;
592
593 return r;
594 }
595 return NULL;
596}
597
Marc Zyngier62a89c42013-02-07 10:32:33 +0000598int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
599{
600 kvm_inject_undefined(vcpu);
601 return 1;
602}
603
604int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
605{
606 kvm_inject_undefined(vcpu);
607 return 1;
608}
609
610static void emulate_cp15(struct kvm_vcpu *vcpu,
611 const struct sys_reg_params *params)
612{
613 size_t num;
614 const struct sys_reg_desc *table, *r;
615
616 table = get_target_table(vcpu->arch.target, false, &num);
617
618 /* Search target-specific then generic table. */
619 r = find_reg(params, table, num);
620 if (!r)
621 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
622
623 if (likely(r)) {
624 /*
625 * Not having an accessor means that we have
626 * configured a trap that we don't know how to
627 * handle. This certainly qualifies as a gross bug
628 * that should be fixed right away.
629 */
630 BUG_ON(!r->access);
631
632 if (likely(r->access(vcpu, params, r))) {
633 /* Skip instruction, since it was emulated */
634 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
635 return;
636 }
637 /* If access function fails, it should complain. */
638 }
639
640 kvm_err("Unsupported guest CP15 access at: %08lx\n", *vcpu_pc(vcpu));
641 print_sys_reg_instr(params);
642 kvm_inject_undefined(vcpu);
643}
644
645/**
646 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
647 * @vcpu: The VCPU pointer
648 * @run: The kvm_run struct
649 */
650int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
651{
652 struct sys_reg_params params;
653 u32 hsr = kvm_vcpu_get_hsr(vcpu);
654 int Rt2 = (hsr >> 10) & 0xf;
655
Marc Zyngier2072d292014-01-21 10:55:17 +0000656 params.is_aarch32 = true;
657 params.is_32bit = false;
Marc Zyngier62a89c42013-02-07 10:32:33 +0000658 params.CRm = (hsr >> 1) & 0xf;
659 params.Rt = (hsr >> 5) & 0xf;
660 params.is_write = ((hsr & 1) == 0);
661
662 params.Op0 = 0;
663 params.Op1 = (hsr >> 16) & 0xf;
664 params.Op2 = 0;
665 params.CRn = 0;
666
667 /*
668 * Massive hack here. Store Rt2 in the top 32bits so we only
669 * have one register to deal with. As we use the same trap
670 * backends between AArch32 and AArch64, we get away with it.
671 */
672 if (params.is_write) {
673 u64 val = *vcpu_reg(vcpu, params.Rt);
674 val &= 0xffffffff;
675 val |= *vcpu_reg(vcpu, Rt2) << 32;
676 *vcpu_reg(vcpu, params.Rt) = val;
677 }
678
679 emulate_cp15(vcpu, &params);
680
681 /* Do the opposite hack for the read side */
682 if (!params.is_write) {
683 u64 val = *vcpu_reg(vcpu, params.Rt);
684 val >>= 32;
685 *vcpu_reg(vcpu, Rt2) = val;
686 }
687
688 return 1;
689}
690
691/**
692 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
693 * @vcpu: The VCPU pointer
694 * @run: The kvm_run struct
695 */
696int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
697{
698 struct sys_reg_params params;
699 u32 hsr = kvm_vcpu_get_hsr(vcpu);
700
Marc Zyngier2072d292014-01-21 10:55:17 +0000701 params.is_aarch32 = true;
702 params.is_32bit = true;
Marc Zyngier62a89c42013-02-07 10:32:33 +0000703 params.CRm = (hsr >> 1) & 0xf;
704 params.Rt = (hsr >> 5) & 0xf;
705 params.is_write = ((hsr & 1) == 0);
706 params.CRn = (hsr >> 10) & 0xf;
707 params.Op0 = 0;
708 params.Op1 = (hsr >> 14) & 0x7;
709 params.Op2 = (hsr >> 17) & 0x7;
710
711 emulate_cp15(vcpu, &params);
712 return 1;
713}
714
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000715static int emulate_sys_reg(struct kvm_vcpu *vcpu,
716 const struct sys_reg_params *params)
717{
718 size_t num;
719 const struct sys_reg_desc *table, *r;
720
Marc Zyngier62a89c42013-02-07 10:32:33 +0000721 table = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000722
723 /* Search target-specific then generic table. */
724 r = find_reg(params, table, num);
725 if (!r)
726 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
727
728 if (likely(r)) {
729 /*
730 * Not having an accessor means that we have
731 * configured a trap that we don't know how to
732 * handle. This certainly qualifies as a gross bug
733 * that should be fixed right away.
