blob: 95b819a1be6d48a935bf4be6f2f7cd7ef37e2188 [file] [log] [blame]
Laurent Pinchartd25a2a12014-04-02 12:47:37 +02001/*
2 * IPMMU VMSA
3 *
4 * Copyright (C) 2014 Renesas Electronics Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 */
10
11#include <linux/delay.h>
12#include <linux/dma-mapping.h>
13#include <linux/err.h>
14#include <linux/export.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/iommu.h>
18#include <linux/module.h>
19#include <linux/platform_data/ipmmu-vmsa.h>
20#include <linux/platform_device.h>
21#include <linux/sizes.h>
22#include <linux/slab.h>
23
24#include <asm/dma-iommu.h>
25#include <asm/pgalloc.h>
26
27struct ipmmu_vmsa_device {
28 struct device *dev;
29 void __iomem *base;
30 struct list_head list;
31
32 const struct ipmmu_vmsa_platform_data *pdata;
33 unsigned int num_utlbs;
34
35 struct dma_iommu_mapping *mapping;
36};
37
38struct ipmmu_vmsa_domain {
39 struct ipmmu_vmsa_device *mmu;
40 struct iommu_domain *io_domain;
41
42 unsigned int context_id;
43 spinlock_t lock; /* Protects mappings */
44 pgd_t *pgd;
45};
46
Laurent Pinchart192d2042014-05-15 12:40:42 +020047struct ipmmu_vmsa_archdata {
48 struct ipmmu_vmsa_device *mmu;
49 unsigned int utlb;
50};
51
Laurent Pinchartd25a2a12014-04-02 12:47:37 +020052static DEFINE_SPINLOCK(ipmmu_devices_lock);
53static LIST_HEAD(ipmmu_devices);
54
55#define TLB_LOOP_TIMEOUT 100 /* 100us */
56
57/* -----------------------------------------------------------------------------
58 * Registers Definition
59 */
60
61#define IM_CTX_SIZE 0x40
62
63#define IMCTR 0x0000
64#define IMCTR_TRE (1 << 17)
65#define IMCTR_AFE (1 << 16)
66#define IMCTR_RTSEL_MASK (3 << 4)
67#define IMCTR_RTSEL_SHIFT 4
68#define IMCTR_TREN (1 << 3)
69#define IMCTR_INTEN (1 << 2)
70#define IMCTR_FLUSH (1 << 1)
71#define IMCTR_MMUEN (1 << 0)
72
73#define IMCAAR 0x0004
74
75#define IMTTBCR 0x0008
76#define IMTTBCR_EAE (1 << 31)
77#define IMTTBCR_PMB (1 << 30)
78#define IMTTBCR_SH1_NON_SHAREABLE (0 << 28)
79#define IMTTBCR_SH1_OUTER_SHAREABLE (2 << 28)
80#define IMTTBCR_SH1_INNER_SHAREABLE (3 << 28)
81#define IMTTBCR_SH1_MASK (3 << 28)
82#define IMTTBCR_ORGN1_NC (0 << 26)
83#define IMTTBCR_ORGN1_WB_WA (1 << 26)
84#define IMTTBCR_ORGN1_WT (2 << 26)
85#define IMTTBCR_ORGN1_WB (3 << 26)
86#define IMTTBCR_ORGN1_MASK (3 << 26)
87#define IMTTBCR_IRGN1_NC (0 << 24)
88#define IMTTBCR_IRGN1_WB_WA (1 << 24)
89#define IMTTBCR_IRGN1_WT (2 << 24)
90#define IMTTBCR_IRGN1_WB (3 << 24)
91#define IMTTBCR_IRGN1_MASK (3 << 24)
92#define IMTTBCR_TSZ1_MASK (7 << 16)
93#define IMTTBCR_TSZ1_SHIFT 16
94#define IMTTBCR_SH0_NON_SHAREABLE (0 << 12)
95#define IMTTBCR_SH0_OUTER_SHAREABLE (2 << 12)
96#define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12)
97#define IMTTBCR_SH0_MASK (3 << 12)
98#define IMTTBCR_ORGN0_NC (0 << 10)
99#define IMTTBCR_ORGN0_WB_WA (1 << 10)
100#define IMTTBCR_ORGN0_WT (2 << 10)
101#define IMTTBCR_ORGN0_WB (3 << 10)
102#define IMTTBCR_ORGN0_MASK (3 << 10)
103#define IMTTBCR_IRGN0_NC (0 << 8)
104#define IMTTBCR_IRGN0_WB_WA (1 << 8)
105#define IMTTBCR_IRGN0_WT (2 << 8)
106#define IMTTBCR_IRGN0_WB (3 << 8)
107#define IMTTBCR_IRGN0_MASK (3 << 8)
108#define IMTTBCR_SL0_LVL_2 (0 << 4)
109#define IMTTBCR_SL0_LVL_1 (1 << 4)
110#define IMTTBCR_TSZ0_MASK (7 << 0)
111#define IMTTBCR_TSZ0_SHIFT O
112
113#define IMBUSCR 0x000c
114#define IMBUSCR_DVM (1 << 2)
115#define IMBUSCR_BUSSEL_SYS (0 << 0)
116#define IMBUSCR_BUSSEL_CCI (1 << 0)
117#define IMBUSCR_BUSSEL_IMCAAR (2 << 0)
118#define IMBUSCR_BUSSEL_CCI_IMCAAR (3 << 0)
119#define IMBUSCR_BUSSEL_MASK (3 << 0)
120
121#define IMTTLBR0 0x0010
122#define IMTTUBR0 0x0014
123#define IMTTLBR1 0x0018
124#define IMTTUBR1 0x001c
125
126#define IMSTR 0x0020
127#define IMSTR_ERRLVL_MASK (3 << 12)
128#define IMSTR_ERRLVL_SHIFT 12
129#define IMSTR_ERRCODE_TLB_FORMAT (1 << 8)
130#define IMSTR_ERRCODE_ACCESS_PERM (4 << 8)
131#define IMSTR_ERRCODE_SECURE_ACCESS (5 << 8)
132#define IMSTR_ERRCODE_MASK (7 << 8)
133#define IMSTR_MHIT (1 << 4)
134#define IMSTR_ABORT (1 << 2)
135#define IMSTR_PF (1 << 1)
136#define IMSTR_TF (1 << 0)
137
138#define IMMAIR0 0x0028
139#define IMMAIR1 0x002c
140#define IMMAIR_ATTR_MASK 0xff
141#define IMMAIR_ATTR_DEVICE 0x04
142#define IMMAIR_ATTR_NC 0x44
143#define IMMAIR_ATTR_WBRWA 0xff
144#define IMMAIR_ATTR_SHIFT(n) ((n) << 3)
145#define IMMAIR_ATTR_IDX_NC 0
146#define IMMAIR_ATTR_IDX_WBRWA 1
147#define IMMAIR_ATTR_IDX_DEV 2
148
149#define IMEAR 0x0030
150
151#define IMPCTR 0x0200
152#define IMPSTR 0x0208
153#define IMPEAR 0x020c
154#define IMPMBA(n) (0x0280 + ((n) * 4))
155#define IMPMBD(n) (0x02c0 + ((n) * 4))
156
