blob: acd5c26b69ba68f9a2964b59cdf01b86daab9fda [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef __ASM_SYSTEM_H
2#define __ASM_SYSTEM_H
3
4#include <linux/config.h>
5#include <linux/kernel.h>
6#include <asm/segment.h>
7#include <asm/cpufeature.h>
8#include <linux/bitops.h> /* for LOCK_PREFIX */
9
10#ifdef __KERNEL__
11
12struct task_struct; /* one of the stranger aspects of C forward declarations.. */
13extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next));
14
15#define switch_to(prev,next,last) do { \
16 unsigned long esi,edi; \
Zachary Amsdena5201122005-09-03 15:56:44 -070017 asm volatile("pushl %%ebp\n\t" \
Linus Torvalds1da177e2005-04-16 15:20:36 -070018 "movl %%esp,%0\n\t" /* save ESP */ \
19 "movl %5,%%esp\n\t" /* restore ESP */ \
20 "movl $1f,%1\n\t" /* save EIP */ \
21 "pushl %6\n\t" /* restore EIP */ \
22 "jmp __switch_to\n" \
23 "1:\t" \
24 "popl %%ebp\n\t" \
Linus Torvalds1da177e2005-04-16 15:20:36 -070025 :"=m" (prev->thread.esp),"=m" (prev->thread.eip), \
26 "=a" (last),"=S" (esi),"=D" (edi) \
27 :"m" (next->thread.esp),"m" (next->thread.eip), \
28 "2" (prev), "d" (next)); \
29} while (0)
30
31#define _set_base(addr,base) do { unsigned long __pr; \
32__asm__ __volatile__ ("movw %%dx,%1\n\t" \
33 "rorl $16,%%edx\n\t" \
34 "movb %%dl,%2\n\t" \
35 "movb %%dh,%3" \
36 :"=&d" (__pr) \
37 :"m" (*((addr)+2)), \
38 "m" (*((addr)+4)), \
39 "m" (*((addr)+7)), \
40 "0" (base) \
41 ); } while(0)
42
43#define _set_limit(addr,limit) do { unsigned long __lr; \
44__asm__ __volatile__ ("movw %%dx,%1\n\t" \
45 "rorl $16,%%edx\n\t" \
46 "movb %2,%%dh\n\t" \
47 "andb $0xf0,%%dh\n\t" \
48 "orb %%dh,%%dl\n\t" \
49 "movb %%dl,%2" \
50 :"=&d" (__lr) \
51 :"m" (*(addr)), \
52 "m" (*((addr)+6)), \
53 "0" (limit) \
54 ); } while(0)
55
56#define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
57#define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1)>>12 )
58
59static inline unsigned long _get_base(char * addr)
60{
61 unsigned long __base;
62 __asm__("movb %3,%%dh\n\t"
63 "movb %2,%%dl\n\t"
64 "shll $16,%%edx\n\t"
65 "movw %1,%%dx"
66 :"=&d" (__base)
67 :"m" (*((addr)+2)),
68 "m" (*((addr)+4)),
69 "m" (*((addr)+7)));
70 return __base;
71}
72
73#define get_base(ldt) _get_base( ((char *)&(ldt)) )
74
75/*
76 * Load a segment. Fall back on loading the zero
77 * segment if something goes wrong..
78 */
79#define loadsegment(seg,value) \
80 asm volatile("\n" \
81 "1:\t" \
H. J. Lufd51f662005-05-01 08:58:48 -070082 "mov %0,%%" #seg "\n" \
Linus Torvalds1da177e2005-04-16 15:20:36 -070083 "2:\n" \
84 ".section .fixup,\"ax\"\n" \
85 "3:\t" \
86 "pushl $0\n\t" \
87 "popl %%" #seg "\n\t" \
88 "jmp 2b\n" \
89 ".previous\n" \
90 ".section __ex_table,\"a\"\n\t" \
91 ".align 4\n\t" \
92 ".long 1b,3b\n" \
93 ".previous" \
Zachary Amsden4d37e7e2005-09-03 15:56:38 -070094 : :"rm" (value))
Linus Torvalds1da177e2005-04-16 15:20:36 -070095
96/*
97 * Save a segment register away
98 */
99#define savesegment(seg, value) \
Zachary Amsden4d37e7e2005-09-03 15:56:38 -0700100 asm volatile("mov %%" #seg ",%0":"=rm" (value))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700101
102/*
103 * Clear and set 'TS' bit respectively
104 */
105#define clts() __asm__ __volatile__ ("clts")
106#define read_cr0() ({ \
107 unsigned int __dummy; \
Zachary Amsden4bb0d3e2005-09-03 15:56:36 -0700108 __asm__ __volatile__( \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700109 "movl %%cr0,%0\n\t" \
110 :"=r" (__dummy)); \
111 __dummy; \
112})
113#define write_cr0(x) \
Zachary Amsden4bb0d3e2005-09-03 15:56:36 -0700114 __asm__ __volatile__("movl %0,%%cr0": :"r" (x));
115
116#define read_cr2() ({ \
117 unsigned int __dummy; \
118 __asm__ __volatile__( \
119 "movl %%cr2,%0\n\t" \
120 :"=r" (__dummy)); \
121 __dummy; \
122})
123#define write_cr2(x) \
124 __asm__ __volatile__("movl %0,%%cr2": :"r" (x));
125
126#define read_cr3() ({ \
127 unsigned int __dummy; \