734 */
735 BUG_ON(!r->access);
736
737 if (likely(r->access(vcpu, params, r))) {
738 /* Skip instruction, since it was emulated */
739 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
740 return 1;
741 }
742 /* If access function fails, it should complain. */
743 } else {
744 kvm_err("Unsupported guest sys_reg access at: %lx\n",
745 *vcpu_pc(vcpu));
746 print_sys_reg_instr(params);
747 }
748 kvm_inject_undefined(vcpu);
749 return 1;
750}
751
752static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
753 const struct sys_reg_desc *table, size_t num)
754{
755 unsigned long i;
756
757 for (i = 0; i < num; i++)
758 if (table[i].reset)
759 table[i].reset(vcpu, &table[i]);
760}
761
762/**
763 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
764 * @vcpu: The VCPU pointer
765 * @run: The kvm_run struct
766 */
767int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
768{
769 struct sys_reg_params params;
770 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
771
Marc Zyngier2072d292014-01-21 10:55:17 +0000772 params.is_aarch32 = false;
773 params.is_32bit = false;
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000774 params.Op0 = (esr >> 20) & 3;
775 params.Op1 = (esr >> 14) & 0x7;
776 params.CRn = (esr >> 10) & 0xf;
777 params.CRm = (esr >> 1) & 0xf;
778 params.Op2 = (esr >> 17) & 0x7;
779 params.Rt = (esr >> 5) & 0x1f;
780 params.is_write = !(esr & 1);
781
782 return emulate_sys_reg(vcpu, &params);
783}
784
785/******************************************************************************
786 * Userspace API
787 *****************************************************************************/
788
789static bool index_to_params(u64 id, struct sys_reg_params *params)
790{
791 switch (id & KVM_REG_SIZE_MASK) {
792 case KVM_REG_SIZE_U64:
793 /* Any unused index bits means it's not valid. */
794 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
795 | KVM_REG_ARM_COPROC_MASK
796 | KVM_REG_ARM64_SYSREG_OP0_MASK
797 | KVM_REG_ARM64_SYSREG_OP1_MASK
798 | KVM_REG_ARM64_SYSREG_CRN_MASK
799 | KVM_REG_ARM64_SYSREG_CRM_MASK
800 | KVM_REG_ARM64_SYSREG_OP2_MASK))
801 return false;
802 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
803 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
804 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
805 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
806 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
807 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
808 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
809 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
810 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
811 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
812 return true;
813 default:
814 return false;
815 }
816}
817
818/* Decode an index value, and find the sys_reg_desc entry. */
819static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
820 u64 id)
821{
822 size_t num;
823 const struct sys_reg_desc *table, *r;
824 struct sys_reg_params params;
825
826 /* We only do sys_reg for now. */
827 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
828 return NULL;
829
830 if (!index_to_params(id, &params))
831 return NULL;
832
Marc Zyngier62a89c42013-02-07 10:32:33 +0000833 table = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000834 r = find_reg(&params, table, num);
835 if (!r)
836 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
837
838 /* Not saved in the sys_reg array? */
839 if (r && !r->reg)
840 r = NULL;
841
842 return r;
843}
844
845/*
846 * These are the invariant sys_reg registers: we let the guest see the
847 * host versions of these, so they're part of the guest state.
848 *
849 * A future CPU may provide a mechanism to present different values to
850 * the guest, or a future kvm may trap them.