157#define IMUCTR(n) (0x0300 + ((n) * 16))
158#define IMUCTR_FIXADDEN (1 << 31)
159#define IMUCTR_FIXADD_MASK (0xff << 16)
160#define IMUCTR_FIXADD_SHIFT 16
161#define IMUCTR_TTSEL_MMU(n) ((n) << 4)
162#define IMUCTR_TTSEL_PMB (8 << 4)
163#define IMUCTR_TTSEL_MASK (15 << 4)
164#define IMUCTR_FLUSH (1 << 1)
165#define IMUCTR_MMUEN (1 << 0)
166
167#define IMUASID(n) (0x0308 + ((n) * 16))
168#define IMUASID_ASID8_MASK (0xff << 8)
169#define IMUASID_ASID8_SHIFT 8
170#define IMUASID_ASID0_MASK (0xff << 0)
171#define IMUASID_ASID0_SHIFT 0
172
173/* -----------------------------------------------------------------------------
174 * Page Table Bits
175 */
176
177/*
178 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory access,
179 * Long-descriptor format" that the NStable bit being set in a table descriptor
180 * will result in the NStable and NS bits of all child entries being ignored and
181 * considered as being set. The IPMMU seems not to comply with this, as it
182 * generates a secure access page fault if any of the NStable and NS bits isn't
183 * set when running in non-secure mode.
184 */
185#ifndef PMD_NSTABLE
186#define PMD_NSTABLE (_AT(pmdval_t, 1) << 63)
187#endif
188
189#define ARM_VMSA_PTE_XN (((pteval_t)3) << 53)
190#define ARM_VMSA_PTE_CONT (((pteval_t)1) << 52)
191#define ARM_VMSA_PTE_AF (((pteval_t)1) << 10)
192#define ARM_VMSA_PTE_SH_NS (((pteval_t)0) << 8)
193#define ARM_VMSA_PTE_SH_OS (((pteval_t)2) << 8)
194#define ARM_VMSA_PTE_SH_IS (((pteval_t)3) << 8)
Laurent Pinchart004c5b32014-05-15 12:40:51 +0200195#define ARM_VMSA_PTE_SH_MASK (((pteval_t)3) << 8)
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200196#define ARM_VMSA_PTE_NS (((pteval_t)1) << 5)
197#define ARM_VMSA_PTE_PAGE (((pteval_t)3) << 0)
198
199/* Stage-1 PTE */
Laurent Pinchart004c5b32014-05-15 12:40:51 +0200200#define ARM_VMSA_PTE_nG (((pteval_t)1) << 11)
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200201#define ARM_VMSA_PTE_AP_UNPRIV (((pteval_t)1) << 6)
202#define ARM_VMSA_PTE_AP_RDONLY (((pteval_t)2) << 6)
Laurent Pinchart004c5b32014-05-15 12:40:51 +0200203#define ARM_VMSA_PTE_AP_MASK (((pteval_t)3) << 6)
204#define ARM_VMSA_PTE_ATTRINDX_MASK (((pteval_t)3) << 2)
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200205#define ARM_VMSA_PTE_ATTRINDX_SHIFT 2
Laurent Pinchart004c5b32014-05-15 12:40:51 +0200206
207#define ARM_VMSA_PTE_ATTRS_MASK \
208 (ARM_VMSA_PTE_XN | ARM_VMSA_PTE_CONT | ARM_VMSA_PTE_nG | \
209 ARM_VMSA_PTE_AF | ARM_VMSA_PTE_SH_MASK | ARM_VMSA_PTE_AP_MASK | \
210 ARM_VMSA_PTE_NS | ARM_VMSA_PTE_ATTRINDX_MASK)
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200211
Laurent Pinchart4ee3cc92014-05-15 12:40:46 +0200212#define ARM_VMSA_PTE_CONT_ENTRIES 16
213#define ARM_VMSA_PTE_CONT_SIZE (PAGE_SIZE * ARM_VMSA_PTE_CONT_ENTRIES)
214
Laurent Pinchartbc281912014-05-15 12:40:45 +0200215#define IPMMU_PTRS_PER_PTE 512
216#define IPMMU_PTRS_PER_PMD 512
217#define IPMMU_PTRS_PER_PGD 4
Laurent Pinchartbc281912014-05-15 12:40:45 +0200218
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200219/* -----------------------------------------------------------------------------
220 * Read/Write Access
221 */
222
223static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
224{
225 return ioread32(mmu->base + offset);
226}
227
228static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
229 u32 data)
230{
231 iowrite32(data, mmu->base + offset);
232}
233
234static u32 ipmmu_ctx_read(struct ipmmu_vmsa_domain *domain, unsigned int reg)
235{
236 return ipmmu_read(domain->mmu, domain->context_id * IM_CTX_SIZE + reg);
237}
238
239static void ipmmu_ctx_write(struct ipmmu_vmsa_domain *domain, unsigned int reg,
240 u32 data)
241{
242 ipmmu_write(domain->mmu, domain->context_id * IM_CTX_SIZE + reg, data);
243}
244
245/* -----------------------------------------------------------------------------
246 * TLB and microTLB Management
247 */
248
249/* Wait for any pending TLB invalidations to complete */
250static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
251{
252 unsigned int count = 0;
253
254 while (ipmmu_ctx_read(domain, IMCTR) & IMCTR_FLUSH) {
255 cpu_relax();
256 if (++count == TLB_LOOP_TIMEOUT) {
257 dev_err_ratelimited(domain->mmu->dev,
258 "TLB sync timed out -- MMU may be deadlocked\n");
259 return;
260 }
261 udelay(1);
262 }
263}
264
265static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
266{
267 u32 reg;
268
269 reg = ipmmu_ctx_read(domain, IMCTR);
270 reg |= IMCTR_FLUSH;
271 ipmmu_ctx_write(domain, IMCTR, reg);
272
273 ipmmu_tlb_sync(domain);
274}
275
276/*
277 * Enable MMU translation for the microTLB.