128 __asm__ ( \
129 "movl %%cr3,%0\n\t" \
130 :"=r" (__dummy)); \
131 __dummy; \
132})
133#define write_cr3(x) \
134 __asm__ __volatile__("movl %0,%%cr3": :"r" (x));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700135
136#define read_cr4() ({ \
137 unsigned int __dummy; \
138 __asm__( \
139 "movl %%cr4,%0\n\t" \
140 :"=r" (__dummy)); \
141 __dummy; \
142})
143#define write_cr4(x) \
Zachary Amsden4bb0d3e2005-09-03 15:56:36 -0700144 __asm__ __volatile__("movl %0,%%cr4": :"r" (x));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700145#define stts() write_cr0(8 | read_cr0())
146
147#endif /* __KERNEL__ */
148
149#define wbinvd() \
150 __asm__ __volatile__ ("wbinvd": : :"memory");
151
152static inline unsigned long get_limit(unsigned long segment)
153{
154 unsigned long __limit;
155 __asm__("lsll %1,%0"
156 :"=r" (__limit):"r" (segment));
157 return __limit+1;
158}
159
160#define nop() __asm__ __volatile__ ("nop")
161
162#define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr))))
163
164#define tas(ptr) (xchg((ptr),1))
165
166struct __xchg_dummy { unsigned long a[100]; };
167#define __xg(x) ((struct __xchg_dummy *)(x))
168
169
170/*
171 * The semantics of XCHGCMP8B are a bit strange, this is why
172 * there is a loop and the loading of %%eax and %%edx has to
173 * be inside. This inlines well in most cases, the cached
174 * cost is around ~38 cycles. (in the future we might want
175 * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that
176 * might have an implicit FPU-save as a cost, so it's not
177 * clear which path to go.)
178 *
179 * cmpxchg8b must be used with the lock prefix here to allow
180 * the instruction to be executed atomically, see page 3-102
181 * of the instruction set reference 24319102.pdf. We need
182 * the reader side to see the coherent 64bit value.
183 */
184static inline void __set_64bit (unsigned long long * ptr,
185 unsigned int low, unsigned int high)
186{
187 __asm__ __volatile__ (
188 "\n1:\t"
189 "movl (%0), %%eax\n\t"
190 "movl 4(%0), %%edx\n\t"
191 "lock cmpxchg8b (%0)\n\t"
192 "jnz 1b"
193 : /* no outputs */
194 : "D"(ptr),
195 "b"(low),
196 "c"(high)
197 : "ax","dx","memory");
198}
199
200static inline void __set_64bit_constant (unsigned long long *ptr,
201 unsigned long long value)
202{
203 __set_64bit(ptr,(unsigned int)(value), (unsigned int)((value)>>32ULL));
204}
205#define ll_low(x) *(((unsigned int*)&(x))+0)
206#define ll_high(x) *(((unsigned int*)&(x))+1)
207
208static inline void __set_64bit_var (unsigned long long *ptr,
209 unsigned long long value)
210{
211 __set_64bit(ptr,ll_low(value), ll_high(value));
212}
213
214#define set_64bit(ptr,value) \
215(__builtin_constant_p(value) ? \
216 __set_64bit_constant(ptr, value) : \
217 __set_64bit_var(ptr, value) )
218
219#define _set_64bit(ptr,value) \
220(__builtin_constant_p(value) ? \
221 __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \
222 __set_64bit(ptr, ll_low(value), ll_high(value)) )
223
224/*
225 * Note: no "lock" prefix even on SMP: xchg always implies lock anyway
226 * Note 2: xchg has side effect, so that attribute volatile is necessary,
227 * but generally the primitive is invalid, *ptr is output argument. --ANK
228 */
229static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size)
230{
231 switch (size) {
232 case 1:
233 __asm__ __volatile__("xchgb %b0,%1"
234 :"=q" (x)
235 :"m" (*__xg(ptr)), "0" (x)
236 :"memory");
237 break;
238 case 2:
239 __asm__ __volatile__("xchgw %w0,%1"
240 :"=r" (x)
241 :"m" (*__xg(ptr)), "0" (x)
242 :"memory");
243 break;
244 case 4:
245 __asm__ __volatile__("xchgl %0,%1"
246 :"=r" (x)
247 :"m" (*__xg(ptr)), "0" (x)
248 :"memory");
249 break;
250 }
251 return x;
252}
253
254/*
255 * Atomic compare and exchange. Compare OLD with MEM, if identical,
256 * store NEW in MEM. Return the initial value in MEM. Success is
257 * indicated by comparing RETURN with OLD.
