blob: cf0e6da724a9d9760ec2db3846c3531b1803d13c [file] [log] [blame]
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09001/*
2 * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; version 2 of the License.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
16 */
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/pci.h>
21#include <linux/delay.h>
22#include <linux/errno.h>
23#include <linux/list.h>
24#include <linux/interrupt.h>
25#include <linux/usb/ch9.h>
26#include <linux/usb/gadget.h>
27
28/* Address offset of Registers */
29#define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
30
31#define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
32#define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
33#define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
34#define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
35#define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
36#define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
37#define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
38
39#define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
40#define UDC_DEVCTL_ADDR 0x404 /* Device control */
41#define UDC_DEVSTS_ADDR 0x408 /* Device status */
42#define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
43#define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
44#define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
45#define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
46#define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
47#define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
48#define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
49#define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
50
51/* Endpoint control register */
52/* Bit position */
53#define UDC_EPCTL_MRXFLUSH (1 << 12)
54#define UDC_EPCTL_RRDY (1 << 9)
55#define UDC_EPCTL_CNAK (1 << 8)
56#define UDC_EPCTL_SNAK (1 << 7)
57#define UDC_EPCTL_NAK (1 << 6)
58#define UDC_EPCTL_P (1 << 3)
59#define UDC_EPCTL_F (1 << 1)
60#define UDC_EPCTL_S (1 << 0)
61#define UDC_EPCTL_ET_SHIFT 4
62/* Mask patern */
63#define UDC_EPCTL_ET_MASK 0x00000030
64/* Value for ET field */
65#define UDC_EPCTL_ET_CONTROL 0
66#define UDC_EPCTL_ET_ISO 1
67#define UDC_EPCTL_ET_BULK 2
68#define UDC_EPCTL_ET_INTERRUPT 3
69
70/* Endpoint status register */
71/* Bit position */
72#define UDC_EPSTS_XFERDONE (1 << 27)
73#define UDC_EPSTS_RSS (1 << 26)
74#define UDC_EPSTS_RCS (1 << 25)
75#define UDC_EPSTS_TXEMPTY (1 << 24)
76#define UDC_EPSTS_TDC (1 << 10)
77#define UDC_EPSTS_HE (1 << 9)
78#define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
79#define UDC_EPSTS_BNA (1 << 7)
80#define UDC_EPSTS_IN (1 << 6)
81#define UDC_EPSTS_OUT_SHIFT 4
82/* Mask patern */
83#define UDC_EPSTS_OUT_MASK 0x00000030
84#define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
85/* Value for OUT field */
86#define UDC_EPSTS_OUT_SETUP 2
87#define UDC_EPSTS_OUT_DATA 1
88
89/* Device configuration register */
90/* Bit position */
91#define UDC_DEVCFG_CSR_PRG (1 << 17)
92#define UDC_DEVCFG_SP (1 << 3)
93/* SPD Valee */
94#define UDC_DEVCFG_SPD_HS 0x0
95#define UDC_DEVCFG_SPD_FS 0x1
96#define UDC_DEVCFG_SPD_LS 0x2
97
98/* Device control register */
99/* Bit position */
100#define UDC_DEVCTL_THLEN_SHIFT 24
101#define UDC_DEVCTL_BRLEN_SHIFT 16
102#define UDC_DEVCTL_CSR_DONE (1 << 13)
103#define UDC_DEVCTL_SD (1 << 10)
104#define UDC_DEVCTL_MODE (1 << 9)
105#define UDC_DEVCTL_BREN (1 << 8)
106#define UDC_DEVCTL_THE (1 << 7)
107#define UDC_DEVCTL_DU (1 << 4)
108#define UDC_DEVCTL_TDE (1 << 3)
109#define UDC_DEVCTL_RDE (1 << 2)
110#define UDC_DEVCTL_RES (1 << 0)
111
112/* Device status register */
113/* Bit position */
114#define UDC_DEVSTS_TS_SHIFT 18
115#define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
116#define UDC_DEVSTS_ALT_SHIFT 8
117#define UDC_DEVSTS_INTF_SHIFT 4
118#define UDC_DEVSTS_CFG_SHIFT 0
119/* Mask patern */
120#define UDC_DEVSTS_TS_MASK 0xfffc0000
121#define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
122#define UDC_DEVSTS_ALT_MASK 0x00000f00
123#define UDC_DEVSTS_INTF_MASK 0x000000f0
124#define UDC_DEVSTS_CFG_MASK 0x0000000f
125/* value for maximum speed for SPEED field */
126#define UDC_DEVSTS_ENUM_SPEED_FULL 1
127#define UDC_DEVSTS_ENUM_SPEED_HIGH 0
128#define UDC_DEVSTS_ENUM_SPEED_LOW 2
129#define UDC_DEVSTS_ENUM_SPEED_FULLX 3
130
131/* Device irq register */
132/* Bit position */
133#define UDC_DEVINT_RWKP (1 << 7)
134#define UDC_DEVINT_ENUM (1 << 6)
135#define UDC_DEVINT_SOF (1 << 5)
136#define UDC_DEVINT_US (1 << 4)
137#define UDC_DEVINT_UR (1 << 3)
138#define UDC_DEVINT_ES (1 << 2)
139#define UDC_DEVINT_SI (1 << 1)
140#define UDC_DEVINT_SC (1 << 0)
141/* Mask patern */
142#define UDC_DEVINT_MSK 0x7f
143
144/* Endpoint irq register */
145/* Bit position */
146#define UDC_EPINT_IN_SHIFT 0
147#define UDC_EPINT_OUT_SHIFT 16
148#define UDC_EPINT_IN_EP0 (1 << 0)
149#define UDC_EPINT_OUT_EP0 (1 << 16)
150/* Mask patern */
151#define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
152
153/* UDC_CSR_BUSY Status register */
154/* Bit position */
155#define UDC_CSR_BUSY (1 << 0)
156
157/* SOFT RESET register */
158/* Bit position */
159#define UDC_PSRST (1 << 1)
160#define UDC_SRST (1 << 0)
161
162/* USB_DEVICE endpoint register */
163/* Bit position */
164#define UDC_CSR_NE_NUM_SHIFT 0
165#define UDC_CSR_NE_DIR_SHIFT 4
166#define UDC_CSR_NE_TYPE_SHIFT 5
167#define UDC_CSR_NE_CFG_SHIFT 7
168#define UDC_CSR_NE_INTF_SHIFT 11
169#define UDC_CSR_NE_ALT_SHIFT 15
170#define UDC_CSR_NE_MAX_PKT_SHIFT 19
171/* Mask patern */
172#define UDC_CSR_NE_NUM_MASK 0x0000000f
173#define UDC_CSR_NE_DIR_MASK 0x00000010
174#define UDC_CSR_NE_TYPE_MASK 0x00000060
175#define UDC_CSR_NE_CFG_MASK 0x00000780
176#define UDC_CSR_NE_INTF_MASK 0x00007800
177#define UDC_CSR_NE_ALT_MASK 0x00078000
178#define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
179
180#define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
181#define PCH_UDC_EPINT(in, num)\
182 (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
183
184/* Index of endpoint */
185#define UDC_EP0IN_IDX 0
186#define UDC_EP0OUT_IDX 1
187#define UDC_EPIN_IDX(ep) (ep * 2)
188#define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
189#define PCH_UDC_EP0 0
190#define PCH_UDC_EP1 1
191#define PCH_UDC_EP2 2
192#define PCH_UDC_EP3 3
193
194/* Number of endpoint */
195#define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
196#define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
197/* Length Value */
198#define PCH_UDC_BRLEN 0x0F /* Burst length */
199#define PCH_UDC_THLEN 0x1F /* Threshold length */
200/* Value of EP Buffer Size */
Toshiharu Okadaabab0c62010-12-29 10:07:33 +0900201#define UDC_EP0IN_BUFF_SIZE 16
202#define UDC_EPIN_BUFF_SIZE 256
203#define UDC_EP0OUT_BUFF_SIZE 16
204#define UDC_EPOUT_BUFF_SIZE 256
Toshiharu Okadaf646cf92010-11-11 18:27:57 +0900205/* Value of EP maximum packet size */
206#define UDC_EP0IN_MAX_PKT_SIZE 64
207#define UDC_EP0OUT_MAX_PKT_SIZE 64
208#define UDC_BULK_MAX_PKT_SIZE 512
209
210/* DMA */
211#define DMA_DIR_RX 1 /* DMA for data receive */
212#define DMA_DIR_TX 2 /* DMA for data transmit */
213#define DMA_ADDR_INVALID (~(dma_addr_t)0)
214#define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
215
216/**
217 * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
218 * for data
219 * @status: Status quadlet
220 * @reserved: Reserved
221 * @dataptr: Buffer descriptor
222 * @next: Next descriptor
223 */
224struct pch_udc_data_dma_desc {
225 u32 status;
226 u32 reserved;
227 u32 dataptr;
228 u32 next;
229};
230
231/**
232 * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
233 * for control data
234 * @status: Status
235 * @reserved: Reserved
236 * @data12: First setup word
237 * @data34: Second setup word
238 */
239struct pch_udc_stp_dma_desc {
240 u32 status;
241 u32 reserved;
242 struct usb_ctrlrequest request;
243} __attribute((packed));
244
245/* DMA status definitions */
246/* Buffer status */
247#define PCH_UDC_BUFF_STS 0xC0000000
248#define PCH_UDC_BS_HST_RDY 0x00000000
249#define PCH_UDC_BS_DMA_BSY 0x40000000
250#define PCH_UDC_BS_DMA_DONE 0x80000000
251#define PCH_UDC_BS_HST_BSY 0xC0000000
252/* Rx/Tx Status */
253#define PCH_UDC_RXTX_STS 0x30000000
254#define PCH_UDC_RTS_SUCC 0x00000000
255#define PCH_UDC_RTS_DESERR 0x10000000
256#define PCH_UDC_RTS_BUFERR 0x30000000
257/* Last Descriptor Indication */
258#define PCH_UDC_DMA_LAST 0x08000000
259/* Number of Rx/Tx Bytes Mask */
260#define PCH_UDC_RXTX_BYTES 0x0000ffff
261
262/**
263 * struct pch_udc_cfg_data - Structure to hold current configuration
264 * and interface information
265 * @cur_cfg: current configuration in use
266 * @cur_intf: current interface in use
267 * @cur_alt: current alt interface in use
268 */
269struct pch_udc_cfg_data {
270 u16 cur_cfg;
271 u16 cur_intf;
272 u16 cur_alt;
273};
274
275/**
276 * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
277 * @ep: embedded ep request
278 * @td_stp_phys: for setup request
279 * @td_data_phys: for data request
280 * @td_stp: for setup request
281 * @td_data: for data request
282 * @dev: reference to device struct
283 * @offset_addr: offset address of ep register
284 * @desc: for this ep
285 * @queue: queue for requests
286 * @num: endpoint number
287 * @in: endpoint is IN
288 * @halted: endpoint halted?