278 */
279static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
Laurent Pinchart192d2042014-05-15 12:40:42 +0200280 unsigned int utlb)
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200281{
282 struct ipmmu_vmsa_device *mmu = domain->mmu;
283
Laurent Pinchart192d2042014-05-15 12:40:42 +0200284 /*
285 * TODO: Reference-count the microTLB as several bus masters can be
286 * connected to the same microTLB.
287 */
288
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200289 /* TODO: What should we set the ASID to ? */
Laurent Pinchart192d2042014-05-15 12:40:42 +0200290 ipmmu_write(mmu, IMUASID(utlb), 0);
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200291 /* TODO: Do we need to flush the microTLB ? */
Laurent Pinchart192d2042014-05-15 12:40:42 +0200292 ipmmu_write(mmu, IMUCTR(utlb),
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200293 IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
294 IMUCTR_MMUEN);
295}
296
297/*
298 * Disable MMU translation for the microTLB.
299 */
300static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
Laurent Pinchart192d2042014-05-15 12:40:42 +0200301 unsigned int utlb)
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200302{
303 struct ipmmu_vmsa_device *mmu = domain->mmu;
304
Laurent Pinchart192d2042014-05-15 12:40:42 +0200305 ipmmu_write(mmu, IMUCTR(utlb), 0);
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200306}
307
308static void ipmmu_flush_pgtable(struct ipmmu_vmsa_device *mmu, void *addr,
309 size_t size)
310{
311 unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
312
313 /*
314 * TODO: Add support for coherent walk through CCI with DVM and remove
315 * cache handling.
316 */
317 dma_map_page(mmu->dev, virt_to_page(addr), offset, size, DMA_TO_DEVICE);
318}
319
320/* -----------------------------------------------------------------------------
321 * Domain/Context Management
322 */
323
324static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
325{
326 phys_addr_t ttbr;
327 u32 reg;
328
329 /*
330 * TODO: When adding support for multiple contexts, find an unused
331 * context.
332 */
333 domain->context_id = 0;
334
335 /* TTBR0 */
336 ipmmu_flush_pgtable(domain->mmu, domain->pgd,
Laurent Pinchartbc281912014-05-15 12:40:45 +0200337 IPMMU_PTRS_PER_PGD * sizeof(*domain->pgd));
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200338 ttbr = __pa(domain->pgd);
339 ipmmu_ctx_write(domain, IMTTLBR0, ttbr);
340 ipmmu_ctx_write(domain, IMTTUBR0, ttbr >> 32);
341
342 /*
343 * TTBCR
344 * We use long descriptors with inner-shareable WBWA tables and allocate
345 * the whole 32-bit VA space to TTBR0.
346 */
347 ipmmu_ctx_write(domain, IMTTBCR, IMTTBCR_EAE |
348 IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
349 IMTTBCR_IRGN0_WB_WA | IMTTBCR_SL0_LVL_1);
350
351 /*
352 * MAIR0
353 * We need three attributes only, non-cacheable, write-back read/write
354 * allocate and device memory.
355 */
356 reg = (IMMAIR_ATTR_NC << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_NC))
357 | (IMMAIR_ATTR_WBRWA << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_WBRWA))
358 | (IMMAIR_ATTR_DEVICE << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_DEV));
359 ipmmu_ctx_write(domain, IMMAIR0, reg);
360
361 /* IMBUSCR */
362 ipmmu_ctx_write(domain, IMBUSCR,
363 ipmmu_ctx_read(domain, IMBUSCR) &
364 ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
365
366 /*
367 * IMSTR
368 * Clear all interrupt flags.
369 */
370 ipmmu_ctx_write(domain, IMSTR, ipmmu_ctx_read(domain, IMSTR));
371
372 /*
373 * IMCTR
374 * Enable the MMU and interrupt generation. The long-descriptor
375 * translation table format doesn't use TEX remapping. Don't enable AF
376 * software management as we have no use for it. Flush the TLB as
377 * required when modifying the context registers.
378 */
379 ipmmu_ctx_write(domain, IMCTR, IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
380
381 return 0;
382}
383
384static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
385{
386 /*
387 * Disable the context. Flush the TLB as required when modifying the
388 * context registers.
389 *
390 * TODO: Is TLB flush really needed ?
391 */
392 ipmmu_ctx_write(domain, IMCTR, IMCTR_FLUSH);
393 ipmmu_tlb_sync(domain);
394}
395
396/* -----------------------------------------------------------------------------
397 * Fault Handling
398 */
399
400static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
401{
402 const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
403 struct ipmmu_vmsa_device *mmu = domain->mmu;
404 u32 status;
405 u32 iova;
406
407 status = ipmmu_ctx_read(domain, IMSTR);
408 if (!(status & err_mask))
409 return IRQ_NONE;
410
411 iova = ipmmu_ctx_read(domain, IMEAR);
412
413 /*
414 * Clear the error status flags. Unlike traditional interrupt flag
415 * registers that must be cleared by writing 1, this status register
416 * seems to require 0. The error address register must be read before,
417 * otherwise its value will be 0.
418 */
419 ipmmu_ctx_write(domain, IMSTR, 0);
420
421 /* Log fatal errors. */
422 if (status & IMSTR_MHIT)
423 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
424 iova);
425 if (status & IMSTR_ABORT)
426 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
427 iova);
428
429 if (!(status & (IMSTR_PF | IMSTR_TF)))
430 return IRQ_NONE;
431
432 /*
433 * Try to handle page faults and translation faults.
434 *
435 * TODO: We need to look up the faulty device based on the I/O VA. Use
436 * the IOMMU device for now.
