Jesper Nilsson | 035e111 | 2007-11-29 17:11:23 +0100 | [diff] [blame^] | 1 | /* |
| 2 | * Memory arbiter functions. Allocates bandwidth through the |
| 3 | * arbiter and sets up arbiter breakpoints. |
| 4 | * |
| 5 | * The algorithm first assigns slots to the clients that has specified |
| 6 | * bandwidth (e.g. ethernet) and then the remaining slots are divided |
| 7 | * on all the active clients. |
| 8 | * |
| 9 | * Copyright (c) 2004-2007 Axis Communications AB. |
| 10 | */ |
| 11 | |
| 12 | #include <hwregs/reg_map.h> |
| 13 | #include <hwregs/reg_rdwr.h> |
| 14 | #include <hwregs/marb_defs.h> |
| 15 | #include <arbiter.h> |
| 16 | #include <hwregs/intr_vect.h> |
| 17 | #include <linux/interrupt.h> |
| 18 | #include <linux/signal.h> |
| 19 | #include <linux/errno.h> |
| 20 | #include <linux/spinlock.h> |
| 21 | #include <asm/io.h> |
| 22 | #include <asm/irq_regs.h> |
| 23 | |
| 24 | struct crisv32_watch_entry { |
| 25 | unsigned long instance; |
| 26 | watch_callback *cb; |
| 27 | unsigned long start; |
| 28 | unsigned long end; |
| 29 | int used; |
| 30 | }; |
| 31 | |
| 32 | #define NUMBER_OF_BP 4 |
| 33 | #define NBR_OF_CLIENTS 14 |
| 34 | #define NBR_OF_SLOTS 64 |
| 35 | #define SDRAM_BANDWIDTH 100000000 /* Some kind of expected value */ |
| 36 | #define INTMEM_BANDWIDTH 400000000 |
| 37 | #define NBR_OF_REGIONS 2 |
| 38 | |
| 39 | static struct crisv32_watch_entry watches[NUMBER_OF_BP] = { |
| 40 | {regi_marb_bp0}, |
| 41 | {regi_marb_bp1}, |
| 42 | {regi_marb_bp2}, |
| 43 | {regi_marb_bp3} |
| 44 | }; |
| 45 | |
| 46 | static u8 requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS]; |
| 47 | static u8 active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS]; |
| 48 | static int max_bandwidth[NBR_OF_REGIONS] = |
| 49 | { SDRAM_BANDWIDTH, INTMEM_BANDWIDTH }; |
| 50 | |
| 51 | DEFINE_SPINLOCK(arbiter_lock); |
| 52 | |
| 53 | static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id); |
| 54 | |
| 55 | /* |
| 56 | * "I'm the arbiter, I know the score. |
| 57 | * From square one I'll be watching all 64." |
| 58 | * (memory arbiter slots, that is) |
| 59 | * |
| 60 | * Or in other words: |
| 61 | * Program the memory arbiter slots for "region" according to what's |
| 62 | * in requested_slots[] and active_clients[], while minimizing |
| 63 | * latency. A caller may pass a non-zero positive amount for |
| 64 | * "unused_slots", which must then be the unallocated, remaining |
| 65 | * number of slots, free to hand out to any client. |
| 66 | */ |
| 67 | |
| 68 | static void crisv32_arbiter_config(int region, int unused_slots) |
| 69 | { |
| 70 | int slot; |
| 71 | int client; |
| 72 | int interval = 0; |
| 73 | |
| 74 | /* |
| 75 | * This vector corresponds to the hardware arbiter slots (see |
| 76 | * the hardware documentation for semantics). We initialize |
| 77 | * each slot with a suitable sentinel value outside the valid |
| 78 | * range {0 .. NBR_OF_CLIENTS - 1} and replace them with |
| 79 | * client indexes. Then it's fed to the hardware. |
| 80 | */ |
| 81 | s8 val[NBR_OF_SLOTS]; |
| 82 | |
| 83 | for (slot = 0; slot < NBR_OF_SLOTS; slot++) |
| 84 | val[slot] = -1; |
| 85 | |
| 86 | for (client = 0; client < NBR_OF_CLIENTS; client++) { |
| 87 | int pos; |
| 88 | /* Allocate the requested non-zero number of slots, but |
| 89 | * also give clients with zero-requests one slot each |
| 90 | * while stocks last. We do the latter here, in client |
| 91 | * order. This makes sure zero-request clients are the |
| 92 | * first to get to any spare slots, else those slots |
| 93 | * could, when bandwidth is allocated close to the limit, |
| 94 | * all be allocated to low-index non-zero-request clients |
| 95 | * in the default-fill loop below. Another positive but |