851 */
852
853#define FUNCTION_INVARIANT(reg) \
854 static void get_##reg(struct kvm_vcpu *v, \
855 const struct sys_reg_desc *r) \
856 { \
857 u64 val; \
858 \
859 asm volatile("mrs %0, " __stringify(reg) "\n" \
860 : "=r" (val)); \
861 ((struct sys_reg_desc *)r)->val = val; \
862 }
863
864FUNCTION_INVARIANT(midr_el1)
865FUNCTION_INVARIANT(ctr_el0)
866FUNCTION_INVARIANT(revidr_el1)
867FUNCTION_INVARIANT(id_pfr0_el1)
868FUNCTION_INVARIANT(id_pfr1_el1)
869FUNCTION_INVARIANT(id_dfr0_el1)
870FUNCTION_INVARIANT(id_afr0_el1)
871FUNCTION_INVARIANT(id_mmfr0_el1)
872FUNCTION_INVARIANT(id_mmfr1_el1)
873FUNCTION_INVARIANT(id_mmfr2_el1)
874FUNCTION_INVARIANT(id_mmfr3_el1)
875FUNCTION_INVARIANT(id_isar0_el1)
876FUNCTION_INVARIANT(id_isar1_el1)
877FUNCTION_INVARIANT(id_isar2_el1)
878FUNCTION_INVARIANT(id_isar3_el1)
879FUNCTION_INVARIANT(id_isar4_el1)
880FUNCTION_INVARIANT(id_isar5_el1)
881FUNCTION_INVARIANT(clidr_el1)
882FUNCTION_INVARIANT(aidr_el1)
883
884/* ->val is filled in by kvm_sys_reg_table_init() */
885static struct sys_reg_desc invariant_sys_regs[] = {
886 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
887 NULL, get_midr_el1 },
888 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
889 NULL, get_revidr_el1 },
890 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
891 NULL, get_id_pfr0_el1 },
892 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
893 NULL, get_id_pfr1_el1 },
894 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
895 NULL, get_id_dfr0_el1 },
896 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
897 NULL, get_id_afr0_el1 },
898 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
899 NULL, get_id_mmfr0_el1 },
900 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
901 NULL, get_id_mmfr1_el1 },
902 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
903 NULL, get_id_mmfr2_el1 },
904 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
905 NULL, get_id_mmfr3_el1 },
906 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
907 NULL, get_id_isar0_el1 },
908 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
909 NULL, get_id_isar1_el1 },
910 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
911 NULL, get_id_isar2_el1 },
912 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
913 NULL, get_id_isar3_el1 },
914 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
915 NULL, get_id_isar4_el1 },
916 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
917 NULL, get_id_isar5_el1 },
918 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
919 NULL, get_clidr_el1 },
920 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
921 NULL, get_aidr_el1 },
922 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
923 NULL, get_ctr_el0 },
924};
925
Victor Kamensky26c99af2014-06-12 09:30:12 -0700926static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000927{
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000928 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
929 return -EFAULT;
930 return 0;
931}
932
Victor Kamensky26c99af2014-06-12 09:30:12 -0700933static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000934{
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000935 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
936 return -EFAULT;
937 return 0;
938}
939
940static int get_invariant_sys_reg(u64 id, void __user *uaddr)
941{
942 struct sys_reg_params params;
943 const struct sys_reg_desc *r;
944
945 if (!index_to_params(id, &params))
946 return -ENOENT;
947
948 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
949 if (!r)
950 return -ENOENT;
951
952 return reg_to_user(uaddr, &r->val, id);
953}
954
955static int set_invariant_sys_reg(u64 id, void __user *uaddr)
956{
957 struct sys_reg_params params;
958 const struct sys_reg_desc *r;
959 int err;
960 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
961
962 if (!index_to_params(id, &params))
963 return -ENOENT;
964 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
965 if (!r)
966 return -ENOENT;
967
968 err = reg_from_user(&val, uaddr, id);
969 if (err)
970 return err;
971
972 /* This is what we mean by invariant: you can't change it. */
973 if (r->val != val)
974 return -EINVAL;
975
976 return 0;
977}
978
979static bool is_valid_cache(u32 val)
980{
981 u32 level, ctype;
982
983 if (val >= CSSELR_MAX)
984 return -ENOENT;