289 * @epsts: Endpoint status
290 */
291struct pch_udc_ep {
292 struct usb_ep ep;
293 dma_addr_t td_stp_phys;
294 dma_addr_t td_data_phys;
295 struct pch_udc_stp_dma_desc *td_stp;
296 struct pch_udc_data_dma_desc *td_data;
297 struct pch_udc_dev *dev;
298 unsigned long offset_addr;
299 const struct usb_endpoint_descriptor *desc;
300 struct list_head queue;
301 unsigned num:5,
302 in:1,
303 halted:1;
304 unsigned long epsts;
305};
306
307/**
308 * struct pch_udc_dev - Structure holding complete information
309 * of the PCH USB device
310 * @gadget: gadget driver data
311 * @driver: reference to gadget driver bound
312 * @pdev: reference to the PCI device
313 * @ep: array of endpoints
314 * @lock: protects all state
315 * @active: enabled the PCI device
316 * @stall: stall requested
317 * @prot_stall: protcol stall requested
318 * @irq_registered: irq registered with system
319 * @mem_region: device memory mapped
320 * @registered: driver regsitered with system
321 * @suspended: driver in suspended state
322 * @connected: gadget driver associated
323 * @set_cfg_not_acked: pending acknowledgement 4 setup
324 * @waiting_zlp_ack: pending acknowledgement 4 ZLP
325 * @data_requests: DMA pool for data requests
326 * @stp_requests: DMA pool for setup requests
327 * @dma_addr: DMA pool for received
328 * @ep0out_buf: Buffer for DMA
329 * @setup_data: Received setup data
330 * @phys_addr: of device memory
331 * @base_addr: for mapped device memory
332 * @irq: IRQ line for the device
333 * @cfg_data: current cfg, intf, and alt in use
334 */
335struct pch_udc_dev {
336 struct usb_gadget gadget;
337 struct usb_gadget_driver *driver;
338 struct pci_dev *pdev;
339 struct pch_udc_ep ep[PCH_UDC_EP_NUM];
Richard Röjfors49e20832010-12-07 17:28:30 +0100340 spinlock_t lock; /* protects all state */
Toshiharu Okadaf646cf92010-11-11 18:27:57 +0900341 unsigned active:1,
342 stall:1,
343 prot_stall:1,
344 irq_registered:1,
345 mem_region:1,
346 registered:1,
347 suspended:1,
348 connected:1,
349 set_cfg_not_acked:1,
350 waiting_zlp_ack:1;
351 struct pci_pool *data_requests;
352 struct pci_pool *stp_requests;
353 dma_addr_t dma_addr;
Toshiharu Okadaabab0c62010-12-29 10:07:33 +0900354 void *ep0out_buf;
Toshiharu Okadaf646cf92010-11-11 18:27:57 +0900355 struct usb_ctrlrequest setup_data;
356 unsigned long phys_addr;
357 void __iomem *base_addr;
358 unsigned irq;
359 struct pch_udc_cfg_data cfg_data;
360};
361
362#define PCH_UDC_PCI_BAR 1
363#define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
Tomoya MORINAGA06f1b972011-01-06 09:16:31 +0900364#define PCI_VENDOR_ID_ROHM 0x10DB
365#define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
Toshiharu Okadaf646cf92010-11-11 18:27:57 +0900366
367static const char ep0_string[] = "ep0in";
368static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
369struct pch_udc_dev *pch_udc; /* pointer to device object */
370
371static int speed_fs;
372module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
373MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
374
375/**
376 * struct pch_udc_request - Structure holding a PCH USB device request packet
377 * @req: embedded ep request
378 * @td_data_phys: phys. address
379 * @td_data: first dma desc. of chain
380 * @td_data_last: last dma desc. of chain
381 * @queue: associated queue
382 * @dma_going: DMA in progress for request
383 * @dma_mapped: DMA memory mapped for request
384 * @dma_done: DMA completed for request
385 * @chain_len: chain length
386 */
387struct pch_udc_request {
388 struct usb_request req;
389 dma_addr_t td_data_phys;
390 struct pch_udc_data_dma_desc *td_data;
391 struct pch_udc_data_dma_desc *td_data_last;
392 struct list_head queue;
393 unsigned dma_going:1,
394 dma_mapped:1,
395 dma_done:1;
396 unsigned chain_len;
397};
398
399static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
400{
401 return ioread32(dev->base_addr + reg);
402}
403
404static inline void pch_udc_writel(struct pch_udc_dev *dev,
405 unsigned long val, unsigned long reg)
406{
407 iowrite32(val, dev->base_addr + reg);
408}
409
410static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
411 unsigned long reg,
412 unsigned long bitmask)
413{
414 pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
415}
416
417static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
418 unsigned long reg,
419 unsigned long bitmask)
420{
421 pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
422}
423
424static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
425{
426 return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
427}
428
429static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
430 unsigned long val, unsigned long reg)
431{
432 iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
433}
434
435static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
436 unsigned long reg,
437 unsigned long bitmask)
438{
439 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
440}
441
442static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
443 unsigned long reg,
444 unsigned long bitmask)
445{
446 pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
447}
448
449/**
450 * pch_udc_csr_busy() - Wait till idle.
451 * @dev: Reference to pch_udc_dev structure
452 */
453static void pch_udc_csr_busy(struct pch_udc_dev *dev)
454{
455 unsigned int count = 200;
456
457 /* Wait till idle */
458 while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
459 && --count)
460 cpu_relax();
461 if (!count)
462 dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
463}
464
465/**
466 * pch_udc_write_csr() - Write the command and status registers.
467 * @dev: Reference to pch_udc_dev structure
468 * @val: value to be written to CSR register
469 * @addr: address of CSR register
470 */
471static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
472 unsigned int ep)
473{
474 unsigned long reg = PCH_UDC_CSR(ep);
475
476 pch_udc_csr_busy(dev); /* Wait till idle */
477 pch_udc_writel(dev, val, reg);
478 pch_udc_csr_busy(dev); /* Wait till idle */
479}
480
481/**
482 * pch_udc_read_csr() - Read the command and status registers.
483 * @dev: Reference to pch_udc_dev structure
484 * @addr: address of CSR register
485 *
486 * Return codes: content of CSR register
487 */
488static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
489{
490 unsigned long reg = PCH_UDC_CSR(ep);
491
492 pch_udc_csr_busy(dev); /* Wait till idle */
493 pch_udc_readl(dev, reg); /* Dummy read */
494 pch_udc_csr_busy(dev); /* Wait till idle */
495 return pch_udc_readl(dev, reg);
496}
497
498/**
499 * pch_udc_rmt_wakeup() - Initiate for remote wakeup
500 * @dev: Reference to pch_udc_dev structure
501 */
502static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
503{
504 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
505 mdelay(1);
506 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
507}
508
509/**
510 * pch_udc_get_frame() - Get the current frame from device status register
511 * @dev: Reference to pch_udc_dev structure
512 * Retern current frame
513 */
514static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
515{
516 u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
517 return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
518}
519
520/**
521 * pch_udc_clear_selfpowered() - Clear the self power control
522 * @dev: Reference to pch_udc_regs structure
523 */
524static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
525{
526 pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
527}
528
529/**
530 * pch_udc_set_selfpowered() - Set the self power control
531 * @dev: Reference to pch_udc_regs structure
532 */
533static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
534{
535 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
536}
537
538/**
539 * pch_udc_set_disconnect() - Set the disconnect status.
540 * @dev: Reference to pch_udc_regs structure
541 */
542static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
543{
544 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
545}
546
547/**
548 * pch_udc_clear_disconnect() - Clear the disconnect status.
549 * @dev: Reference to pch_udc_regs structure
550 */
551static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
552{
553 /* Clear the disconnect */
554 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
555 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
556 mdelay(1);
557 /* Resume USB signalling */
558 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
559}
560
561/**
562 * pch_udc_vbus_session() - set or clearr the disconnect status.
563 * @dev: Reference to pch_udc_regs structure
564 * @is_active: Parameter specifying the action
565 * 0: indicating VBUS power is ending
566 * !0: indicating VBUS power is starting
567 */
568static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
569 int is_active)
570{
571 if (is_active)
572 pch_udc_clear_disconnect(dev);
573 else
574 pch_udc_set_disconnect(dev);
575}
576
577/**
578 * pch_udc_ep_set_stall() - Set the stall of endpoint
579 * @ep: Reference to structure of type pch_udc_ep_regs
580 */
581static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
582{
583 if (ep->in) {
584 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
585 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
586 } else {
587 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
588 }
589}
590
591/**
592 * pch_udc_ep_clear_stall() - Clear the stall of endpoint
593 * @ep: Reference to structure of type pch_udc_ep_regs
594 */
595static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
596{
597 /* Clear the stall */
598 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
599 /* Clear NAK by writing CNAK */
600 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
601}
602
603/**
604 * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
605 * @ep: Reference to structure of type pch_udc_ep_regs
606 * @type: Type of endpoint
607 */
608static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
609 u8 type)
610{
611 pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
612 UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
613}
614
615/**
616 * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
617 * @ep: Reference to structure of type pch_udc_ep_regs
618 * @buf_size: The buffer size
619 */
620static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
621 u32 buf_size, u32 ep_in)
622{
623 u32 data;
624 if (ep_in) {
625 data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
626 data = (data & 0xffff0000) | (buf_size & 0xffff);
627 pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
628 } else {
629 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
630 data = (buf_size << 16) | (data & 0xffff);
631 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
632 }
633}
634
635/**
636 * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
637 * @ep: Reference to structure of type pch_udc_ep_regs
638 * @pkt_size: The packet size
639 */
640static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
641{
642 u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
643 data = (data & 0xffff0000) | (pkt_size & 0xffff);
644 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
645}
646
647/**
648 * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
649 * @ep: Reference to structure of type pch_udc_ep_regs
650 * @addr: Address of the register
651 */
652static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
653{
654 pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
655}
656
657/**
658 * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
659 * @ep: Reference to structure of type pch_udc_ep_regs
660 * @addr: Address of the register
661 */
662static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
663{
664 pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
665}
666
667/**
668 * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
669 * @ep: Reference to structure of type pch_udc_ep_regs
670 */
671static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
672{
673 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
674}
675
676/**
677 * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
678 * @ep: Reference to structure of type pch_udc_ep_regs
679 */
680static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
681{
682 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
683}
684
685/**
686 * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
687 * @ep: Reference to structure of type pch_udc_ep_regs
688 */
689static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
690{
691 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
692}
693
694/**
695 * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
696 * register depending on the direction specified
697 * @dev: Reference to structure of type pch_udc_regs
698 * @dir: whether Tx or Rx
699 * DMA_DIR_RX: Receive
700 * DMA_DIR_TX: Transmit
701 */
702static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
703{
704 if (dir == DMA_DIR_RX)
705 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