258 */
259
260#ifdef CONFIG_X86_CMPXCHG
261#define __HAVE_ARCH_CMPXCHG 1
262#endif
263
264static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old,
265 unsigned long new, int size)
266{
267 unsigned long prev;
268 switch (size) {
269 case 1:
270 __asm__ __volatile__(LOCK_PREFIX "cmpxchgb %b1,%2"
271 : "=a"(prev)
272 : "q"(new), "m"(*__xg(ptr)), "0"(old)
273 : "memory");
274 return prev;
275 case 2:
276 __asm__ __volatile__(LOCK_PREFIX "cmpxchgw %w1,%2"
277 : "=a"(prev)
278 : "q"(new), "m"(*__xg(ptr)), "0"(old)
279 : "memory");
280 return prev;
281 case 4:
282 __asm__ __volatile__(LOCK_PREFIX "cmpxchgl %1,%2"
283 : "=a"(prev)
284 : "q"(new), "m"(*__xg(ptr)), "0"(old)
285 : "memory");
286 return prev;
287 }
288 return old;
289}
290
291#define cmpxchg(ptr,o,n)\
292 ((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\
293 (unsigned long)(n),sizeof(*(ptr))))
294
295#ifdef __KERNEL__
296struct alt_instr {
297 __u8 *instr; /* original instruction */
298 __u8 *replacement;
299 __u8 cpuid; /* cpuid bit set for replacement */
300 __u8 instrlen; /* length of original instruction */
301 __u8 replacementlen; /* length of new instruction, <= instrlen */
302 __u8 pad;
303};
304#endif
305
306/*
307 * Alternative instructions for different CPU types or capabilities.
308 *
309 * This allows to use optimized instructions even on generic binary
310 * kernels.
311 *
312 * length of oldinstr must be longer or equal the length of newinstr
313 * It can be padded with nops as needed.
314 *
315 * For non barrier like inlines please define new variants
316 * without volatile and memory clobber.
317 */
318#define alternative(oldinstr, newinstr, feature) \
319 asm volatile ("661:\n\t" oldinstr "\n662:\n" \
320 ".section .altinstructions,\"a\"\n" \
321 " .align 4\n" \
322 " .long 661b\n" /* label */ \
323 " .long 663f\n" /* new instruction */ \
324 " .byte %c0\n" /* feature bit */ \
325 " .byte 662b-661b\n" /* sourcelen */ \
326 " .byte 664f-663f\n" /* replacementlen */ \
327 ".previous\n" \
328 ".section .altinstr_replacement,\"ax\"\n" \
329 "663:\n\t" newinstr "\n664:\n" /* replacement */ \
330 ".previous" :: "i" (feature) : "memory")
331
332/*
333 * Alternative inline assembly with input.
334 *
335 * Pecularities:
336 * No memory clobber here.
337 * Argument numbers start with 1.
338 * Best is to use constraints that are fixed size (like (%1) ... "r")
339 * If you use variable sized constraints like "m" or "g" in the
340 * replacement maake sure to pad to the worst case length.
341 */
342#define alternative_input(oldinstr, newinstr, feature, input...) \
343 asm volatile ("661:\n\t" oldinstr "\n662:\n" \
344 ".section .altinstructions,\"a\"\n" \
345 " .align 4\n" \
346 " .long 661b\n" /* label */ \
347 " .long 663f\n" /* new instruction */ \
348 " .byte %c0\n" /* feature bit */ \
349 " .byte 662b-661b\n" /* sourcelen */ \
350 " .byte 664f-663f\n" /* replacementlen */ \
351 ".previous\n" \
352 ".section .altinstr_replacement,\"ax\"\n" \
353 "663:\n\t" newinstr "\n664:\n" /* replacement */ \
354 ".previous" :: "i" (feature), ##input)
355
356/*
357 * Force strict CPU ordering.
358 * And yes, this is required on UP too when we're talking
359 * to devices.
360 *
361 * For now, "wmb()" doesn't actually do anything, as all
362 * Intel CPU's follow what Intel calls a *Processor Order*,
363 * in which all writes are seen in the program order even
364 * outside the CPU.
365 *
366 * I expect future Intel CPU's to have a weaker ordering,
367 * but I'd also expect them to finally get their act together
368 * and add some real memory barriers if so.