437 */
438 if (!report_iommu_fault(domain->io_domain, mmu->dev, iova, 0))
439 return IRQ_HANDLED;
440
441 dev_err_ratelimited(mmu->dev,
442 "Unhandled fault: status 0x%08x iova 0x%08x\n",
443 status, iova);
444
445 return IRQ_HANDLED;
446}
447
448static irqreturn_t ipmmu_irq(int irq, void *dev)
449{
450 struct ipmmu_vmsa_device *mmu = dev;
451 struct iommu_domain *io_domain;
452 struct ipmmu_vmsa_domain *domain;
453
454 if (!mmu->mapping)
455 return IRQ_NONE;
456
457 io_domain = mmu->mapping->domain;
458 domain = io_domain->priv;
459
460 return ipmmu_domain_irq(domain);
461}
462
463/* -----------------------------------------------------------------------------
464 * Page Table Management
465 */
466
Laurent Pinchart14e51232014-05-15 12:40:47 +0200467#define pud_pgtable(pud) pfn_to_page(__phys_to_pfn(pud_val(pud) & PHYS_MASK))
468
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200469static void ipmmu_free_ptes(pmd_t *pmd)
470{
471 pgtable_t table = pmd_pgtable(*pmd);
472 __free_page(table);
473}
474
475static void ipmmu_free_pmds(pud_t *pud)
476{
Laurent Pinchart14e51232014-05-15 12:40:47 +0200477 pmd_t *pmd = pmd_offset(pud, 0);
478 pgtable_t table;
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200479 unsigned int i;
480
Laurent Pinchartbc281912014-05-15 12:40:45 +0200481 for (i = 0; i < IPMMU_PTRS_PER_PMD; ++i) {
Laurent Pinchartdda7c2e42014-05-15 12:40:49 +0200482 if (!pmd_table(*pmd))
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200483 continue;
484
485 ipmmu_free_ptes(pmd);
486 pmd++;
487 }
488
Laurent Pinchart14e51232014-05-15 12:40:47 +0200489 table = pud_pgtable(*pud);
490 __free_page(table);
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200491}
492
493static void ipmmu_free_pgtables(struct ipmmu_vmsa_domain *domain)
494{
495 pgd_t *pgd, *pgd_base = domain->pgd;
496 unsigned int i;
497
498 /*
499 * Recursively free the page tables for this domain. We don't care about
500 * speculative TLB filling, because the TLB will be nuked next time this
501 * context bank is re-allocated and no devices currently map to these
502 * tables.
503 */
504 pgd = pgd_base;
Laurent Pinchartbc281912014-05-15 12:40:45 +0200505 for (i = 0; i < IPMMU_PTRS_PER_PGD; ++i) {
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200506 if (pgd_none(*pgd))
507 continue;
Laurent Pinchart14e51232014-05-15 12:40:47 +0200508 ipmmu_free_pmds((pud_t *)pgd);
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200509 pgd++;
510 }
511
512 kfree(pgd_base);
513}
514
515/*
516 * We can't use the (pgd|pud|pmd|pte)_populate or the set_(pgd|pud|pmd|pte)
517 * functions as they would flush the CPU TLB.
518 */
519
Laurent Pinchart9009f252014-05-15 12:40:48 +0200520static pte_t *ipmmu_alloc_pte(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
521 unsigned long iova)
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200522{
Laurent Pinchart9009f252014-05-15 12:40:48 +0200523 pte_t *pte;
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200524
Laurent Pinchart9009f252014-05-15 12:40:48 +0200525 if (!pmd_none(*pmd))
526 return pte_offset_kernel(pmd, iova);
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200527
Laurent Pinchart9009f252014-05-15 12:40:48 +0200528 pte = (pte_t *)get_zeroed_page(GFP_ATOMIC);
529 if (!pte)
530 return NULL;
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200531
Laurent Pinchart9009f252014-05-15 12:40:48 +0200532 ipmmu_flush_pgtable(mmu, pte, PAGE_SIZE);
533 *pmd = __pmd(__pa(pte) | PMD_NSTABLE | PMD_TYPE_TABLE);
534 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200535
Laurent Pinchart9009f252014-05-15 12:40:48 +0200536 return pte + pte_index(iova);
537}
538
539static pmd_t *ipmmu_alloc_pmd(struct ipmmu_vmsa_device *mmu, pgd_t *pgd,
540 unsigned long iova)
541{
542 pud_t *pud = (pud_t *)pgd;
543 pmd_t *pmd;
544
545 if (!pud_none(*pud))
546 return pmd_offset(pud, iova);
547
548 pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
549 if (!pmd)
550 return NULL;
551
552 ipmmu_flush_pgtable(mmu, pmd, PAGE_SIZE);
553 *pud = __pud(__pa(pmd) | PMD_NSTABLE | PMD_TYPE_TABLE);
554 ipmmu_flush_pgtable(mmu, pud, sizeof(*pud));
555
556 return pmd + pmd_index(iova);
557}
558
559static u64 ipmmu_page_prot(unsigned int prot, u64 type)
560{
561 u64 pgprot = ARM_VMSA_PTE_XN | ARM_VMSA_PTE_nG | ARM_VMSA_PTE_AF
562 | ARM_VMSA_PTE_SH_IS | ARM_VMSA_PTE_AP_UNPRIV
563 | ARM_VMSA_PTE_NS | type;
564
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200565 if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
Laurent Pinchart9009f252014-05-15 12:40:48 +0200566 pgprot |= ARM_VMSA_PTE_AP_RDONLY;
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200567
568 if (prot & IOMMU_CACHE)
Laurent Pinchart9009f252014-05-15 12:40:48 +0200569 pgprot |= IMMAIR_ATTR_IDX_WBRWA << ARM_VMSA_PTE_ATTRINDX_SHIFT;
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200570
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200571 if (prot & IOMMU_EXEC)
Laurent Pinchart9009f252014-05-15 12:40:48 +0200572 pgprot &= ~ARM_VMSA_PTE_XN;
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200573 else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
Laurent Pinchart9009f252014-05-15 12:40:48 +0200574 /* If no access create a faulting entry to avoid TLB fills. */
575 pgprot &= ~ARM_VMSA_PTE_PAGE;
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200576
Laurent Pinchart9009f252014-05-15 12:40:48 +0200577 return pgprot;
578}
579
580static int ipmmu_alloc_init_pte(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
581 unsigned long iova, unsigned long pfn,
582 size_t size, int prot)
583{
584 pteval_t pteval = ipmmu_page_prot(prot, ARM_VMSA_PTE_PAGE);
585 unsigned int num_ptes = 1;
586 pte_t *pte, *start;
587 unsigned int i;
588
589 pte = ipmmu_alloc_pte(mmu, pmd, iova);
590 if (!pte)
591 return -ENOMEM;
592
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200593 start = pte;
594
Laurent Pinchart4ee3cc92014-05-15 12:40:46 +0200595 /*
Laurent Pinchart9009f252014-05-15 12:40:48 +0200596 * Install the page table entries. We can be called both for a single
597 * page or for a block of 16 physically contiguous pages. In the latter
598 * case set the PTE contiguous hint.