706 else if (dir == DMA_DIR_TX)
707 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
708}
709
710/**
711 * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
712 * register depending on the direction specified
713 * @dev: Reference to structure of type pch_udc_regs
714 * @dir: Whether Tx or Rx
715 * DMA_DIR_RX: Receive
716 * DMA_DIR_TX: Transmit
717 */
718static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
719{
720 if (dir == DMA_DIR_RX)
721 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
722 else if (dir == DMA_DIR_TX)
723 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
724}
725
726/**
727 * pch_udc_set_csr_done() - Set the device control register
728 * CSR done field (bit 13)
729 * @dev: reference to structure of type pch_udc_regs
730 */
731static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
732{
733 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
734}
735
736/**
737 * pch_udc_disable_interrupts() - Disables the specified interrupts
738 * @dev: Reference to structure of type pch_udc_regs
739 * @mask: Mask to disable interrupts
740 */
741static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
742 u32 mask)
743{
744 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
745}
746
747/**
748 * pch_udc_enable_interrupts() - Enable the specified interrupts
749 * @dev: Reference to structure of type pch_udc_regs
750 * @mask: Mask to enable interrupts
751 */
752static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
753 u32 mask)
754{
755 pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
756}
757
758/**
759 * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
760 * @dev: Reference to structure of type pch_udc_regs
761 * @mask: Mask to disable interrupts
762 */
763static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
764 u32 mask)
765{
766 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
767}
768
769/**
770 * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
771 * @dev: Reference to structure of type pch_udc_regs
772 * @mask: Mask to enable interrupts
773 */
774static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
775 u32 mask)
776{
777 pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
778}
779
780/**
781 * pch_udc_read_device_interrupts() - Read the device interrupts
782 * @dev: Reference to structure of type pch_udc_regs
783 * Retern The device interrupts
784 */
785static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
786{
787 return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
788}
789
790/**
791 * pch_udc_write_device_interrupts() - Write device interrupts
792 * @dev: Reference to structure of type pch_udc_regs
793 * @val: The value to be written to interrupt register
794 */
795static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
796 u32 val)
797{
798 pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
799}
800
801/**
802 * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
803 * @dev: Reference to structure of type pch_udc_regs
804 * Retern The endpoint interrupt
805 */
806static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
807{
808 return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
809}
810
811/**
812 * pch_udc_write_ep_interrupts() - Clear endpoint interupts
813 * @dev: Reference to structure of type pch_udc_regs
814 * @val: The value to be written to interrupt register
815 */
816static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
817 u32 val)
818{
819 pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
820}
821
822/**
823 * pch_udc_read_device_status() - Read the device status
824 * @dev: Reference to structure of type pch_udc_regs
825 * Retern The device status
826 */
827static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
828{
829 return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
830}
831
832/**
833 * pch_udc_read_ep_control() - Read the endpoint control
834 * @ep: Reference to structure of type pch_udc_ep_regs
835 * Retern The endpoint control register value
836 */
837static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
838{
839 return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
840}
841
842/**
843 * pch_udc_clear_ep_control() - Clear the endpoint control register
844 * @ep: Reference to structure of type pch_udc_ep_regs
845 * Retern The endpoint control register value
846 */
847static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
848{
849 return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
850}
851
852/**
853 * pch_udc_read_ep_status() - Read the endpoint status
854 * @ep: Reference to structure of type pch_udc_ep_regs
855 * Retern The endpoint status
856 */
857static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
858{
859 return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
860}
861
862/**
863 * pch_udc_clear_ep_status() - Clear the endpoint status
864 * @ep: Reference to structure of type pch_udc_ep_regs
865 * @stat: Endpoint status
866 */
867static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
868 u32 stat)
869{
870 return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
871}
872
873/**
874 * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
875 * of the endpoint control register
876 * @ep: Reference to structure of type pch_udc_ep_regs
877 */
878static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
879{
880 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
881}
882
883/**
884 * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
885 * of the endpoint control register
886 * @ep: reference to structure of type pch_udc_ep_regs
887 */
888static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
889{
890 unsigned int loopcnt = 0;
891 struct pch_udc_dev *dev = ep->dev;
892
893 if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
894 return;
895 if (!ep->in) {
896 loopcnt = 10000;
897 while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
898 --loopcnt)
899 udelay(5);
900 if (!loopcnt)
901 dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
902 __func__);
903 }
904 loopcnt = 10000;
905 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
906 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
907 udelay(5);
908 }
909 if (!loopcnt)
910 dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
911 __func__, ep->num, (ep->in ? "in" : "out"));
912}
913
914/**
915 * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
916 * @ep: reference to structure of type pch_udc_ep_regs
917 * @dir: direction of endpoint
918 * 0: endpoint is OUT
919 * !0: endpoint is IN
920 */
921static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
922{
923 unsigned int loopcnt = 0;
924 struct pch_udc_dev *dev = ep->dev;
925
926 if (dir) { /* IN ep */
927 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
928 return;
929 }
930
931 if (pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP)
932 return;
933 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_MRXFLUSH);
934 /* Wait for RxFIFO Empty */
935 loopcnt = 10000;
936 while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
937 --loopcnt)
938 udelay(5);
939 if (!loopcnt)
940 dev_err(&dev->pdev->dev, "RxFIFO not Empty\n");
941 pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_MRXFLUSH);
942}
943
944/**
945 * pch_udc_ep_enable() - This api enables endpoint
946 * @regs: Reference to structure pch_udc_ep_regs
947 * @desc: endpoint descriptor
948 */
949static void pch_udc_ep_enable(struct pch_udc_ep *ep,
950 struct pch_udc_cfg_data *cfg,
951 const struct usb_endpoint_descriptor *desc)
952{
953 u32 val = 0;
954 u32 buff_size = 0;
955
956 pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
957 if (ep->in)
958 buff_size = UDC_EPIN_BUFF_SIZE;
959 else
960 buff_size = UDC_EPOUT_BUFF_SIZE;
961 pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
962 pch_udc_ep_set_maxpkt(ep, le16_to_cpu(desc->wMaxPacketSize));
963 pch_udc_ep_set_nak(ep);
964 pch_udc_ep_fifo_flush(ep, ep->in);
965 /* Configure the endpoint */
966 val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
967 ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
968 UDC_CSR_NE_TYPE_SHIFT) |
969 (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
970 (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
971 (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
972 le16_to_cpu(desc->wMaxPacketSize) << UDC_CSR_NE_MAX_PKT_SHIFT;
973
974 if (ep->in)
975 pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
976 else
977 pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
978}
979
980/**
981 * pch_udc_ep_disable() - This api disables endpoint
982 * @regs: Reference to structure pch_udc_ep_regs
983 */
984static void pch_udc_ep_disable(struct pch_udc_ep *ep)
985{
986 if (ep->in) {
987 /* flush the fifo */
988 pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
989 /* set NAK */
990 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
991 pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
992 } else {
993 /* set NAK */
994 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
995 }
996 /* reset desc pointer */
997 pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
998}
999
1000/**
1001 * pch_udc_wait_ep_stall() - Wait EP stall.
1002 * @dev: Reference to pch_udc_dev structure
1003 */
1004static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
1005{
1006 unsigned int count = 10000;
1007
1008 /* Wait till idle */
1009 while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
1010 udelay(5);
1011 if (!count)
1012 dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
1013}
1014
1015/**
1016 * pch_udc_init() - This API initializes usb device controller
1017 * @dev: Rreference to pch_udc_regs structure
1018 */
1019static void pch_udc_init(struct pch_udc_dev *dev)
1020{
1021 if (NULL == dev) {
1022 pr_err("%s: Invalid address\n", __func__);
1023 return;
1024 }
1025 /* Soft Reset and Reset PHY */
1026 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1027 pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
1028 mdelay(1);
1029 pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1030 pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
1031 mdelay(1);
1032 /* mask and clear all device interrupts */
1033 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1034 pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
1035
1036 /* mask and clear all ep interrupts */
1037 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1038 pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1039
1040 /* enable dynamic CSR programmingi, self powered and device speed */
1041 if (speed_fs)
1042 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1043 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
1044 else /* defaul high speed */
1045 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1046 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
1047 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
1048 (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
1049 (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
1050 UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
1051 UDC_DEVCTL_THE);
1052}
1053
1054/**
1055 * pch_udc_exit() - This API exit usb device controller
1056 * @dev: Reference to pch_udc_regs structure
1057 */
1058static void pch_udc_exit(struct pch_udc_dev *dev)
1059{
1060 /* mask all device interrupts */
1061 pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1062 /* mask all ep interrupts */
1063 pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1064 /* put device in disconnected state */
1065 pch_udc_set_disconnect(dev);
1066}
1067
1068/**
1069 * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
1070 * @gadget: Reference to the gadget driver
1071 *
1072 * Return codes:
1073 * 0: Success
1074 * -EINVAL: If the gadget passed is NULL
1075 */
1076static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
1077{
1078 struct pch_udc_dev *dev;
1079
1080 if (!gadget)
1081 return -EINVAL;
1082 dev = container_of(gadget, struct pch_udc_dev, gadget);
1083 return pch_udc_get_frame(dev);
1084}
1085
1086/**
1087 * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
1088 * @gadget: Reference to the gadget driver
1089 *
1090 * Return codes:
1091 * 0: Success
1092 * -EINVAL: If the gadget passed is NULL
1093 */
1094static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
1095{
1096 struct pch_udc_dev *dev;
1097 unsigned long flags;
1098
1099 if (!gadget)
1100 return -EINVAL;
1101 dev = container_of(gadget, struct pch_udc_dev, gadget);
1102 spin_lock_irqsave(&dev->lock, flags);
1103 pch_udc_rmt_wakeup(dev);
1104 spin_unlock_irqrestore(&dev->lock, flags);
1105 return 0;
1106}
1107
1108/**
1109 * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
1110 * is self powered or not
1111 * @gadget: Reference to the gadget driver
1112 * @value: Specifies self powered or not
1113 *
1114 * Return codes:
1115 * 0: Success
1116 * -EINVAL: If the gadget passed is NULL
1117 */
1118static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
1119{
1120 struct pch_udc_dev *dev;
1121
1122 if (!gadget)