369 *
370 * Some non intel clones support out of order store. wmb() ceases to be a
371 * nop for these.
372 */
373
374
375/*
376 * Actually only lfence would be needed for mb() because all stores done
377 * by the kernel should be already ordered. But keep a full barrier for now.
378 */
379
380#define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
381#define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
382
383/**
384 * read_barrier_depends - Flush all pending reads that subsequents reads
385 * depend on.
386 *
387 * No data-dependent reads from memory-like regions are ever reordered
388 * over this barrier. All reads preceding this primitive are guaranteed
389 * to access memory (but not necessarily other CPUs' caches) before any
390 * reads following this primitive that depend on the data return by
391 * any of the preceding reads. This primitive is much lighter weight than
392 * rmb() on most CPUs, and is never heavier weight than is
393 * rmb().
394 *
395 * These ordering constraints are respected by both the local CPU
396 * and the compiler.
397 *
398 * Ordering is not guaranteed by anything other than these primitives,
399 * not even by data dependencies. See the documentation for
400 * memory_barrier() for examples and URLs to more information.
401 *
402 * For example, the following code would force ordering (the initial
403 * value of "a" is zero, "b" is one, and "p" is "&a"):
404 *
405 * <programlisting>
406 * CPU 0 CPU 1
407 *
408 * b = 2;
409 * memory_barrier();
410 * p = &b; q = p;
411 * read_barrier_depends();
412 * d = *q;
413 * </programlisting>
414 *
415 * because the read of "*q" depends on the read of "p" and these
416 * two reads are separated by a read_barrier_depends(). However,
417 * the following code, with the same initial values for "a" and "b":
418 *
419 * <programlisting>
420 * CPU 0 CPU 1
421 *
422 * a = 2;
423 * memory_barrier();
424 * b = 3; y = b;
425 * read_barrier_depends();
426 * x = a;
427 * </programlisting>
428 *
429 * does not enforce ordering, since there is no data dependency between
430 * the read of "a" and the read of "b". Therefore, on some CPUs, such
431 * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
432 * in cases like thiswhere there are no data dependencies.
433 **/
434
435#define read_barrier_depends() do { } while(0)
436
437#ifdef CONFIG_X86_OOSTORE
438/* Actually there are no OOO store capable CPUs for now that do SSE,
439 but make it already an possibility. */
440#define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
441#else
442#define wmb() __asm__ __volatile__ ("": : :"memory")
443#endif
444
445#ifdef CONFIG_SMP
446#define smp_mb() mb()
447#define smp_rmb() rmb()
448#define smp_wmb() wmb()
449#define smp_read_barrier_depends() read_barrier_depends()
450#define set_mb(var, value) do { xchg(&var, value); } while (0)
451#else
452#define smp_mb() barrier()
453#define smp_rmb() barrier()
454#define smp_wmb() barrier()
455#define smp_read_barrier_depends() do { } while(0)
456#define set_mb(var, value) do { var = value; barrier(); } while (0)
457#endif
458
459#define set_wmb(var, value) do { var = value; wmb(); } while (0)
460
461/* interrupt control.. */
462#define local_save_flags(x) do { typecheck(unsigned long,x); __asm__ __volatile__("pushfl ; popl %0":"=g" (x): /* no input */); } while (0)
463#define local_irq_restore(x) do { typecheck(unsigned long,x); __asm__ __volatile__("pushl %0 ; popfl": /* no output */ :"g" (x):"memory", "cc"); } while (0)
464#define local_irq_disable() __asm__ __volatile__("cli": : :"memory")
465#define local_irq_enable() __asm__ __volatile__("sti": : :"memory")
466/* used in the idle loop; sti takes one instruction cycle to complete */
467#define safe_halt() __asm__ __volatile__("sti; hlt": : :"memory")
Zachary Amsden4bb0d3e2005-09-03 15:56:36 -0700468/* used when interrupts are already enabled or to shutdown the processor */
469#define halt() __asm__ __volatile__("hlt": : :"memory")
Linus Torvalds1da177e2005-04-16 15:20:36 -0700470
471#define irqs_disabled() \
472({ \
473 unsigned long flags; \
474 local_save_flags(flags); \
475 !(flags & (1<<9)); \
476})
477
478/* For spinlocks etc */
479#define local_irq_save(x) __asm__ __volatile__("pushfl ; popl %0 ; cli":"=g" (x): /* no input */ :"memory")
480
481/*
482 * disable hlt during certain critical i/o operations
483 */
484#define HAVE_DISABLE_HLT
485void disable_hlt(void);
486void enable_hlt(void);
487
488extern int es7000_plat;
489void cpu_idle_wait(void);
490
491extern unsigned long arch_align_stack(unsigned long sp);
492
493#endif