| 96 | * secondary effect is a somewhat better spread of the |
| 97 | * zero-bandwidth clients in the vector, avoiding some of |
| 98 | * the latency that could otherwise be caused by the |
| 99 | * partitioning of non-zero-bandwidth clients at low |
| 100 | * indexes and zero-bandwidth clients at high |
| 101 | * indexes. (Note that this spreading can only affect the |
| 102 | * unallocated bandwidth.) All the above only matters for |
| 103 | * memory-intensive situations, of course. |
| 104 | */ |
| 105 | if (!requested_slots[region][client]) { |
| 106 | /* |
| 107 | * Skip inactive clients. Also skip zero-slot |
| 108 | * allocations in this pass when there are no known |
| 109 | * free slots. |
| 110 | */ |
| 111 | if (!active_clients[region][client] |
| 112 | || unused_slots <= 0) |
| 113 | continue; |
| 114 | |
| 115 | unused_slots--; |
| 116 | |
| 117 | /* Only allocate one slot for this client. */ |
| 118 | interval = NBR_OF_SLOTS; |
| 119 | } else |
| 120 | interval = |
| 121 | NBR_OF_SLOTS / requested_slots[region][client]; |
| 122 | |
| 123 | pos = 0; |
| 124 | while (pos < NBR_OF_SLOTS) { |
| 125 | if (val[pos] >= 0) |
| 126 | pos++; |
| 127 | else { |
| 128 | val[pos] = client; |
| 129 | pos += interval; |
| 130 | } |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | client = 0; |
| 135 | for (slot = 0; slot < NBR_OF_SLOTS; slot++) { |
| 136 | /* |
| 137 | * Allocate remaining slots in round-robin |
| 138 | * client-number order for active clients. For this |
| 139 | * pass, we ignore requested bandwidth and previous |
| 140 | * allocations. |
| 141 | */ |
| 142 | if (val[slot] < 0) { |
| 143 | int first = client; |
| 144 | while (!active_clients[region][client]) { |
| 145 | client = (client + 1) % NBR_OF_CLIENTS; |
| 146 | if (client == first) |
| 147 | break; |
| 148 | } |
| 149 | val[slot] = client; |
| 150 | client = (client + 1) % NBR_OF_CLIENTS; |
| 151 | } |
| 152 | if (region == EXT_REGION) |
| 153 | REG_WR_INT_VECT(marb, regi_marb, rw_ext_slots, slot, |
| 154 | val[slot]); |
| 155 | else if (region == INT_REGION) |
| 156 | REG_WR_INT_VECT(marb, regi_marb, rw_int_slots, slot, |
| 157 | val[slot]); |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | extern char _stext, _etext; |
| 162 | |
| 163 | static void crisv32_arbiter_init(void) |
| 164 | { |
| 165 | static int initialized; |
| 166 | |
| 167 | if (initialized) |
| 168 | return; |
| 169 | |
| 170 | initialized = 1; |
| 171 | |
| 172 | /* |
| 173 | * CPU caches are always set to active, but with zero |
| 174 | * bandwidth allocated. It should be ok to allocate zero |
| 175 | * bandwidth for the caches, because DMA for other channels |
| 176 | * will supposedly finish, once their programmed amount is |
| 177 | * done, and then the caches will get access according to the |
| 178 | * "fixed scheme" for unclaimed slots. Though, if for some |
| 179 | * use-case somewhere, there's a maximum CPU latency for |
| 180 | * e.g. some interrupt, we have to start allocating specific |
| 181 | * bandwidth for the CPU caches too. |
| 182 | */ |
| 183 | active_clients[EXT_REGION][10] = active_clients[EXT_REGION][11] = 1; |
| 184 | crisv32_arbiter_config(EXT_REGION, 0); |
| 185 | crisv32_arbiter_config(INT_REGION, 0); |
| 186 | |
| 187 | if (request_irq(MEMARB_INTR_VECT, crisv32_arbiter_irq, IRQF_DISABLED, |
| 188 | "arbiter", NULL)) |
| 189 | printk(KERN_ERR "Couldn't allocate arbiter IRQ\n"); |
| 190 | |
| 191 | #ifndef CONFIG_ETRAX_KGDB |
| 192 | /* Global watch for writes to kernel text segment. */ |
| 193 | crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext, |
| 194 | arbiter_all_clients, arbiter_all_write, NULL); |
| 195 | #endif |
| 196 | } |
| 197 | |