1123 return -EINVAL;
1124 dev = container_of(gadget, struct pch_udc_dev, gadget);
1125 if (value)
1126 pch_udc_set_selfpowered(dev);
1127 else
1128 pch_udc_clear_selfpowered(dev);
1129 return 0;
1130}
1131
1132/**
1133 * pch_udc_pcd_pullup() - This API is invoked to make the device
1134 * visible/invisible to the host
1135 * @gadget: Reference to the gadget driver
1136 * @is_on: Specifies whether the pull up is made active or inactive
1137 *
1138 * Return codes:
1139 * 0: Success
1140 * -EINVAL: If the gadget passed is NULL
1141 */
1142static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
1143{
1144 struct pch_udc_dev *dev;
1145
1146 if (!gadget)
1147 return -EINVAL;
1148 dev = container_of(gadget, struct pch_udc_dev, gadget);
1149 pch_udc_vbus_session(dev, is_on);
1150 return 0;
1151}
1152
1153/**
1154 * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
1155 * transceiver (or GPIO) that
1156 * detects a VBUS power session starting/ending
1157 * @gadget: Reference to the gadget driver
1158 * @is_active: specifies whether the session is starting or ending
1159 *
1160 * Return codes:
1161 * 0: Success
1162 * -EINVAL: If the gadget passed is NULL
1163 */
1164static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
1165{
1166 struct pch_udc_dev *dev;
1167
1168 if (!gadget)
1169 return -EINVAL;
1170 dev = container_of(gadget, struct pch_udc_dev, gadget);
1171 pch_udc_vbus_session(dev, is_active);
1172 return 0;
1173}
1174
1175/**
1176 * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
1177 * SET_CONFIGURATION calls to
1178 * specify how much power the device can consume
1179 * @gadget: Reference to the gadget driver
1180 * @mA: specifies the current limit in 2mA unit
1181 *
1182 * Return codes:
1183 * -EINVAL: If the gadget passed is NULL
1184 * -EOPNOTSUPP:
1185 */
1186static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
1187{
1188 return -EOPNOTSUPP;
1189}
1190
1191static const struct usb_gadget_ops pch_udc_ops = {
1192 .get_frame = pch_udc_pcd_get_frame,
1193 .wakeup = pch_udc_pcd_wakeup,
1194 .set_selfpowered = pch_udc_pcd_selfpowered,
1195 .pullup = pch_udc_pcd_pullup,
1196 .vbus_session = pch_udc_pcd_vbus_session,
1197 .vbus_draw = pch_udc_pcd_vbus_draw,
1198};
1199
1200/**
1201 * complete_req() - This API is invoked from the driver when processing
1202 * of a request is complete
1203 * @ep: Reference to the endpoint structure
1204 * @req: Reference to the request structure
1205 * @status: Indicates the success/failure of completion
1206 */
1207static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
1208 int status)
1209{
1210 struct pch_udc_dev *dev;
1211 unsigned halted = ep->halted;
1212
1213 list_del_init(&req->queue);
1214
1215 /* set new status if pending */
1216 if (req->req.status == -EINPROGRESS)
1217 req->req.status = status;
1218 else
1219 status = req->req.status;
1220
1221 dev = ep->dev;
1222 if (req->dma_mapped) {
1223 if (ep->in)
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09001224 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1225 req->req.length, DMA_TO_DEVICE);
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09001226 else
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09001227 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1228 req->req.length, DMA_FROM_DEVICE);
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09001229 req->dma_mapped = 0;
1230 req->req.dma = DMA_ADDR_INVALID;
1231 }
1232 ep->halted = 1;
1233 spin_unlock(&dev->lock);
1234 if (!ep->in)
1235 pch_udc_ep_clear_rrdy(ep);
1236 req->req.complete(&ep->ep, &req->req);
1237 spin_lock(&dev->lock);
1238 ep->halted = halted;
1239}
1240
1241/**
1242 * empty_req_queue() - This API empties the request queue of an endpoint
1243 * @ep: Reference to the endpoint structure
1244 */
1245static void empty_req_queue(struct pch_udc_ep *ep)
1246{
1247 struct pch_udc_request *req;
1248
1249 ep->halted = 1;
1250 while (!list_empty(&ep->queue)) {
1251 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1252 complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
1253 }
1254}
1255
1256/**
1257 * pch_udc_free_dma_chain() - This function frees the DMA chain created
1258 * for the request
1259 * @dev Reference to the driver structure
1260 * @req Reference to the request to be freed
1261 *
1262 * Return codes:
1263 * 0: Success
1264 */
1265static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
1266 struct pch_udc_request *req)
1267{
1268 struct pch_udc_data_dma_desc *td = req->td_data;
1269 unsigned i = req->chain_len;
1270
1271 for (; i > 1; --i) {
1272 dma_addr_t addr = (dma_addr_t)td->next;
1273 /* do not free first desc., will be done by free for request */
1274 td = phys_to_virt(addr);
1275 pci_pool_free(dev->data_requests, td, addr);
1276 }
1277}
1278
1279/**
1280 * pch_udc_create_dma_chain() - This function creates or reinitializes
1281 * a DMA chain
1282 * @ep: Reference to the endpoint structure
1283 * @req: Reference to the request
1284 * @buf_len: The buffer length
1285 * @gfp_flags: Flags to be used while mapping the data buffer
1286 *
1287 * Return codes:
1288 * 0: success,
1289 * -ENOMEM: pci_pool_alloc invocation fails
1290 */
1291static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
1292 struct pch_udc_request *req,
1293 unsigned long buf_len,
1294 gfp_t gfp_flags)
1295{
1296 struct pch_udc_data_dma_desc *td = req->td_data, *last;
1297 unsigned long bytes = req->req.length, i = 0;
1298 dma_addr_t dma_addr;
1299 unsigned len = 1;
1300
1301 if (req->chain_len > 1)
1302 pch_udc_free_dma_chain(ep->dev, req);
1303
1304 for (; ; bytes -= buf_len, ++len) {
1305 if (ep->in)
1306 td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
1307 else
1308 td->status = PCH_UDC_BS_HST_BSY;
1309
1310 if (bytes <= buf_len)
1311 break;
1312
1313 last = td;
1314 td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
1315 &dma_addr);
1316 if (!td)
1317 goto nomem;
1318
1319 i += buf_len;
1320 td->dataptr = req->req.dma + i;
1321 last->next = dma_addr;
1322 }
1323
1324 req->td_data_last = td;
1325 td->status |= PCH_UDC_DMA_LAST;
1326 td->next = req->td_data_phys;
1327 req->chain_len = len;
1328 return 0;
1329
1330nomem:
1331 if (len > 1) {
1332 req->chain_len = len;
1333 pch_udc_free_dma_chain(ep->dev, req);
1334 }
1335 req->chain_len = 1;
1336 return -ENOMEM;
1337}
1338
1339/**
1340 * prepare_dma() - This function creates and initializes the DMA chain
1341 * for the request
1342 * @ep: Reference to the endpoint structure
1343 * @req: Reference to the request
1344 * @gfp: Flag to be used while mapping the data buffer
1345 *
1346 * Return codes:
1347 * 0: Success
1348 * Other 0: linux error number on failure
1349 */
1350static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
1351 gfp_t gfp)
1352{
1353 int retval;
1354
1355 req->td_data->dataptr = req->req.dma;
1356 req->td_data->status |= PCH_UDC_DMA_LAST;
1357 /* Allocate and create a DMA chain */
1358 retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
1359 if (retval) {
1360 pr_err("%s: could not create DMA chain: %d\n",
1361 __func__, retval);
1362 return retval;
1363 }
1364 if (!ep->in)
1365 return 0;
1366 if (req->req.length <= ep->ep.maxpacket)
1367 req->td_data->status = PCH_UDC_DMA_LAST | PCH_UDC_BS_HST_BSY |
1368 req->req.length;
1369 /* if bytes < max packet then tx bytes must
1370 * be written in packet per buffer mode
1371 */
1372 if ((req->req.length < ep->ep.maxpacket) || !ep->num)
1373 req->td_data->status = (req->td_data->status &
1374 ~PCH_UDC_RXTX_BYTES) | req->req.length;
1375 req->td_data->status = (req->td_data->status &
1376 ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_BSY;
1377 return 0;
1378}
1379
1380/**
1381 * process_zlp() - This function process zero length packets
1382 * from the gadget driver
1383 * @ep: Reference to the endpoint structure
1384 * @req: Reference to the request
1385 */
1386static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
1387{
1388 struct pch_udc_dev *dev = ep->dev;
1389
1390 /* IN zlp's are handled by hardware */
1391 complete_req(ep, req, 0);
1392
1393 /* if set_config or set_intf is waiting for ack by zlp
1394 * then set CSR_DONE
1395 */
1396 if (dev->set_cfg_not_acked) {
1397 pch_udc_set_csr_done(dev);
1398 dev->set_cfg_not_acked = 0;
1399 }
1400 /* setup command is ACK'ed now by zlp */
1401 if (!dev->stall && dev->waiting_zlp_ack) {
1402 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
1403 dev->waiting_zlp_ack = 0;
1404 }
1405}
1406
1407/**
1408 * pch_udc_start_rxrequest() - This function starts the receive requirement.
1409 * @ep: Reference to the endpoint structure
1410 * @req: Reference to the request structure
1411 */
1412static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
1413 struct pch_udc_request *req)
1414{
1415 struct pch_udc_data_dma_desc *td_data;
1416
1417 pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
1418 td_data = req->td_data;
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09001419 /* Set the status bits for all descriptors */
1420 while (1) {
1421 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1422 PCH_UDC_BS_HST_RDY;
1423 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
1424 break;
1425 td_data = phys_to_virt(td_data->next);
1426 }
1427 /* Write the descriptor pointer */
1428 pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1429 req->dma_going = 1;
1430 pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
1431 pch_udc_set_dma(ep->dev, DMA_DIR_RX);
1432 pch_udc_ep_clear_nak(ep);
1433 pch_udc_ep_set_rrdy(ep);
1434}
1435
1436/**
1437 * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
1438 * from gadget driver
1439 * @usbep: Reference to the USB endpoint structure
1440 * @desc: Reference to the USB endpoint descriptor structure
1441 *
1442 * Return codes:
1443 * 0: Success
1444 * -EINVAL:
1445 * -ESHUTDOWN:
1446 */
1447static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
1448 const struct usb_endpoint_descriptor *desc)
1449{
1450 struct pch_udc_ep *ep;
1451 struct pch_udc_dev *dev;
1452 unsigned long iflags;
1453
1454 if (!usbep || (usbep->name == ep0_string) || !desc ||
1455 (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
1456 return -EINVAL;
1457
1458 ep = container_of(usbep, struct pch_udc_ep, ep);
1459 dev = ep->dev;
1460 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1461 return -ESHUTDOWN;
1462 spin_lock_irqsave(&dev->lock, iflags);
1463 ep->desc = desc;
1464 ep->halted = 0;
1465 pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
1466 ep->ep.maxpacket = le16_to_cpu(desc->wMaxPacketSize);
1467 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1468 spin_unlock_irqrestore(&dev->lock, iflags);
1469 return 0;
1470}
1471
1472/**
1473 * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
1474 * from gadget driver
1475 * @usbep Reference to the USB endpoint structure
1476 *
1477 * Return codes:
1478 * 0: Success
1479 * -EINVAL:
1480 */
1481static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
1482{
1483 struct pch_udc_ep *ep;
1484 struct pch_udc_dev *dev;
1485 unsigned long iflags;
1486
1487 if (!usbep)
1488 return -EINVAL;
1489
1490 ep = container_of(usbep, struct pch_udc_ep, ep);
1491 dev = ep->dev;
1492 if ((usbep->name == ep0_string) || !ep->desc)
1493 return -EINVAL;
1494
1495 spin_lock_irqsave(&ep->dev->lock, iflags);
1496 empty_req_queue(ep);
1497 ep->halted = 1;
1498 pch_udc_ep_disable(ep);
1499 pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1500 ep->desc = NULL;
1501 INIT_LIST_HEAD(&ep->queue);
1502 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1503 return 0;
1504}
1505
1506/**
1507 * pch_udc_alloc_request() - This function allocates request structure.
1508 * It is called by gadget driver
1509 * @usbep: Reference to the USB endpoint structure
1510 * @gfp: Flag to be used while allocating memory
1511 *
1512 * Return codes:
1513 * NULL: Failure
1514 * Allocated address: Success
1515 */
1516static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
1517 gfp_t gfp)
1518{
1519 struct pch_udc_request *req;
1520 struct pch_udc_ep *ep;
1521 struct pch_udc_data_dma_desc *dma_desc;
1522 struct pch_udc_dev *dev;
1523
1524 if (!usbep)
1525 return NULL;
1526 ep = container_of(usbep, struct pch_udc_ep, ep);
1527 dev = ep->dev;
1528 req = kzalloc(sizeof *req, gfp);
1529 if (!req)
1530 return NULL;
1531 req->req.dma = DMA_ADDR_INVALID;
1532 INIT_LIST_HEAD(&req->queue);
1533 if (!ep->dev->dma_addr)
1534 return &req->req;
1535 /* ep0 in requests are allocated from data pool here */
1536 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
1537 &req->td_data_phys);
1538 if (NULL == dma_desc) {
1539 kfree(req);
1540 return NULL;
1541 }
1542 /* prevent from using desc. - set HOST BUSY */
1543 dma_desc->status |= PCH_UDC_BS_HST_BSY;
1544 dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
1545 req->td_data = dma_desc;
1546 req->td_data_last = dma_desc;
1547 req->chain_len = 1;
1548 return &req->req;
1549}
1550
1551/**
1552 * pch_udc_free_request() - This function frees request structure.