Laurent Pinchart4ee3cc92014-05-15 12:40:46 +0200599 */
Laurent Pinchart9009f252014-05-15 12:40:48 +0200600 if (size == SZ_64K) {
601 pteval |= ARM_VMSA_PTE_CONT;
602 num_ptes = ARM_VMSA_PTE_CONT_ENTRIES;
603 }
Laurent Pinchart4ee3cc92014-05-15 12:40:46 +0200604
Laurent Pinchart9009f252014-05-15 12:40:48 +0200605 for (i = num_ptes; i; --i)
606 *pte++ = pfn_pte(pfn++, __pgprot(pteval));
Laurent Pinchart4ee3cc92014-05-15 12:40:46 +0200607
Laurent Pinchart9009f252014-05-15 12:40:48 +0200608 ipmmu_flush_pgtable(mmu, start, sizeof(*pte) * num_ptes);
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200609
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200610 return 0;
611}
612
Laurent Pinchartdda7c2e42014-05-15 12:40:49 +0200613static int ipmmu_alloc_init_pmd(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
614 unsigned long iova, unsigned long pfn,
615 int prot)
616{
617 pmdval_t pmdval = ipmmu_page_prot(prot, PMD_TYPE_SECT);
618
619 *pmd = pfn_pmd(pfn, __pgprot(pmdval));
620 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
621
622 return 0;
623}
624
Laurent Pinchart004c5b32014-05-15 12:40:51 +0200625static int ipmmu_create_mapping(struct ipmmu_vmsa_domain *domain,
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200626 unsigned long iova, phys_addr_t paddr,
627 size_t size, int prot)
628{
629 struct ipmmu_vmsa_device *mmu = domain->mmu;
630 pgd_t *pgd = domain->pgd;
631 unsigned long flags;
Laurent Pinchart9009f252014-05-15 12:40:48 +0200632 unsigned long pfn;
633 pmd_t *pmd;
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200634 int ret;
635
636 if (!pgd)
637 return -EINVAL;
638
639 if (size & ~PAGE_MASK)
640 return -EINVAL;
641
642 if (paddr & ~((1ULL << 40) - 1))
643 return -ERANGE;
644
Laurent Pinchart9009f252014-05-15 12:40:48 +0200645 pfn = __phys_to_pfn(paddr);
646 pgd += pgd_index(iova);
647
648 /* Update the page tables. */
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200649 spin_lock_irqsave(&domain->lock, flags);
650
Laurent Pinchart9009f252014-05-15 12:40:48 +0200651 pmd = ipmmu_alloc_pmd(mmu, pgd, iova);
652 if (!pmd) {
653 ret = -ENOMEM;
654 goto done;
655 }
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200656
Laurent Pinchartdda7c2e42014-05-15 12:40:49 +0200657 switch (size) {
658 case SZ_2M:
659 ret = ipmmu_alloc_init_pmd(mmu, pmd, iova, pfn, prot);
660 break;
661 case SZ_64K:
662 case SZ_4K:
663 ret = ipmmu_alloc_init_pte(mmu, pmd, iova, pfn, size, prot);
664 break;
665 default:
666 ret = -EINVAL;
667 break;
668 }
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200669
Laurent Pinchart9009f252014-05-15 12:40:48 +0200670done:
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200671 spin_unlock_irqrestore(&domain->lock, flags);
672
Laurent Pinchart9009f252014-05-15 12:40:48 +0200673 if (!ret)
674 ipmmu_tlb_invalidate(domain);
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200675
676 return ret;
677}
678
Laurent Pinchart004c5b32014-05-15 12:40:51 +0200679static void ipmmu_clear_pud(struct ipmmu_vmsa_device *mmu, pud_t *pud)
680{
681 /* Free the page table. */
682 pgtable_t table = pud_pgtable(*pud);
683 __free_page(table);
684
685 /* Clear the PUD. */
686 *pud = __pud(0);
687 ipmmu_flush_pgtable(mmu, pud, sizeof(*pud));
688}
689
690static void ipmmu_clear_pmd(struct ipmmu_vmsa_device *mmu, pud_t *pud,
691 pmd_t *pmd)
692{
693 unsigned int i;
694
695 /* Free the page table. */
696 if (pmd_table(*pmd)) {
697 pgtable_t table = pmd_pgtable(*pmd);
698 __free_page(table);
699 }
700
701 /* Clear the PMD. */
702 *pmd = __pmd(0);
703 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
704
705 /* Check whether the PUD is still needed. */
706 pmd = pmd_offset(pud, 0);
707 for (i = 0; i < IPMMU_PTRS_PER_PMD; ++i) {
708 if (!pmd_none(pmd[i]))
709 return;
710 }
711
712 /* Clear the parent PUD. */
713 ipmmu_clear_pud(mmu, pud);
714}
715
716static void ipmmu_clear_pte(struct ipmmu_vmsa_device *mmu, pud_t *pud,
717 pmd_t *pmd, pte_t *pte, unsigned int num_ptes)
718{
719 unsigned int i;
720
721 /* Clear the PTE. */
722 for (i = num_ptes; i; --i)
723 pte[i-1] = __pte(0);
724
725 ipmmu_flush_pgtable(mmu, pte, sizeof(*pte) * num_ptes);
726
727 /* Check whether the PMD is still needed. */
728 pte = pte_offset_kernel(pmd, 0);
729 for (i = 0; i < IPMMU_PTRS_PER_PTE; ++i) {
730 if (!pte_none(pte[i]))
731 return;
732 }
733
734 /* Clear the parent PMD. */
735 ipmmu_clear_pmd(mmu, pud, pmd);
736}
737
738static int ipmmu_split_pmd(struct ipmmu_vmsa_device *mmu, pmd_t *pmd)
739{
740 pte_t *pte, *start;
741 pteval_t pteval;
742 unsigned long pfn;
743 unsigned int i;
744
745 pte = (pte_t *)get_zeroed_page(GFP_ATOMIC);
746 if (!pte)
747 return -ENOMEM;