985
986 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
987 level = (val >> 1);
988 ctype = (cache_levels >> (level * 3)) & 7;
989
990 switch (ctype) {
991 case 0: /* No cache */
992 return false;
993 case 1: /* Instruction cache only */
994 return (val & 1);
995 case 2: /* Data cache only */
996 case 4: /* Unified cache */
997 return !(val & 1);
998 case 3: /* Separate instruction and data caches */
999 return true;
1000 default: /* Reserved: we can't know instruction or data. */
1001 return false;
1002 }
1003}
1004
1005static int demux_c15_get(u64 id, void __user *uaddr)
1006{
1007 u32 val;
1008 u32 __user *uval = uaddr;
1009
1010 /* Fail if we have unknown bits set. */
1011 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1012 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1013 return -ENOENT;
1014
1015 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1016 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1017 if (KVM_REG_SIZE(id) != 4)
1018 return -ENOENT;
1019 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1020 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1021 if (!is_valid_cache(val))
1022 return -ENOENT;
1023
1024 return put_user(get_ccsidr(val), uval);
1025 default:
1026 return -ENOENT;
1027 }
1028}
1029
1030static int demux_c15_set(u64 id, void __user *uaddr)
1031{
1032 u32 val, newval;
1033 u32 __user *uval = uaddr;
1034
1035 /* Fail if we have unknown bits set. */
1036 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1037 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1038 return -ENOENT;
1039
1040 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1041 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1042 if (KVM_REG_SIZE(id) != 4)
1043 return -ENOENT;
1044 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1045 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1046 if (!is_valid_cache(val))
1047 return -ENOENT;
1048
1049 if (get_user(newval, uval))
1050 return -EFAULT;
1051
1052 /* This is also invariant: you can't change it. */
1053 if (newval != get_ccsidr(val))
1054 return -EINVAL;
1055 return 0;
1056 default:
1057 return -ENOENT;
1058 }
1059}
1060
1061int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1062{
1063 const struct sys_reg_desc *r;
1064 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1065
1066 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1067 return demux_c15_get(reg->id, uaddr);
1068
1069 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1070 return -ENOENT;
1071
1072 r = index_to_sys_reg_desc(vcpu, reg->id);
1073 if (!r)
1074 return get_invariant_sys_reg(reg->id, uaddr);
1075
1076 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1077}
1078
1079int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1080{
1081 const struct sys_reg_desc *r;
1082 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1083
1084 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1085 return demux_c15_set(reg->id, uaddr);
1086
1087 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1088 return -ENOENT;
1089
1090 r = index_to_sys_reg_desc(vcpu, reg->id);
1091 if (!r)
1092 return set_invariant_sys_reg(reg->id, uaddr);
1093
1094 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1095}
1096
1097static unsigned int num_demux_regs(void)
1098{
1099 unsigned int i, count = 0;
1100
1101 for (i = 0; i < CSSELR_MAX; i++)
1102 if (is_valid_cache(i))
1103 count++;
1104
1105 return count;
1106}
1107
1108static int write_demux_regids(u64 __user *uindices)
1109{
Alex Bennéeefd48ce2014-07-01 16:53:13 +01001110 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001111 unsigned int i;
1112
1113 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1114 for (i = 0; i < CSSELR_MAX; i++) {
1115 if (!is_valid_cache(i))
1116 continue;
1117 if (put_user(val | i, uindices))
1118 return -EFAULT;
1119 uindices++;
1120 }
1121 return 0;
1122}
1123
1124static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1125{
1126 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1127 KVM_REG_ARM64_SYSREG |
1128 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1129 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1130 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1131 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1132 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1133}