1553 * It is called by gadget driver
1554 * @usbep: Reference to the USB endpoint structure
1555 * @usbreq: Reference to the USB request
1556 */
1557static void pch_udc_free_request(struct usb_ep *usbep,
1558 struct usb_request *usbreq)
1559{
1560 struct pch_udc_ep *ep;
1561 struct pch_udc_request *req;
1562 struct pch_udc_dev *dev;
1563
1564 if (!usbep || !usbreq)
1565 return;
1566 ep = container_of(usbep, struct pch_udc_ep, ep);
1567 req = container_of(usbreq, struct pch_udc_request, req);
1568 dev = ep->dev;
1569 if (!list_empty(&req->queue))
1570 dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
1571 __func__, usbep->name, req);
1572 if (req->td_data != NULL) {
1573 if (req->chain_len > 1)
1574 pch_udc_free_dma_chain(ep->dev, req);
1575 pci_pool_free(ep->dev->data_requests, req->td_data,
1576 req->td_data_phys);
1577 }
1578 kfree(req);
1579}
1580
1581/**
1582 * pch_udc_pcd_queue() - This function queues a request packet. It is called
1583 * by gadget driver
1584 * @usbep: Reference to the USB endpoint structure
1585 * @usbreq: Reference to the USB request
1586 * @gfp: Flag to be used while mapping the data buffer
1587 *
1588 * Return codes:
1589 * 0: Success
1590 * linux error number: Failure
1591 */
1592static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
1593 gfp_t gfp)
1594{
1595 int retval = 0;
1596 struct pch_udc_ep *ep;
1597 struct pch_udc_dev *dev;
1598 struct pch_udc_request *req;
1599 unsigned long iflags;
1600
1601 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
1602 return -EINVAL;
1603 ep = container_of(usbep, struct pch_udc_ep, ep);
1604 dev = ep->dev;
1605 if (!ep->desc && ep->num)
1606 return -EINVAL;
1607 req = container_of(usbreq, struct pch_udc_request, req);
1608 if (!list_empty(&req->queue))
1609 return -EINVAL;
1610 if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1611 return -ESHUTDOWN;
1612 spin_lock_irqsave(&ep->dev->lock, iflags);
1613 /* map the buffer for dma */
1614 if (usbreq->length &&
1615 ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
1616 if (ep->in)
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09001617 usbreq->dma = dma_map_single(&dev->pdev->dev,
1618 usbreq->buf,
1619 usbreq->length,
1620 DMA_TO_DEVICE);
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09001621 else
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09001622 usbreq->dma = dma_map_single(&dev->pdev->dev,
1623 usbreq->buf,
1624 usbreq->length,
1625 DMA_FROM_DEVICE);
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09001626 req->dma_mapped = 1;
1627 }
1628 if (usbreq->length > 0) {
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09001629 retval = prepare_dma(ep, req, GFP_ATOMIC);
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09001630 if (retval)
1631 goto probe_end;
1632 }
1633 usbreq->actual = 0;
1634 usbreq->status = -EINPROGRESS;
1635 req->dma_done = 0;
1636 if (list_empty(&ep->queue) && !ep->halted) {
1637 /* no pending transfer, so start this req */
1638 if (!usbreq->length) {
1639 process_zlp(ep, req);
1640 retval = 0;
1641 goto probe_end;
1642 }
1643 if (!ep->in) {
1644 pch_udc_start_rxrequest(ep, req);
1645 } else {
1646 /*
1647 * For IN trfr the descriptors will be programmed and
1648 * P bit will be set when
1649 * we get an IN token
1650 */
1651 pch_udc_wait_ep_stall(ep);
1652 pch_udc_ep_clear_nak(ep);
1653 pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09001654 }
1655 }
1656 /* Now add this request to the ep's pending requests */
1657 if (req != NULL)
1658 list_add_tail(&req->queue, &ep->queue);
1659
1660probe_end:
1661 spin_unlock_irqrestore(&dev->lock, iflags);
1662 return retval;
1663}
1664
1665/**
1666 * pch_udc_pcd_dequeue() - This function de-queues a request packet.
1667 * It is called by gadget driver
1668 * @usbep: Reference to the USB endpoint structure
1669 * @usbreq: Reference to the USB request
1670 *
1671 * Return codes:
1672 * 0: Success
1673 * linux error number: Failure
1674 */
1675static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
1676 struct usb_request *usbreq)
1677{
1678 struct pch_udc_ep *ep;
1679 struct pch_udc_request *req;
1680 struct pch_udc_dev *dev;
1681 unsigned long flags;
1682 int ret = -EINVAL;
1683
1684 ep = container_of(usbep, struct pch_udc_ep, ep);
1685 dev = ep->dev;
1686 if (!usbep || !usbreq || (!ep->desc && ep->num))
1687 return ret;
1688 req = container_of(usbreq, struct pch_udc_request, req);
1689 spin_lock_irqsave(&ep->dev->lock, flags);
1690 /* make sure it's still queued on this endpoint */
1691 list_for_each_entry(req, &ep->queue, queue) {
1692 if (&req->req == usbreq) {
1693 pch_udc_ep_set_nak(ep);
1694 if (!list_empty(&req->queue))
1695 complete_req(ep, req, -ECONNRESET);
1696 ret = 0;
1697 break;
1698 }
1699 }
1700 spin_unlock_irqrestore(&ep->dev->lock, flags);
1701 return ret;
1702}
1703
1704/**
1705 * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
1706 * feature
1707 * @usbep: Reference to the USB endpoint structure
1708 * @halt: Specifies whether to set or clear the feature
1709 *
1710 * Return codes:
1711 * 0: Success
1712 * linux error number: Failure
1713 */
1714static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
1715{
1716 struct pch_udc_ep *ep;
1717 struct pch_udc_dev *dev;
1718 unsigned long iflags;
1719 int ret;
1720
1721 if (!usbep)
1722 return -EINVAL;
1723 ep = container_of(usbep, struct pch_udc_ep, ep);
1724 dev = ep->dev;
1725 if (!ep->desc && !ep->num)
1726 return -EINVAL;
1727 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1728 return -ESHUTDOWN;
1729 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1730 if (list_empty(&ep->queue)) {
1731 if (halt) {
1732 if (ep->num == PCH_UDC_EP0)
1733 ep->dev->stall = 1;
1734 pch_udc_ep_set_stall(ep);
1735 pch_udc_enable_ep_interrupts(ep->dev,
1736 PCH_UDC_EPINT(ep->in,
1737 ep->num));
1738 } else {
1739 pch_udc_ep_clear_stall(ep);
1740 }
1741 ret = 0;
1742 } else {
1743 ret = -EAGAIN;
1744 }
1745 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1746 return ret;
1747}
1748
1749/**
1750 * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
1751 * halt feature
1752 * @usbep: Reference to the USB endpoint structure
1753 * @halt: Specifies whether to set or clear the feature
1754 *
1755 * Return codes:
1756 * 0: Success
1757 * linux error number: Failure
1758 */
1759static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
1760{
1761 struct pch_udc_ep *ep;
1762 struct pch_udc_dev *dev;
1763 unsigned long iflags;
1764 int ret;
1765
1766 if (!usbep)
1767 return -EINVAL;
1768 ep = container_of(usbep, struct pch_udc_ep, ep);
1769 dev = ep->dev;
1770 if (!ep->desc && !ep->num)
1771 return -EINVAL;
1772 if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1773 return -ESHUTDOWN;
1774 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1775 if (!list_empty(&ep->queue)) {
1776 ret = -EAGAIN;
1777 } else {
1778 if (ep->num == PCH_UDC_EP0)
1779 ep->dev->stall = 1;
1780 pch_udc_ep_set_stall(ep);
1781 pch_udc_enable_ep_interrupts(ep->dev,
1782 PCH_UDC_EPINT(ep->in, ep->num));
1783 ep->dev->prot_stall = 1;
1784 ret = 0;
1785 }
1786 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1787 return ret;
1788}
1789
1790/**
1791 * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
1792 * @usbep: Reference to the USB endpoint structure
1793 */
1794static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
1795{
1796 struct pch_udc_ep *ep;
1797
1798 if (!usbep)
1799 return;
1800
1801 ep = container_of(usbep, struct pch_udc_ep, ep);
1802 if (ep->desc || !ep->num)
1803 pch_udc_ep_fifo_flush(ep, ep->in);
1804}
1805
1806static const struct usb_ep_ops pch_udc_ep_ops = {
1807 .enable = pch_udc_pcd_ep_enable,
1808 .disable = pch_udc_pcd_ep_disable,
1809 .alloc_request = pch_udc_alloc_request,
1810 .free_request = pch_udc_free_request,
1811 .queue = pch_udc_pcd_queue,
1812 .dequeue = pch_udc_pcd_dequeue,
1813 .set_halt = pch_udc_pcd_set_halt,
1814 .set_wedge = pch_udc_pcd_set_wedge,
1815 .fifo_status = NULL,
1816 .fifo_flush = pch_udc_pcd_fifo_flush,
1817};
1818
1819/**
1820 * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
1821 * @td_stp: Reference to the SETP buffer structure
1822 */
1823static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
1824{
1825 static u32 pky_marker;
1826
1827 if (!td_stp)
1828 return;
1829 td_stp->reserved = ++pky_marker;
1830 memset(&td_stp->request, 0xFF, sizeof td_stp->request);
1831 td_stp->status = PCH_UDC_BS_HST_RDY;
1832}
1833
1834/**
1835 * pch_udc_start_next_txrequest() - This function starts
1836 * the next transmission requirement
1837 * @ep: Reference to the endpoint structure
1838 */
1839static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
1840{
1841 struct pch_udc_request *req;
1842 struct pch_udc_data_dma_desc *td_data;
1843
1844 if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
1845 return;
1846
1847 if (list_empty(&ep->queue))
1848 return;
1849
1850 /* next request */
1851 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1852 if (req->dma_going)
1853 return;
1854 if (!req->td_data)
1855 return;
1856 pch_udc_wait_ep_stall(ep);
1857 req->dma_going = 1;
1858 pch_udc_ep_set_ddptr(ep, 0);
1859 td_data = req->td_data;
1860 while (1) {
1861 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1862 PCH_UDC_BS_HST_RDY;
1863 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
1864 break;
1865 td_data = phys_to_virt(td_data->next);
1866 }
1867 pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1868 pch_udc_set_dma(ep->dev, DMA_DIR_TX);
1869 pch_udc_ep_set_pd(ep);
1870 pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1871 pch_udc_ep_clear_nak(ep);
1872}
1873
1874/**
1875 * pch_udc_complete_transfer() - This function completes a transfer
1876 * @ep: Reference to the endpoint structure
1877 */
1878static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
1879{
1880 struct pch_udc_request *req;
1881 struct pch_udc_dev *dev = ep->dev;
1882
1883 if (list_empty(&ep->queue))
1884 return;
1885 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1886 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
1887 PCH_UDC_BS_DMA_DONE)
1888 return;
1889 if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
1890 PCH_UDC_RTS_SUCC) {
1891 dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
1892 "epstatus=0x%08x\n",
1893 (req->td_data_last->status & PCH_UDC_RXTX_STS),
1894 (int)(ep->epsts));
1895 return;
1896 }
1897
1898 req->req.actual = req->req.length;
1899 req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
1900 req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
1901 complete_req(ep, req, 0);
1902 req->dma_going = 0;
1903 if (!list_empty(&ep->queue)) {
1904 pch_udc_wait_ep_stall(ep);
1905 pch_udc_ep_clear_nak(ep);
1906 pch_udc_enable_ep_interrupts(ep->dev,
1907 PCH_UDC_EPINT(ep->in, ep->num));
1908 } else {
1909 pch_udc_disable_ep_interrupts(ep->dev,
1910 PCH_UDC_EPINT(ep->in, ep->num));
1911 }
1912}
1913
1914/**
1915 * pch_udc_complete_receiver() - This function completes a receiver
1916 * @ep: Reference to the endpoint structure
1917 */
1918static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
1919{
1920 struct pch_udc_request *req;
1921 struct pch_udc_dev *dev = ep->dev;
1922 unsigned int count;
1923
1924 if (list_empty(&ep->queue))
1925 return;
1926
1927 /* next request */
1928 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1929 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
1930 PCH_UDC_BS_DMA_DONE)
1931 return;
1932 pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09001933 pch_udc_ep_set_ddptr(ep, 0);
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09001934 if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
1935 PCH_UDC_RTS_SUCC) {
1936 dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
1937 "epstatus=0x%08x\n",
1938 (req->td_data_last->status & PCH_UDC_RXTX_STS),