748
749 /* Copy the PMD attributes. */
750 pteval = (pmd_val(*pmd) & ARM_VMSA_PTE_ATTRS_MASK)
751 | ARM_VMSA_PTE_CONT | ARM_VMSA_PTE_PAGE;
752
753 pfn = pmd_pfn(*pmd);
754 start = pte;
755
756 for (i = IPMMU_PTRS_PER_PTE; i; --i)
757 *pte++ = pfn_pte(pfn++, __pgprot(pteval));
758
759 ipmmu_flush_pgtable(mmu, start, PAGE_SIZE);
760 *pmd = __pmd(__pa(start) | PMD_NSTABLE | PMD_TYPE_TABLE);
761 ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
762
763 return 0;
764}
765
766static void ipmmu_split_pte(struct ipmmu_vmsa_device *mmu, pte_t *pte)
767{
768 unsigned int i;
769
770 for (i = ARM_VMSA_PTE_CONT_ENTRIES; i; --i)
771 pte[i-1] = __pte(pte_val(*pte) & ~ARM_VMSA_PTE_CONT);
772
773 ipmmu_flush_pgtable(mmu, pte, sizeof(*pte) * ARM_VMSA_PTE_CONT_ENTRIES);
774}
775
776static int ipmmu_clear_mapping(struct ipmmu_vmsa_domain *domain,
777 unsigned long iova, size_t size)
778{
779 struct ipmmu_vmsa_device *mmu = domain->mmu;
780 unsigned long flags;
781 pgd_t *pgd = domain->pgd;
782 pud_t *pud;
783 pmd_t *pmd;
784 pte_t *pte;
785 int ret = 0;
786
787 if (!pgd)
788 return -EINVAL;
789
790 if (size & ~PAGE_MASK)
791 return -EINVAL;
792
793 pgd += pgd_index(iova);
794 pud = (pud_t *)pgd;
795
796 spin_lock_irqsave(&domain->lock, flags);
797
798 /* If there's no PUD or PMD we're done. */
799 if (pud_none(*pud))
800 goto done;
801
802 pmd = pmd_offset(pud, iova);
803 if (pmd_none(*pmd))
804 goto done;
805
806 /*
807 * When freeing a 2MB block just clear the PMD. In the unlikely case the
808 * block is mapped as individual pages this will free the corresponding
809 * PTE page table.
810 */
811 if (size == SZ_2M) {
812 ipmmu_clear_pmd(mmu, pud, pmd);
813 goto done;
814 }
815
816 /*
817 * If the PMD has been mapped as a section remap it as pages to allow
818 * freeing individual pages.
819 */
820 if (pmd_sect(*pmd))
821 ipmmu_split_pmd(mmu, pmd);
822
823 pte = pte_offset_kernel(pmd, iova);
824
825 /*
826 * When freeing a 64kB block just clear the PTE entries. We don't have
827 * to care about the contiguous hint of the surrounding entries.
828 */
829 if (size == SZ_64K) {
830 ipmmu_clear_pte(mmu, pud, pmd, pte, ARM_VMSA_PTE_CONT_ENTRIES);
831 goto done;
832 }
833
834 /*
835 * If the PTE has been mapped with the contiguous hint set remap it and
836 * its surrounding PTEs to allow unmapping a single page.
837 */
838 if (pte_val(*pte) & ARM_VMSA_PTE_CONT)
839 ipmmu_split_pte(mmu, pte);
840
841 /* Clear the PTE. */
842 ipmmu_clear_pte(mmu, pud, pmd, pte, 1);
843
844done:
845 spin_unlock_irqrestore(&domain->lock, flags);
846
847 if (ret)
848 ipmmu_tlb_invalidate(domain);
849
850 return 0;
851}
852
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200853/* -----------------------------------------------------------------------------
854 * IOMMU Operations
855 */
856
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200857static int ipmmu_domain_init(struct iommu_domain *io_domain)
858{
859 struct ipmmu_vmsa_domain *domain;
860
861 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
862 if (!domain)
863 return -ENOMEM;
864
865 spin_lock_init(&domain->lock);
866
Laurent Pinchartbc281912014-05-15 12:40:45 +0200867 domain->pgd = kzalloc(IPMMU_PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200868 if (!domain->pgd) {
869 kfree(domain);
870 return -ENOMEM;
871 }
872
873 io_domain->priv = domain;
874 domain->io_domain = io_domain;
875
876 return 0;
877}
878
879static void ipmmu_domain_destroy(struct iommu_domain *io_domain)
880{
881 struct ipmmu_vmsa_domain *domain = io_domain->priv;
882
883 /*
884 * Free the domain resources. We assume that all devices have already
885 * been detached.
886 */
887 ipmmu_domain_destroy_context(domain);
888 ipmmu_free_pgtables(domain);
889 kfree(domain);
890}
891
892static int ipmmu_attach_device(struct iommu_domain *io_domain,
893 struct device *dev)
894{
Laurent Pinchart192d2042014-05-15 12:40:42 +0200895 struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
896 struct ipmmu_vmsa_device *mmu = archdata->mmu;
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200897 struct ipmmu_vmsa_domain *domain = io_domain->priv;
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200898 unsigned long flags;
899 int ret = 0;
900
901 if (!mmu) {
902 dev_err(dev, "Cannot attach to IPMMU\n");
903 return -ENXIO;
904 }
905
906 spin_lock_irqsave(&domain->lock, flags);
907
908 if (!domain->mmu) {
909 /* The domain hasn't been used yet, initialize it. */
910 domain->mmu = mmu;
911 ret = ipmmu_domain_init_context(domain);
912 } else if (domain->mmu != mmu) {
913 /*
914 * Something is wrong, we can't attach two devices using
915 * different IOMMUs to the same domain.