| 198 | /* Main entry for bandwidth allocation. */ |
| 199 | |
| 200 | int crisv32_arbiter_allocate_bandwidth(int client, int region, |
| 201 | unsigned long bandwidth) |
| 202 | { |
| 203 | int i; |
| 204 | int total_assigned = 0; |
| 205 | int total_clients = 0; |
| 206 | int req; |
| 207 | |
| 208 | crisv32_arbiter_init(); |
| 209 | |
| 210 | for (i = 0; i < NBR_OF_CLIENTS; i++) { |
| 211 | total_assigned += requested_slots[region][i]; |
| 212 | total_clients += active_clients[region][i]; |
| 213 | } |
| 214 | |
| 215 | /* Avoid division by 0 for 0-bandwidth requests. */ |
| 216 | req = bandwidth == 0 |
| 217 | ? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth); |
| 218 | |
| 219 | /* |
| 220 | * We make sure that there are enough slots only for non-zero |
| 221 | * requests. Requesting 0 bandwidth *may* allocate slots, |
| 222 | * though if all bandwidth is allocated, such a client won't |
| 223 | * get any and will have to rely on getting memory access |
| 224 | * according to the fixed scheme that's the default when one |
| 225 | * of the slot-allocated clients doesn't claim their slot. |
| 226 | */ |
| 227 | if (total_assigned + req > NBR_OF_SLOTS) |
| 228 | return -ENOMEM; |
| 229 | |
| 230 | active_clients[region][client] = 1; |
| 231 | requested_slots[region][client] = req; |
| 232 | crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned); |
| 233 | |
| 234 | return 0; |
| 235 | } |
| 236 | |
| 237 | /* |
| 238 | * Main entry for bandwidth deallocation. |
| 239 | * |
| 240 | * Strictly speaking, for a somewhat constant set of clients where |
| 241 | * each client gets a constant bandwidth and is just enabled or |
| 242 | * disabled (somewhat dynamically), no action is necessary here to |
| 243 | * avoid starvation for non-zero-allocation clients, as the allocated |
| 244 | * slots will just be unused. However, handing out those unused slots |
| 245 | * to active clients avoids needless latency if the "fixed scheme" |
| 246 | * would give unclaimed slots to an eager low-index client. |
| 247 | */ |
| 248 | |
| 249 | void crisv32_arbiter_deallocate_bandwidth(int client, int region) |
| 250 | { |
| 251 | int i; |
| 252 | int total_assigned = 0; |
| 253 | |
| 254 | requested_slots[region][client] = 0; |
| 255 | active_clients[region][client] = 0; |
| 256 | |
| 257 | for (i = 0; i < NBR_OF_CLIENTS; i++) |
| 258 | total_assigned += requested_slots[region][i]; |
| 259 | |
| 260 | crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned); |
| 261 | } |
| 262 | |
| 263 | int crisv32_arbiter_watch(unsigned long start, unsigned long size, |
| 264 | unsigned long clients, unsigned long accesses, |
| 265 | watch_callback *cb) |
| 266 | { |
| 267 | int i; |
| 268 | |
| 269 | crisv32_arbiter_init(); |
| 270 | |
| 271 | if (start > 0x80000000) { |
| 272 | printk(KERN_ERR "Arbiter: %lX doesn't look like a " |
| 273 | "physical address", start); |
| 274 | return -EFAULT; |
| 275 | } |
| 276 | |
| 277 | spin_lock(&arbiter_lock); |
| 278 | |
| 279 | for (i = 0; i < NUMBER_OF_BP; i++) { |
| 280 | if (!watches[i].used) { |
| 281 | reg_marb_rw_intr_mask intr_mask = |
| 282 | REG_RD(marb, regi_marb, rw_intr_mask); |
| 283 | |
| 284 | watches[i].used = 1; |
| 285 | watches[i].start = start; |
| 286 | watches[i].end = start + size; |
| 287 | watches[i].cb = cb; |
| 288 | |
| 289 | REG_WR_INT(marb_bp, watches[i].instance, rw_first_addr, |
| 290 | watches[i].start); |
| 291 | REG_WR_INT(marb_bp, watches[i].instance, rw_last_addr, |
| 292 | watches[i].end); |
| 293 | REG_WR_INT(marb_bp, watches[i].instance, rw_op, |
| 294 | accesses); |
| 295 | REG_WR_INT(marb_bp, watches[i].instance, rw_clients, |
| 296 | clients); |
| 297 | |
| 298 | if (i == 0) |
| 299 | intr_mask.bp0 = regk_marb_yes; |