1939 (int)(ep->epsts));
1940 return;
1941 }
1942 count = req->td_data_last->status & PCH_UDC_RXTX_BYTES;
1943
1944 /* on 64k packets the RXBYTES field is zero */
1945 if (!count && (req->req.length == UDC_DMA_MAXPACKET))
1946 count = UDC_DMA_MAXPACKET;
1947 req->td_data->status |= PCH_UDC_DMA_LAST;
1948 req->td_data_last->status |= PCH_UDC_BS_HST_BSY;
1949
1950 req->dma_going = 0;
1951 req->req.actual = count;
1952 complete_req(ep, req, 0);
1953 /* If there is a new/failed requests try that now */
1954 if (!list_empty(&ep->queue)) {
1955 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1956 pch_udc_start_rxrequest(ep, req);
1957 }
1958}
1959
1960/**
1961 * pch_udc_svc_data_in() - This function process endpoint interrupts
1962 * for IN endpoints
1963 * @dev: Reference to the device structure
1964 * @ep_num: Endpoint that generated the interrupt
1965 */
1966static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
1967{
1968 u32 epsts;
1969 struct pch_udc_ep *ep;
1970
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09001971 ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09001972 epsts = ep->epsts;
1973 ep->epsts = 0;
1974
1975 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
1976 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
1977 UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
1978 return;
1979 if ((epsts & UDC_EPSTS_BNA))
1980 return;
1981 if (epsts & UDC_EPSTS_HE)
1982 return;
1983 if (epsts & UDC_EPSTS_RSS) {
1984 pch_udc_ep_set_stall(ep);
1985 pch_udc_enable_ep_interrupts(ep->dev,
1986 PCH_UDC_EPINT(ep->in, ep->num));
1987 }
Richard Röjfors49e20832010-12-07 17:28:30 +01001988 if (epsts & UDC_EPSTS_RCS) {
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09001989 if (!dev->prot_stall) {
1990 pch_udc_ep_clear_stall(ep);
1991 } else {
1992 pch_udc_ep_set_stall(ep);
1993 pch_udc_enable_ep_interrupts(ep->dev,
1994 PCH_UDC_EPINT(ep->in, ep->num));
1995 }
Richard Röjfors49e20832010-12-07 17:28:30 +01001996 }
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09001997 if (epsts & UDC_EPSTS_TDC)
1998 pch_udc_complete_transfer(ep);
1999 /* On IN interrupt, provide data if we have any */
2000 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
2001 !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
2002 pch_udc_start_next_txrequest(ep);
2003}
2004
2005/**
2006 * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
2007 * @dev: Reference to the device structure
2008 * @ep_num: Endpoint that generated the interrupt
2009 */
2010static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
2011{
2012 u32 epsts;
2013 struct pch_udc_ep *ep;
2014 struct pch_udc_request *req = NULL;
2015
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002016 ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002017 epsts = ep->epsts;
2018 ep->epsts = 0;
2019
2020 if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
2021 /* next request */
2022 req = list_entry(ep->queue.next, struct pch_udc_request,
2023 queue);
2024 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2025 PCH_UDC_BS_DMA_DONE) {
2026 if (!req->dma_going)
2027 pch_udc_start_rxrequest(ep, req);
2028 return;
2029 }
2030 }
2031 if (epsts & UDC_EPSTS_HE)
2032 return;
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002033 if (epsts & UDC_EPSTS_RSS) {
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002034 pch_udc_ep_set_stall(ep);
2035 pch_udc_enable_ep_interrupts(ep->dev,
2036 PCH_UDC_EPINT(ep->in, ep->num));
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002037 }
Richard Röjfors49e20832010-12-07 17:28:30 +01002038 if (epsts & UDC_EPSTS_RCS) {
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002039 if (!dev->prot_stall) {
2040 pch_udc_ep_clear_stall(ep);
2041 } else {
2042 pch_udc_ep_set_stall(ep);
2043 pch_udc_enable_ep_interrupts(ep->dev,
2044 PCH_UDC_EPINT(ep->in, ep->num));
2045 }
Richard Röjfors49e20832010-12-07 17:28:30 +01002046 }
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002047 if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2048 UDC_EPSTS_OUT_DATA) {
2049 if (ep->dev->prot_stall == 1) {
2050 pch_udc_ep_set_stall(ep);
2051 pch_udc_enable_ep_interrupts(ep->dev,
2052 PCH_UDC_EPINT(ep->in, ep->num));
2053 } else {
2054 pch_udc_complete_receiver(ep);
2055 }
2056 }
2057 if (list_empty(&ep->queue))
2058 pch_udc_set_dma(dev, DMA_DIR_RX);
2059}
2060
2061/**
2062 * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
2063 * @dev: Reference to the device structure
2064 */
2065static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
2066{
2067 u32 epsts;
2068 struct pch_udc_ep *ep;
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002069 struct pch_udc_ep *ep_out;
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002070
2071 ep = &dev->ep[UDC_EP0IN_IDX];
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002072 ep_out = &dev->ep[UDC_EP0OUT_IDX];
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002073 epsts = ep->epsts;
2074 ep->epsts = 0;
2075
2076 if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2077 UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2078 UDC_EPSTS_XFERDONE)))
2079 return;
2080 if ((epsts & UDC_EPSTS_BNA))
2081 return;
2082 if (epsts & UDC_EPSTS_HE)
2083 return;
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002084 if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002085 pch_udc_complete_transfer(ep);
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002086 pch_udc_clear_dma(dev, DMA_DIR_RX);
2087 ep_out->td_data->status = (ep_out->td_data->status &
2088 ~PCH_UDC_BUFF_STS) |
2089 PCH_UDC_BS_HST_RDY;
2090 pch_udc_ep_clear_nak(ep_out);
2091 pch_udc_set_dma(dev, DMA_DIR_RX);
2092 pch_udc_ep_set_rrdy(ep_out);
2093 }
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002094 /* On IN interrupt, provide data if we have any */
2095 if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
2096 !(epsts & UDC_EPSTS_TXEMPTY))
2097 pch_udc_start_next_txrequest(ep);
2098}
2099
2100/**
2101 * pch_udc_svc_control_out() - Routine that handle Control
2102 * OUT endpoint interrupts
2103 * @dev: Reference to the device structure
2104 */
2105static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
2106{
2107 u32 stat;
2108 int setup_supported;
2109 struct pch_udc_ep *ep;
2110
2111 ep = &dev->ep[UDC_EP0OUT_IDX];
2112 stat = ep->epsts;
2113 ep->epsts = 0;
2114
2115 /* If setup data */
2116 if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2117 UDC_EPSTS_OUT_SETUP) {
2118 dev->stall = 0;
2119 dev->ep[UDC_EP0IN_IDX].halted = 0;
2120 dev->ep[UDC_EP0OUT_IDX].halted = 0;
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002121 dev->setup_data = ep->td_stp->request;
2122 pch_udc_init_setup_buff(ep->td_stp);
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002123 pch_udc_clear_dma(dev, DMA_DIR_RX);
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002124 pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
2125 dev->ep[UDC_EP0IN_IDX].in);
2126 if ((dev->setup_data.bRequestType & USB_DIR_IN))
2127 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2128 else /* OUT */
2129 dev->gadget.ep0 = &ep->ep;
2130 spin_unlock(&dev->lock);
2131 /* If Mass storage Reset */
2132 if ((dev->setup_data.bRequestType == 0x21) &&
2133 (dev->setup_data.bRequest == 0xFF))
2134 dev->prot_stall = 0;
2135 /* call gadget with setup data received */
2136 setup_supported = dev->driver->setup(&dev->gadget,
2137 &dev->setup_data);
2138 spin_lock(&dev->lock);
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002139
2140 if (dev->setup_data.bRequestType & USB_DIR_IN) {
2141 ep->td_data->status = (ep->td_data->status &
2142 ~PCH_UDC_BUFF_STS) |
2143 PCH_UDC_BS_HST_RDY;
2144 pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2145 }
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002146 /* ep0 in returns data on IN phase */
2147 if (setup_supported >= 0 && setup_supported <
2148 UDC_EP0IN_MAX_PKT_SIZE) {
2149 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
2150 /* Gadget would have queued a request when
2151 * we called the setup */
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002152 if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
2153 pch_udc_set_dma(dev, DMA_DIR_RX);
2154 pch_udc_ep_clear_nak(ep);
2155 }
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002156 } else if (setup_supported < 0) {
2157 /* if unsupported request, then stall */
2158 pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
2159 pch_udc_enable_ep_interrupts(ep->dev,
2160 PCH_UDC_EPINT(ep->in, ep->num));
2161 dev->stall = 0;
2162 pch_udc_set_dma(dev, DMA_DIR_RX);
2163 } else {
2164 dev->waiting_zlp_ack = 1;
2165 }
2166 } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2167 UDC_EPSTS_OUT_DATA) && !dev->stall) {
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002168 pch_udc_clear_dma(dev, DMA_DIR_RX);
2169 pch_udc_ep_set_ddptr(ep, 0);
2170 if (!list_empty(&ep->queue)) {
Richard Röjforsff176a42010-12-07 17:28:33 +01002171 ep->epsts = stat;
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002172 pch_udc_svc_data_out(dev, PCH_UDC_EP0);
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002173 }
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002174 pch_udc_set_dma(dev, DMA_DIR_RX);
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002175 }
2176 pch_udc_ep_set_rrdy(ep);
2177}
2178
2179
2180/**
2181 * pch_udc_postsvc_epinters() - This function enables end point interrupts
2182 * and clears NAK status
2183 * @dev: Reference to the device structure
2184 * @ep_num: End point number
2185 */
2186static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
2187{
2188 struct pch_udc_ep *ep;
2189 struct pch_udc_request *req;
2190
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002191 ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002192 if (!list_empty(&ep->queue)) {
2193 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2194 pch_udc_enable_ep_interrupts(ep->dev,
2195 PCH_UDC_EPINT(ep->in, ep->num));
2196 pch_udc_ep_clear_nak(ep);
2197 }
2198}
2199
2200/**
2201 * pch_udc_read_all_epstatus() - This function read all endpoint status
2202 * @dev: Reference to the device structure
2203 * @ep_intr: Status of endpoint interrupt
2204 */
2205static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
2206{
2207 int i;
2208 struct pch_udc_ep *ep;
2209
2210 for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
2211 /* IN */
2212 if (ep_intr & (0x1 << i)) {
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002213 ep = &dev->ep[UDC_EPIN_IDX(i)];
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002214 ep->epsts = pch_udc_read_ep_status(ep);
2215 pch_udc_clear_ep_status(ep, ep->epsts);
2216 }
2217 /* OUT */
2218 if (ep_intr & (0x10000 << i)) {
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002219 ep = &dev->ep[UDC_EPOUT_IDX(i)];
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002220 ep->epsts = pch_udc_read_ep_status(ep);
2221 pch_udc_clear_ep_status(ep, ep->epsts);
2222 }
2223 }
2224}
2225
2226/**
2227 * pch_udc_activate_control_ep() - This function enables the control endpoints
2228 * for traffic after a reset
2229 * @dev: Reference to the device structure
2230 */
2231static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
2232{
2233 struct pch_udc_ep *ep;
2234 u32 val;
2235
2236 /* Setup the IN endpoint */
2237 ep = &dev->ep[UDC_EP0IN_IDX];
2238 pch_udc_clear_ep_control(ep);
2239 pch_udc_ep_fifo_flush(ep, ep->in);
2240 pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
2241 pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
2242 /* Initialize the IN EP Descriptor */
2243 ep->td_data = NULL;
2244 ep->td_stp = NULL;
2245 ep->td_data_phys = 0;
2246 ep->td_stp_phys = 0;
2247
2248 /* Setup the OUT endpoint */
2249 ep = &dev->ep[UDC_EP0OUT_IDX];
2250 pch_udc_clear_ep_control(ep);
2251 pch_udc_ep_fifo_flush(ep, ep->in);