916 */
917 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
918 dev_name(mmu->dev), dev_name(domain->mmu->dev));
919 ret = -EINVAL;
920 }
921
922 spin_unlock_irqrestore(&domain->lock, flags);
923
924 if (ret < 0)
925 return ret;
926
Laurent Pinchart192d2042014-05-15 12:40:42 +0200927 ipmmu_utlb_enable(domain, archdata->utlb);
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200928
929 return 0;
930}
931
932static void ipmmu_detach_device(struct iommu_domain *io_domain,
933 struct device *dev)
934{
Laurent Pinchart192d2042014-05-15 12:40:42 +0200935 struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200936 struct ipmmu_vmsa_domain *domain = io_domain->priv;
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200937
Laurent Pinchart192d2042014-05-15 12:40:42 +0200938 ipmmu_utlb_disable(domain, archdata->utlb);
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200939
940 /*
941 * TODO: Optimize by disabling the context when no device is attached.
942 */
943}
944
945static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
946 phys_addr_t paddr, size_t size, int prot)
947{
948 struct ipmmu_vmsa_domain *domain = io_domain->priv;
949
950 if (!domain)
951 return -ENODEV;
952
Laurent Pinchart004c5b32014-05-15 12:40:51 +0200953 return ipmmu_create_mapping(domain, iova, paddr, size, prot);
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200954}
955
956static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
957 size_t size)
958{
959 struct ipmmu_vmsa_domain *domain = io_domain->priv;
960 int ret;
961
Laurent Pinchart004c5b32014-05-15 12:40:51 +0200962 ret = ipmmu_clear_mapping(domain, iova, size);
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200963 return ret ? 0 : size;
964}
965
966static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
967 dma_addr_t iova)
968{
969 struct ipmmu_vmsa_domain *domain = io_domain->priv;
970 pgd_t pgd;
971 pud_t pud;
972 pmd_t pmd;
973 pte_t pte;
974
975 /* TODO: Is locking needed ? */
976
977 if (!domain->pgd)
978 return 0;
979
980 pgd = *(domain->pgd + pgd_index(iova));
981 if (pgd_none(pgd))
982 return 0;
983
984 pud = *pud_offset(&pgd, iova);
985 if (pud_none(pud))
986 return 0;
987
988 pmd = *pmd_offset(&pud, iova);
989 if (pmd_none(pmd))
990 return 0;
991
Laurent Pinchartdda7c2e42014-05-15 12:40:49 +0200992 if (pmd_sect(pmd))
993 return __pfn_to_phys(pmd_pfn(pmd)) | (iova & ~PMD_MASK);
994
Laurent Pinchartd25a2a12014-04-02 12:47:37 +0200995 pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
996 if (pte_none(pte))
997 return 0;
998
999 return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1000}
1001
Laurent Pinchart192d2042014-05-15 12:40:42 +02001002static int ipmmu_find_utlb(struct ipmmu_vmsa_device *mmu, struct device *dev)
1003{
1004 const struct ipmmu_vmsa_master *master = mmu->pdata->masters;
1005 const char *devname = dev_name(dev);
1006 unsigned int i;
1007
1008 for (i = 0; i < mmu->pdata->num_masters; ++i, ++master) {
1009 if (strcmp(master->name, devname) == 0)
1010 return master->utlb;
1011 }
1012
1013 return -1;
1014}
1015
Laurent Pinchartd25a2a12014-04-02 12:47:37 +02001016static int ipmmu_add_device(struct device *dev)
1017{
Laurent Pinchart192d2042014-05-15 12:40:42 +02001018 struct ipmmu_vmsa_archdata *archdata;
Laurent Pinchartd25a2a12014-04-02 12:47:37 +02001019 struct ipmmu_vmsa_device *mmu;
1020 struct iommu_group *group;
Laurent Pinchart192d2042014-05-15 12:40:42 +02001021 int utlb = -1;
Laurent Pinchartd25a2a12014-04-02 12:47:37 +02001022 int ret;
1023
1024 if (dev->archdata.iommu) {
1025 dev_warn(dev, "IOMMU driver already assigned to device %s\n",
1026 dev_name(dev));
1027 return -EINVAL;
1028 }
1029
1030 /* Find the master corresponding to the device. */
1031 spin_lock(&ipmmu_devices_lock);
1032
1033 list_for_each_entry(mmu, &ipmmu_devices, list) {
Laurent Pinchart192d2042014-05-15 12:40:42 +02001034 utlb = ipmmu_find_utlb(mmu, dev);
1035 if (utlb >= 0) {
Laurent Pinchartd25a2a12014-04-02 12:47:37 +02001036 /*
Laurent Pinchart192d2042014-05-15 12:40:42 +02001037 * TODO Take a reference to the MMU to protect
Laurent Pinchartd25a2a12014-04-02 12:47:37 +02001038 * against device removal.
1039 */
1040 break;
1041 }
1042 }
1043
1044 spin_unlock(&ipmmu_devices_lock);
1045
Laurent Pinchart192d2042014-05-15 12:40:42 +02001046 if (utlb < 0)
Laurent Pinchartd25a2a12014-04-02 12:47:37 +02001047 return -ENODEV;
1048
Laurent Pinchart192d2042014-05-15 12:40:42 +02001049 if (utlb >= mmu->num_utlbs)
Laurent Pinchartd25a2a12014-04-02 12:47:37 +02001050 return -EINVAL;
1051
1052 /* Create a device group and add the device to it. */
1053 group = iommu_group_alloc();
1054 if (IS_ERR(group)) {
1055 dev_err(dev, "Failed to allocate IOMMU group\n");
1056 return PTR_ERR(group);
1057 }
1058
1059 ret = iommu_group_add_device(group, dev);
1060 iommu_group_put(group);
1061
1062 if (ret < 0) {
1063 dev_err(dev, "Failed to add device to IPMMU group\n");
1064 return ret;
1065 }
1066
Laurent Pinchart192d2042014-05-15 12:40:42 +02001067 archdata = kzalloc(sizeof(*archdata), GFP_KERNEL);
1068 if (!archdata) {
1069 ret = -ENOMEM;
1070 goto error;
1071 }
1072
1073 archdata->mmu = mmu;
1074 archdata->utlb = utlb;
1075 dev->archdata.iommu = archdata;
Laurent Pinchartd25a2a12014-04-02 12:47:37 +02001076
1077 /*
1078 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
1079 * VAs. This will allocate a corresponding IOMMU domain.