1134
1135static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1136{
1137 if (!*uind)
1138 return true;
1139
1140 if (put_user(sys_reg_to_index(reg), *uind))
1141 return false;
1142
1143 (*uind)++;
1144 return true;
1145}
1146
1147/* Assumed ordered tables, see kvm_sys_reg_table_init. */
1148static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1149{
1150 const struct sys_reg_desc *i1, *i2, *end1, *end2;
1151 unsigned int total = 0;
1152 size_t num;
1153
1154 /* We check for duplicates here, to allow arch-specific overrides. */
Marc Zyngier62a89c42013-02-07 10:32:33 +00001155 i1 = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001156 end1 = i1 + num;
1157 i2 = sys_reg_descs;
1158 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1159
1160 BUG_ON(i1 == end1 || i2 == end2);
1161
1162 /* Walk carefully, as both tables may refer to the same register. */
1163 while (i1 || i2) {
1164 int cmp = cmp_sys_reg(i1, i2);
1165 /* target-specific overrides generic entry. */
1166 if (cmp <= 0) {
1167 /* Ignore registers we trap but don't save. */
1168 if (i1->reg) {
1169 if (!copy_reg_to_user(i1, &uind))
1170 return -EFAULT;
1171 total++;
1172 }
1173 } else {
1174 /* Ignore registers we trap but don't save. */
1175 if (i2->reg) {
1176 if (!copy_reg_to_user(i2, &uind))
1177 return -EFAULT;
1178 total++;
1179 }
1180 }
1181
1182 if (cmp <= 0 && ++i1 == end1)
1183 i1 = NULL;
1184 if (cmp >= 0 && ++i2 == end2)
1185 i2 = NULL;
1186 }
1187 return total;
1188}
1189
1190unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1191{
1192 return ARRAY_SIZE(invariant_sys_regs)
1193 + num_demux_regs()
1194 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1195}
1196
1197int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1198{
1199 unsigned int i;
1200 int err;
1201
1202 /* Then give them all the invariant registers' indices. */
1203 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1204 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1205 return -EFAULT;
1206 uindices++;
1207 }
1208
1209 err = walk_sys_regs(vcpu, uindices);
1210 if (err < 0)
1211 return err;
1212 uindices += err;
1213
1214 return write_demux_regids(uindices);
1215}
1216
1217void kvm_sys_reg_table_init(void)
1218{
1219 unsigned int i;
1220 struct sys_reg_desc clidr;
1221
1222 /* Make sure tables are unique and in order. */
1223 for (i = 1; i < ARRAY_SIZE(sys_reg_descs); i++)
1224 BUG_ON(cmp_sys_reg(&sys_reg_descs[i-1], &sys_reg_descs[i]) >= 0);
1225
1226 /* We abuse the reset function to overwrite the table itself. */
1227 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1228 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1229
1230 /*
1231 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1232 *
1233 * If software reads the Cache Type fields from Ctype1
1234 * upwards, once it has seen a value of 0b000, no caches
1235 * exist at further-out levels of the hierarchy. So, for
1236 * example, if Ctype3 is the first Cache Type field with a
1237 * value of 0b000, the values of Ctype4 to Ctype7 must be
1238 * ignored.
1239 */
1240 get_clidr_el1(NULL, &clidr); /* Ugly... */
1241 cache_levels = clidr.val;
1242 for (i = 0; i < 7; i++)
1243 if (((cache_levels >> (i*3)) & 7) == 0)
1244 break;
1245 /* Clear all higher bits. */
1246 cache_levels &= (1 << (i*3))-1;
1247}
1248
1249/**
1250 * kvm_reset_sys_regs - sets system registers to reset value
1251 * @vcpu: The VCPU pointer
1252 *
1253 * This function finds the right table above and sets the registers on the
1254 * virtual CPU struct to their architecturally defined reset values.
1255 */
1256void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1257{
1258 size_t num;
1259 const struct sys_reg_desc *table;
1260
1261 /* Catch someone adding a register without putting in reset entry. */
1262 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1263
1264 /* Generic chip reset first (so target could override). */
1265 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1266
Marc Zyngier62a89c42013-02-07 10:32:33 +00001267 table = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001268 reset_sys_reg_descs(vcpu, table, num);
1269
1270 for (num = 1; num < NR_SYS_REGS; num++)
1271 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1272 panic("Didn't reset vcpu_sys_reg(%zi)", num);
1273}