2252 pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
2253 pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
2254 val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
2255 pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
2256
2257 /* Initialize the SETUP buffer */
2258 pch_udc_init_setup_buff(ep->td_stp);
2259 /* Write the pointer address of dma descriptor */
2260 pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
2261 /* Write the pointer address of Setup descriptor */
2262 pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2263
2264 /* Initialize the dma descriptor */
2265 ep->td_data->status = PCH_UDC_DMA_LAST;
2266 ep->td_data->dataptr = dev->dma_addr;
2267 ep->td_data->next = ep->td_data_phys;
2268
2269 pch_udc_ep_clear_nak(ep);
2270}
2271
2272
2273/**
2274 * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
2275 * @dev: Reference to driver structure
2276 */
2277static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
2278{
2279 struct pch_udc_ep *ep;
2280 int i;
2281
2282 pch_udc_clear_dma(dev, DMA_DIR_TX);
2283 pch_udc_clear_dma(dev, DMA_DIR_RX);
2284 /* Mask all endpoint interrupts */
2285 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2286 /* clear all endpoint interrupts */
2287 pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2288
2289 for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2290 ep = &dev->ep[i];
2291 pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
2292 pch_udc_clear_ep_control(ep);
2293 pch_udc_ep_set_ddptr(ep, 0);
2294 pch_udc_write_csr(ep->dev, 0x00, i);
2295 }
2296 dev->stall = 0;
2297 dev->prot_stall = 0;
2298 dev->waiting_zlp_ack = 0;
2299 dev->set_cfg_not_acked = 0;
2300
2301 /* disable ep to empty req queue. Skip the control EP's */
2302 for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
2303 ep = &dev->ep[i];
2304 pch_udc_ep_set_nak(ep);
2305 pch_udc_ep_fifo_flush(ep, ep->in);
2306 /* Complete request queue */
2307 empty_req_queue(ep);
2308 }
2309 if (dev->driver && dev->driver->disconnect)
2310 dev->driver->disconnect(&dev->gadget);
2311}
2312
2313/**
2314 * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
2315 * done interrupt
2316 * @dev: Reference to driver structure
2317 */
2318static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
2319{
2320 u32 dev_stat, dev_speed;
2321 u32 speed = USB_SPEED_FULL;
2322
2323 dev_stat = pch_udc_read_device_status(dev);
2324 dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
2325 UDC_DEVSTS_ENUM_SPEED_SHIFT;
2326 switch (dev_speed) {
2327 case UDC_DEVSTS_ENUM_SPEED_HIGH:
2328 speed = USB_SPEED_HIGH;
2329 break;
2330 case UDC_DEVSTS_ENUM_SPEED_FULL:
2331 speed = USB_SPEED_FULL;
2332 break;
2333 case UDC_DEVSTS_ENUM_SPEED_LOW:
2334 speed = USB_SPEED_LOW;
2335 break;
2336 default:
2337 BUG();
2338 }
2339 dev->gadget.speed = speed;
2340 pch_udc_activate_control_ep(dev);
2341 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
2342 pch_udc_set_dma(dev, DMA_DIR_TX);
2343 pch_udc_set_dma(dev, DMA_DIR_RX);
2344 pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
2345}
2346
2347/**
2348 * pch_udc_svc_intf_interrupt() - This function handles a set interface
2349 * interrupt
2350 * @dev: Reference to driver structure
2351 */
2352static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
2353{
2354 u32 reg, dev_stat = 0;
2355 int i, ret;
2356
2357 dev_stat = pch_udc_read_device_status(dev);
2358 dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
2359 UDC_DEVSTS_INTF_SHIFT;
2360 dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
2361 UDC_DEVSTS_ALT_SHIFT;
2362 dev->set_cfg_not_acked = 1;
2363 /* Construct the usb request for gadget driver and inform it */
2364 memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2365 dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
2366 dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
2367 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
2368 dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
2369 /* programm the Endpoint Cfg registers */
2370 /* Only one end point cfg register */
2371 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2372 reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
2373 (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
2374 reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
2375 (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
2376 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2377 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2378 /* clear stall bits */
2379 pch_udc_ep_clear_stall(&(dev->ep[i]));
2380 dev->ep[i].halted = 0;
2381 }
2382 dev->stall = 0;
2383 spin_unlock(&dev->lock);
2384 ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
2385 spin_lock(&dev->lock);
2386}
2387
2388/**
2389 * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
2390 * interrupt
2391 * @dev: Reference to driver structure
2392 */
2393static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
2394{
2395 int i, ret;
2396 u32 reg, dev_stat = 0;
2397
2398 dev_stat = pch_udc_read_device_status(dev);
2399 dev->set_cfg_not_acked = 1;
2400 dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
2401 UDC_DEVSTS_CFG_SHIFT;
2402 /* make usb request for gadget driver */
2403 memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2404 dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
2405 dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
2406 /* program the NE registers */
2407 /* Only one end point cfg register */
2408 reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2409 reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
2410 (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
2411 pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2412 for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2413 /* clear stall bits */
2414 pch_udc_ep_clear_stall(&(dev->ep[i]));
2415 dev->ep[i].halted = 0;
2416 }
2417 dev->stall = 0;
2418
2419 /* call gadget zero with setup data received */
2420 spin_unlock(&dev->lock);
2421 ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
2422 spin_lock(&dev->lock);
2423}
2424
2425/**
2426 * pch_udc_dev_isr() - This function services device interrupts
2427 * by invoking appropriate routines.
2428 * @dev: Reference to the device structure
2429 * @dev_intr: The Device interrupt status.
2430 */
2431static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
2432{
2433 /* USB Reset Interrupt */
2434 if (dev_intr & UDC_DEVINT_UR)
2435 pch_udc_svc_ur_interrupt(dev);
2436 /* Enumeration Done Interrupt */
2437 if (dev_intr & UDC_DEVINT_ENUM)
2438 pch_udc_svc_enum_interrupt(dev);
2439 /* Set Interface Interrupt */
2440 if (dev_intr & UDC_DEVINT_SI)
2441 pch_udc_svc_intf_interrupt(dev);
2442 /* Set Config Interrupt */
2443 if (dev_intr & UDC_DEVINT_SC)
2444 pch_udc_svc_cfg_interrupt(dev);
2445 /* USB Suspend interrupt */
2446 if (dev_intr & UDC_DEVINT_US)
2447 dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
2448 /* Clear the SOF interrupt, if enabled */
2449 if (dev_intr & UDC_DEVINT_SOF)
2450 dev_dbg(&dev->pdev->dev, "SOF\n");
2451 /* ES interrupt, IDLE > 3ms on the USB */
2452 if (dev_intr & UDC_DEVINT_ES)
2453 dev_dbg(&dev->pdev->dev, "ES\n");
2454 /* RWKP interrupt */
2455 if (dev_intr & UDC_DEVINT_RWKP)
2456 dev_dbg(&dev->pdev->dev, "RWKP\n");
2457}
2458
2459/**
2460 * pch_udc_isr() - This function handles interrupts from the PCH USB Device
2461 * @irq: Interrupt request number
2462 * @dev: Reference to the device structure
2463 */
2464static irqreturn_t pch_udc_isr(int irq, void *pdev)
2465{
2466 struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
2467 u32 dev_intr, ep_intr;
2468 int i;
2469
2470 dev_intr = pch_udc_read_device_interrupts(dev);
2471 ep_intr = pch_udc_read_ep_interrupts(dev);
2472
2473 if (dev_intr)
2474 /* Clear device interrupts */
2475 pch_udc_write_device_interrupts(dev, dev_intr);
2476 if (ep_intr)
2477 /* Clear ep interrupts */
2478 pch_udc_write_ep_interrupts(dev, ep_intr);
2479 if (!dev_intr && !ep_intr)
2480 return IRQ_NONE;
2481 spin_lock(&dev->lock);
2482 if (dev_intr)
2483 pch_udc_dev_isr(dev, dev_intr);
2484 if (ep_intr) {
2485 pch_udc_read_all_epstatus(dev, ep_intr);
2486 /* Process Control In interrupts, if present */
2487 if (ep_intr & UDC_EPINT_IN_EP0) {
2488 pch_udc_svc_control_in(dev);
2489 pch_udc_postsvc_epinters(dev, 0);
2490 }
2491 /* Process Control Out interrupts, if present */
2492 if (ep_intr & UDC_EPINT_OUT_EP0)
2493 pch_udc_svc_control_out(dev);
2494 /* Process data in end point interrupts */
2495 for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
2496 if (ep_intr & (1 << i)) {
2497 pch_udc_svc_data_in(dev, i);
2498 pch_udc_postsvc_epinters(dev, i);
2499 }
2500 }
2501 /* Process data out end point interrupts */
2502 for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
2503 PCH_UDC_USED_EP_NUM); i++)
2504 if (ep_intr & (1 << i))
2505 pch_udc_svc_data_out(dev, i -
2506 UDC_EPINT_OUT_SHIFT);
2507 }
2508 spin_unlock(&dev->lock);
2509 return IRQ_HANDLED;
2510}
2511
2512/**
2513 * pch_udc_setup_ep0() - This function enables control endpoint for traffic
2514 * @dev: Reference to the device structure
2515 */
2516static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
2517{
2518 /* enable ep0 interrupts */
2519 pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
2520 UDC_EPINT_OUT_EP0);
2521 /* enable device interrupts */
2522 pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2523 UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2524 UDC_DEVINT_SI | UDC_DEVINT_SC);
2525}
2526
2527/**
2528 * gadget_release() - Free the gadget driver private data
2529 * @pdev reference to struct pci_dev
2530 */
2531static void gadget_release(struct device *pdev)
2532{
2533 struct pch_udc_dev *dev = dev_get_drvdata(pdev);
2534
2535 kfree(dev);
2536}
2537
2538/**
2539 * pch_udc_pcd_reinit() - This API initializes the endpoint structures
2540 * @dev: Reference to the driver structure
2541 */
2542static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
2543{
2544 const char *const ep_string[] = {
2545 ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
2546 "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
2547 "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
2548 "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
2549 "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
2550 "ep15in", "ep15out",
2551 };
2552 int i;
2553
2554 dev->gadget.speed = USB_SPEED_UNKNOWN;
2555 INIT_LIST_HEAD(&dev->gadget.ep_list);
2556
2557 /* Initialize the endpoints structures */
2558 memset(dev->ep, 0, sizeof dev->ep);
2559 for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2560 struct pch_udc_ep *ep = &dev->ep[i];
2561 ep->dev = dev;
2562 ep->halted = 1;
2563 ep->num = i / 2;
2564 ep->in = ~i & 1;
2565 ep->ep.name = ep_string[i];
2566 ep->ep.ops = &pch_udc_ep_ops;
2567 if (ep->in)
2568 ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
2569 else
2570 ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
2571 UDC_EP_REG_SHIFT;
2572 /* need to set ep->ep.maxpacket and set Default Configuration?*/
2573 ep->ep.maxpacket = UDC_BULK_MAX_PKT_SIZE;
2574 list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
2575 INIT_LIST_HEAD(&ep->queue);
2576 }
2577 dev->ep[UDC_EP0IN_IDX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
2578 dev->ep[UDC_EP0OUT_IDX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
2579
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002580 /* remove ep0 in and out from the list. They have own pointer */
2581 list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
2582 list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
2583
2584 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2585 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
2586}
2587
2588/**
2589 * pch_udc_pcd_init() - This API initializes the driver structure