1080 *
1081 * TODO:
1082 * - Create one mapping per context (TLB).
1083 * - Make the mapping size configurable ? We currently use a 2GB mapping
1084 * at a 1GB offset to ensure that NULL VAs will fault.
1085 */
1086 if (!mmu->mapping) {
1087 struct dma_iommu_mapping *mapping;
1088
1089 mapping = arm_iommu_create_mapping(&platform_bus_type,
1090 SZ_1G, SZ_2G, 0);
1091 if (IS_ERR(mapping)) {
1092 dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
1093 return PTR_ERR(mapping);
1094 }
1095
1096 mmu->mapping = mapping;
1097 }
1098
1099 /* Attach the ARM VA mapping to the device. */
1100 ret = arm_iommu_attach_device(dev, mmu->mapping);
1101 if (ret < 0) {
1102 dev_err(dev, "Failed to attach device to VA mapping\n");
1103 goto error;
1104 }
1105
1106 return 0;
1107
1108error:
Laurent Pinchart192d2042014-05-15 12:40:42 +02001109 kfree(dev->archdata.iommu);
Laurent Pinchartd25a2a12014-04-02 12:47:37 +02001110 dev->archdata.iommu = NULL;
1111 iommu_group_remove_device(dev);
1112 return ret;
1113}
1114
1115static void ipmmu_remove_device(struct device *dev)
1116{
1117 arm_iommu_detach_device(dev);
1118 iommu_group_remove_device(dev);
Laurent Pinchart192d2042014-05-15 12:40:42 +02001119 kfree(dev->archdata.iommu);
Laurent Pinchartd25a2a12014-04-02 12:47:37 +02001120 dev->archdata.iommu = NULL;
1121}
1122
1123static struct iommu_ops ipmmu_ops = {
1124 .domain_init = ipmmu_domain_init,
1125 .domain_destroy = ipmmu_domain_destroy,
1126 .attach_dev = ipmmu_attach_device,
1127 .detach_dev = ipmmu_detach_device,
1128 .map = ipmmu_map,
1129 .unmap = ipmmu_unmap,
1130 .iova_to_phys = ipmmu_iova_to_phys,
1131 .add_device = ipmmu_add_device,
1132 .remove_device = ipmmu_remove_device,
Laurent Pinchartdda7c2e42014-05-15 12:40:49 +02001133 .pgsize_bitmap = SZ_2M | SZ_64K | SZ_4K,
Laurent Pinchartd25a2a12014-04-02 12:47:37 +02001134};
1135
1136/* -----------------------------------------------------------------------------
1137 * Probe/remove and init
1138 */
1139
1140static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
1141{
1142 unsigned int i;
1143
1144 /* Disable all contexts. */
1145 for (i = 0; i < 4; ++i)
1146 ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
1147}
1148
1149static int ipmmu_probe(struct platform_device *pdev)
1150{
1151 struct ipmmu_vmsa_device *mmu;
1152 struct resource *res;
1153 int irq;
1154 int ret;
1155
1156 if (!pdev->dev.platform_data) {
1157 dev_err(&pdev->dev, "missing platform data\n");
1158 return -EINVAL;
1159 }
1160
1161 mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1162 if (!mmu) {
1163 dev_err(&pdev->dev, "cannot allocate device data\n");
1164 return -ENOMEM;
1165 }
1166
1167 mmu->dev = &pdev->dev;
1168 mmu->pdata = pdev->dev.platform_data;
1169 mmu->num_utlbs = 32;
1170
1171 /* Map I/O memory and request IRQ. */
1172 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1173 mmu->base = devm_ioremap_resource(&pdev->dev, res);
1174 if (IS_ERR(mmu->base))
1175 return PTR_ERR(mmu->base);
1176
1177 irq = platform_get_irq(pdev, 0);
1178 if (irq < 0) {
1179 dev_err(&pdev->dev, "no IRQ found\n");
1180 return irq;
1181 }
1182
1183 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1184 dev_name(&pdev->dev), mmu);
1185 if (ret < 0) {
1186 dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1187 return irq;
1188 }
1189
1190 ipmmu_device_reset(mmu);
1191
1192 /*
1193 * We can't create the ARM mapping here as it requires the bus to have
1194 * an IOMMU, which only happens when bus_set_iommu() is called in
1195 * ipmmu_init() after the probe function returns.
1196 */
1197
1198 spin_lock(&ipmmu_devices_lock);
1199 list_add(&mmu->list, &ipmmu_devices);
1200 spin_unlock(&ipmmu_devices_lock);
1201
1202 platform_set_drvdata(pdev, mmu);
1203
1204 return 0;
1205}
1206
1207static int ipmmu_remove(struct platform_device *pdev)
1208{
1209 struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1210
1211 spin_lock(&ipmmu_devices_lock);
1212 list_del(&mmu->list);
1213 spin_unlock(&ipmmu_devices_lock);
1214
1215 arm_iommu_release_mapping(mmu->mapping);
1216
1217 ipmmu_device_reset(mmu);
1218
1219 return 0;
1220}
1221
1222static struct platform_driver ipmmu_driver = {
1223 .driver = {
1224 .owner = THIS_MODULE,
1225 .name = "ipmmu-vmsa",
1226 },
1227 .probe = ipmmu_probe,
1228 .remove = ipmmu_remove,
1229};
1230
1231static int __init ipmmu_init(void)
1232{
1233 int ret;
1234
1235 ret = platform_driver_register(&ipmmu_driver);
1236 if (ret < 0)
1237 return ret;
1238
1239 if (!iommu_present(&platform_bus_type))
1240 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1241
1242 return 0;
1243}
1244
1245static void __exit ipmmu_exit(void)
1246{
1247 return platform_driver_unregister(&ipmmu_driver);
1248}
1249
1250subsys_initcall(ipmmu_init);
1251module_exit(ipmmu_exit);
1252
1253MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
1254MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1255MODULE_LICENSE("GPL v2");