| 300 | else if (i == 1) |
| 301 | intr_mask.bp1 = regk_marb_yes; |
| 302 | else if (i == 2) |
| 303 | intr_mask.bp2 = regk_marb_yes; |
| 304 | else if (i == 3) |
| 305 | intr_mask.bp3 = regk_marb_yes; |
| 306 | |
| 307 | REG_WR(marb, regi_marb, rw_intr_mask, intr_mask); |
| 308 | spin_unlock(&arbiter_lock); |
| 309 | |
| 310 | return i; |
| 311 | } |
| 312 | } |
| 313 | spin_unlock(&arbiter_lock); |
| 314 | return -ENOMEM; |
| 315 | } |
| 316 | |
| 317 | int crisv32_arbiter_unwatch(int id) |
| 318 | { |
| 319 | reg_marb_rw_intr_mask intr_mask = REG_RD(marb, regi_marb, rw_intr_mask); |
| 320 | |
| 321 | crisv32_arbiter_init(); |
| 322 | |
| 323 | spin_lock(&arbiter_lock); |
| 324 | |
| 325 | if ((id < 0) || (id >= NUMBER_OF_BP) || (!watches[id].used)) { |
| 326 | spin_unlock(&arbiter_lock); |
| 327 | return -EINVAL; |
| 328 | } |
| 329 | |
| 330 | memset(&watches[id], 0, sizeof(struct crisv32_watch_entry)); |
| 331 | |
| 332 | if (id == 0) |
| 333 | intr_mask.bp0 = regk_marb_no; |
| 334 | else if (id == 1) |
| 335 | intr_mask.bp2 = regk_marb_no; |
| 336 | else if (id == 2) |
| 337 | intr_mask.bp2 = regk_marb_no; |
| 338 | else if (id == 3) |
| 339 | intr_mask.bp3 = regk_marb_no; |
| 340 | |
| 341 | REG_WR(marb, regi_marb, rw_intr_mask, intr_mask); |
| 342 | |
| 343 | spin_unlock(&arbiter_lock); |
| 344 | return 0; |
| 345 | } |
| 346 | |
| 347 | extern void show_registers(struct pt_regs *regs); |
| 348 | |
| 349 | static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id) |
| 350 | { |
| 351 | reg_marb_r_masked_intr masked_intr = |
| 352 | REG_RD(marb, regi_marb, r_masked_intr); |
| 353 | reg_marb_bp_r_brk_clients r_clients; |
| 354 | reg_marb_bp_r_brk_addr r_addr; |
| 355 | reg_marb_bp_r_brk_op r_op; |
| 356 | reg_marb_bp_r_brk_first_client r_first; |
| 357 | reg_marb_bp_r_brk_size r_size; |
| 358 | reg_marb_bp_rw_ack ack = { 0 }; |
| 359 | reg_marb_rw_ack_intr ack_intr = { |
| 360 | .bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1 |
| 361 | }; |
| 362 | struct crisv32_watch_entry *watch; |
| 363 | |
| 364 | if (masked_intr.bp0) { |
| 365 | watch = &watches[0]; |
| 366 | ack_intr.bp0 = regk_marb_yes; |
| 367 | } else if (masked_intr.bp1) { |
| 368 | watch = &watches[1]; |
| 369 | ack_intr.bp1 = regk_marb_yes; |
| 370 | } else if (masked_intr.bp2) { |
| 371 | watch = &watches[2]; |
| 372 | ack_intr.bp2 = regk_marb_yes; |
| 373 | } else if (masked_intr.bp3) { |
| 374 | watch = &watches[3]; |
| 375 | ack_intr.bp3 = regk_marb_yes; |
| 376 | } else { |
| 377 | return IRQ_NONE; |
| 378 | } |
| 379 | |
| 380 | /* Retrieve all useful information and print it. */ |
| 381 | r_clients = REG_RD(marb_bp, watch->instance, r_brk_clients); |
| 382 | r_addr = REG_RD(marb_bp, watch->instance, r_brk_addr); |
| 383 | r_op = REG_RD(marb_bp, watch->instance, r_brk_op); |
| 384 | r_first = REG_RD(marb_bp, watch->instance, r_brk_first_client); |
| 385 | r_size = REG_RD(marb_bp, watch->instance, r_brk_size); |
| 386 | |
| 387 | printk(KERN_INFO "Arbiter IRQ\n"); |
| 388 | printk(KERN_INFO "Clients %X addr %X op %X first %X size %X\n", |
| 389 | REG_TYPE_CONV(int, reg_marb_bp_r_brk_clients, r_clients), |
| 390 | REG_TYPE_CONV(int, reg_marb_bp_r_brk_addr, r_addr), |
| 391 | REG_TYPE_CONV(int, reg_marb_bp_r_brk_op, r_op), |
| 392 | REG_TYPE_CONV(int, reg_marb_bp_r_brk_first_client, r_first), |
| 393 | REG_TYPE_CONV(int, reg_marb_bp_r_brk_size, r_size)); |
| 394 | |
| 395 | REG_WR(marb_bp, watch->instance, rw_ack, ack); |
| 396 | REG_WR(marb, regi_marb, rw_ack_intr, ack_intr); |
| 397 | |
| 398 | printk(KERN_INFO "IRQ occured at %lX\n", get_irq_regs()->erp); |
| 399 | |
| 400 | if (watch->cb) |
| 401 | watch->cb(); |
| 402 | |
| 403 | return IRQ_HANDLED; |
| 404 | } |