2590 * @dev: Reference to the driver structure
2591 *
2592 * Return codes:
2593 * 0: Success
2594 */
2595static int pch_udc_pcd_init(struct pch_udc_dev *dev)
2596{
2597 pch_udc_init(dev);
2598 pch_udc_pcd_reinit(dev);
2599 return 0;
2600}
2601
2602/**
2603 * init_dma_pools() - create dma pools during initialization
2604 * @pdev: reference to struct pci_dev
2605 */
2606static int init_dma_pools(struct pch_udc_dev *dev)
2607{
2608 struct pch_udc_stp_dma_desc *td_stp;
2609 struct pch_udc_data_dma_desc *td_data;
2610
2611 /* DMA setup */
2612 dev->data_requests = pci_pool_create("data_requests", dev->pdev,
2613 sizeof(struct pch_udc_data_dma_desc), 0, 0);
2614 if (!dev->data_requests) {
2615 dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
2616 __func__);
2617 return -ENOMEM;
2618 }
2619
2620 /* dma desc for setup data */
2621 dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
2622 sizeof(struct pch_udc_stp_dma_desc), 0, 0);
2623 if (!dev->stp_requests) {
2624 dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
2625 __func__);
2626 return -ENOMEM;
2627 }
2628 /* setup */
2629 td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
2630 &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2631 if (!td_stp) {
2632 dev_err(&dev->pdev->dev,
2633 "%s: can't allocate setup dma descriptor\n", __func__);
2634 return -ENOMEM;
2635 }
2636 dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
2637
2638 /* data: 0 packets !? */
2639 td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
2640 &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2641 if (!td_data) {
2642 dev_err(&dev->pdev->dev,
2643 "%s: can't allocate data dma descriptor\n", __func__);
2644 return -ENOMEM;
2645 }
2646 dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
2647 dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
2648 dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
2649 dev->ep[UDC_EP0IN_IDX].td_data = NULL;
2650 dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002651
2652 dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL);
2653 if (!dev->ep0out_buf)
2654 return -ENOMEM;
2655 dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf,
2656 UDC_EP0OUT_BUFF_SIZE * 4,
2657 DMA_FROM_DEVICE);
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002658 return 0;
2659}
2660
Richard Röjfors49e20832010-12-07 17:28:30 +01002661int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
2662 int (*bind)(struct usb_gadget *))
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002663{
2664 struct pch_udc_dev *dev = pch_udc;
2665 int retval;
2666
Richard Röjfors49e20832010-12-07 17:28:30 +01002667 if (!driver || (driver->speed == USB_SPEED_UNKNOWN) || !bind ||
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002668 !driver->setup || !driver->unbind || !driver->disconnect) {
2669 dev_err(&dev->pdev->dev,
2670 "%s: invalid driver parameter\n", __func__);
2671 return -EINVAL;
2672 }
2673
2674 if (!dev)
2675 return -ENODEV;
2676
2677 if (dev->driver) {
2678 dev_err(&dev->pdev->dev, "%s: already bound\n", __func__);
2679 return -EBUSY;
2680 }
2681 driver->driver.bus = NULL;
2682 dev->driver = driver;
2683 dev->gadget.dev.driver = &driver->driver;
2684
2685 /* Invoke the bind routine of the gadget driver */
Richard Röjfors49e20832010-12-07 17:28:30 +01002686 retval = bind(&dev->gadget);
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002687
2688 if (retval) {
2689 dev_err(&dev->pdev->dev, "%s: binding to %s returning %d\n",
2690 __func__, driver->driver.name, retval);
2691 dev->driver = NULL;
2692 dev->gadget.dev.driver = NULL;
2693 return retval;
2694 }
2695 /* get ready for ep0 traffic */
2696 pch_udc_setup_ep0(dev);
2697
2698 /* clear SD */
2699 pch_udc_clear_disconnect(dev);
2700
2701 dev->connected = 1;
2702 return 0;
2703}
Richard Röjfors49e20832010-12-07 17:28:30 +01002704EXPORT_SYMBOL(usb_gadget_probe_driver);
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002705
2706int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
2707{
2708 struct pch_udc_dev *dev = pch_udc;
2709
2710 if (!dev)
2711 return -ENODEV;
2712
2713 if (!driver || (driver != dev->driver)) {
2714 dev_err(&dev->pdev->dev,
2715 "%s: invalid driver parameter\n", __func__);
2716 return -EINVAL;
2717 }
2718
2719 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2720
2721 /* Assues that there are no pending requets with this driver */
2722 driver->unbind(&dev->gadget);
2723 dev->gadget.dev.driver = NULL;
2724 dev->driver = NULL;
2725 dev->connected = 0;
2726
2727 /* set SD */
2728 pch_udc_set_disconnect(dev);
2729 return 0;
2730}
2731EXPORT_SYMBOL(usb_gadget_unregister_driver);
2732
2733static void pch_udc_shutdown(struct pci_dev *pdev)
2734{
2735 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
2736
2737 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2738 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2739
2740 /* disable the pullup so the host will think we're gone */
2741 pch_udc_set_disconnect(dev);
2742}
2743
2744static void pch_udc_remove(struct pci_dev *pdev)
2745{
2746 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
2747
2748 /* gadget driver must not be registered */
2749 if (dev->driver)
2750 dev_err(&pdev->dev,
2751 "%s: gadget driver still bound!!!\n", __func__);
2752 /* dma pool cleanup */
2753 if (dev->data_requests)
2754 pci_pool_destroy(dev->data_requests);
2755
2756 if (dev->stp_requests) {
2757 /* cleanup DMA desc's for ep0in */
2758 if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
2759 pci_pool_free(dev->stp_requests,
2760 dev->ep[UDC_EP0OUT_IDX].td_stp,
2761 dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2762 }
2763 if (dev->ep[UDC_EP0OUT_IDX].td_data) {
2764 pci_pool_free(dev->stp_requests,
2765 dev->ep[UDC_EP0OUT_IDX].td_data,
2766 dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2767 }
2768 pci_pool_destroy(dev->stp_requests);
2769 }
2770
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002771 if (dev->dma_addr)
2772 dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
2773 UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
2774 kfree(dev->ep0out_buf);
2775
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002776 pch_udc_exit(dev);
2777
2778 if (dev->irq_registered)
2779 free_irq(pdev->irq, dev);
2780 if (dev->base_addr)
2781 iounmap(dev->base_addr);
2782 if (dev->mem_region)
2783 release_mem_region(dev->phys_addr,
2784 pci_resource_len(pdev, PCH_UDC_PCI_BAR));
2785 if (dev->active)
2786 pci_disable_device(pdev);
2787 if (dev->registered)
2788 device_unregister(&dev->gadget.dev);
2789 kfree(dev);
2790 pci_set_drvdata(pdev, NULL);
2791}
2792
2793#ifdef CONFIG_PM
2794static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
2795{
2796 struct pch_udc_dev *dev = pci_get_drvdata(pdev);
2797
2798 pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
2799 pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2800
2801 pci_disable_device(pdev);
2802 pci_enable_wake(pdev, PCI_D3hot, 0);
2803
2804 if (pci_save_state(pdev)) {
2805 dev_err(&pdev->dev,
2806 "%s: could not save PCI config state\n", __func__);
2807 return -ENOMEM;
2808 }
2809 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2810 return 0;
2811}
2812
2813static int pch_udc_resume(struct pci_dev *pdev)
2814{
2815 int ret;
2816
2817 pci_set_power_state(pdev, PCI_D0);
Toshiharu Okadaabab0c62010-12-29 10:07:33 +09002818 pci_restore_state(pdev);
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002819 ret = pci_enable_device(pdev);
2820 if (ret) {
2821 dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
2822 return ret;
2823 }
2824 pci_enable_wake(pdev, PCI_D3hot, 0);
2825 return 0;
2826}
2827#else
2828#define pch_udc_suspend NULL
2829#define pch_udc_resume NULL
2830#endif /* CONFIG_PM */
2831
2832static int pch_udc_probe(struct pci_dev *pdev,
2833 const struct pci_device_id *id)
2834{
2835 unsigned long resource;
2836 unsigned long len;
2837 int retval;
2838 struct pch_udc_dev *dev;
2839
2840 /* one udc only */
2841 if (pch_udc) {
2842 pr_err("%s: already probed\n", __func__);
2843 return -EBUSY;
2844 }
2845 /* init */
2846 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2847 if (!dev) {
2848 pr_err("%s: no memory for device structure\n", __func__);
2849 return -ENOMEM;
2850 }
2851 /* pci setup */
2852 if (pci_enable_device(pdev) < 0) {
2853 kfree(dev);
2854 pr_err("%s: pci_enable_device failed\n", __func__);
2855 return -ENODEV;
2856 }
2857 dev->active = 1;
2858 pci_set_drvdata(pdev, dev);
2859
2860 /* PCI resource allocation */
2861 resource = pci_resource_start(pdev, 1);
2862 len = pci_resource_len(pdev, 1);
2863
2864 if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
2865 dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
2866 retval = -EBUSY;
2867 goto finished;
2868 }
2869 dev->phys_addr = resource;
2870 dev->mem_region = 1;
2871
2872 dev->base_addr = ioremap_nocache(resource, len);
2873 if (!dev->base_addr) {
2874 pr_err("%s: device memory cannot be mapped\n", __func__);
2875 retval = -ENOMEM;
2876 goto finished;
2877 }
2878 if (!pdev->irq) {
2879 dev_err(&pdev->dev, "%s: irq not set\n", __func__);
2880 retval = -ENODEV;
2881 goto finished;
2882 }
2883 pch_udc = dev;
2884 /* initialize the hardware */
2885 if (pch_udc_pcd_init(dev))
2886 goto finished;
2887 if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
2888 dev)) {
2889 dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
2890 pdev->irq);
2891 retval = -ENODEV;
2892 goto finished;
2893 }
2894 dev->irq = pdev->irq;
2895 dev->irq_registered = 1;
2896
2897 pci_set_master(pdev);
2898 pci_try_set_mwi(pdev);
2899
2900 /* device struct setup */
2901 spin_lock_init(&dev->lock);
2902 dev->pdev = pdev;
2903 dev->gadget.ops = &pch_udc_ops;
2904
2905 retval = init_dma_pools(dev);
2906 if (retval)
2907 goto finished;
2908
2909 dev_set_name(&dev->gadget.dev, "gadget");
2910 dev->gadget.dev.parent = &pdev->dev;
2911 dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
2912 dev->gadget.dev.release = gadget_release;
2913 dev->gadget.name = KBUILD_MODNAME;
2914 dev->gadget.is_dualspeed = 1;
2915
2916 retval = device_register(&dev->gadget.dev);
2917 if (retval)
2918 goto finished;
2919 dev->registered = 1;
2920
2921 /* Put the device in disconnected state till a driver is bound */
2922 pch_udc_set_disconnect(dev);
2923 return 0;
2924
2925finished:
2926 pch_udc_remove(pdev);
2927 return retval;
2928}
2929
Richard Röjfors49e20832010-12-07 17:28:30 +01002930static DEFINE_PCI_DEVICE_TABLE(pch_udc_pcidev_id) = {
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002931 {
2932 PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
2933 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
2934 .class_mask = 0xffffffff,
2935 },
Tomoya MORINAGA06f1b972011-01-06 09:16:31 +09002936 {
2937 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
2938 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
2939 .class_mask = 0xffffffff,
2940 },
Toshiharu Okadaf646cf92010-11-11 18:27:57 +09002941 { 0 },
2942};
2943
2944MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
2945
2946
2947static struct pci_driver pch_udc_driver = {
2948 .name = KBUILD_MODNAME,
2949 .id_table = pch_udc_pcidev_id,
2950 .probe = pch_udc_probe,
2951 .remove = pch_udc_remove,
2952 .suspend = pch_udc_suspend,
2953 .resume = pch_udc_resume,
2954 .shutdown = pch_udc_shutdown,
2955};
2956
2957static int __init pch_udc_pci_init(void)
2958{
2959 return pci_register_driver(&pch_udc_driver);
2960}
2961module_init(pch_udc_pci_init);
2962
2963static void __exit pch_udc_pci_exit(void)
2964{
2965 pci_unregister_driver(&pch_udc_driver);
2966}
2967module_exit(pch_udc_pci_exit);
2968
2969MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
2970MODULE_AUTHOR("OKI SEMICONDUCTOR, <toshiharu-linux@dsn.okisemi.com>");
2971MODULE_LICENSE("GPL");