| /* |
| * The file intends to implement the platform dependent EEH operations on |
| * powernv platform. Actually, the powernv was created in order to fully |
| * hypervisor support. |
| * |
| * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| */ |
| |
| #include <linux/atomic.h> |
| #include <linux/debugfs.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <linux/init.h> |
| #include <linux/list.h> |
| #include <linux/msi.h> |
| #include <linux/of.h> |
| #include <linux/pci.h> |
| #include <linux/proc_fs.h> |
| #include <linux/rbtree.h> |
| #include <linux/sched.h> |
| #include <linux/seq_file.h> |
| #include <linux/spinlock.h> |
| |
| #include <asm/eeh.h> |
| #include <asm/eeh_event.h> |
| #include <asm/firmware.h> |
| #include <asm/io.h> |
| #include <asm/iommu.h> |
| #include <asm/machdep.h> |
| #include <asm/msi_bitmap.h> |
| #include <asm/opal.h> |
| #include <asm/ppc-pci.h> |
| |
| #include "powernv.h" |
| #include "pci.h" |
| |
| static bool pnv_eeh_nb_init = false; |
| |
| /** |
| * pnv_eeh_init - EEH platform dependent initialization |
| * |
| * EEH platform dependent initialization on powernv |
| */ |
| static int pnv_eeh_init(void) |
| { |
| struct pci_controller *hose; |
| struct pnv_phb *phb; |
| |
| /* We require OPALv3 */ |
| if (!firmware_has_feature(FW_FEATURE_OPALv3)) { |
| pr_warn("%s: OPALv3 is required !\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| /* Set probe mode */ |
| eeh_add_flag(EEH_PROBE_MODE_DEV); |
| |
| /* |
| * P7IOC blocks PCI config access to frozen PE, but PHB3 |
| * doesn't do that. So we have to selectively enable I/O |
| * prior to collecting error log. |
| */ |
| list_for_each_entry(hose, &hose_list, list_node) { |
| phb = hose->private_data; |
| |
| if (phb->model == PNV_PHB_MODEL_P7IOC) |
| eeh_add_flag(EEH_ENABLE_IO_FOR_LOG); |
| |
| /* |
| * PE#0 should be regarded as valid by EEH core |
| * if it's not the reserved one. Currently, we |
| * have the reserved PE#0 and PE#127 for PHB3 |
| * and P7IOC separately. So we should regard |
| * PE#0 as valid for P7IOC. |
| */ |
| if (phb->ioda.reserved_pe != 0) |
| eeh_add_flag(EEH_VALID_PE_ZERO); |
| |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int pnv_eeh_event(struct notifier_block *nb, |
| unsigned long events, void *change) |
| { |
| uint64_t changed_evts = (uint64_t)change; |
| |
| /* |
| * We simply send special EEH event if EEH has |
| * been enabled, or clear pending events in |
| * case that we enable EEH soon |
| */ |
| if (!(changed_evts & OPAL_EVENT_PCI_ERROR) || |
| !(events & OPAL_EVENT_PCI_ERROR)) |
| return 0; |
| |
| if (eeh_enabled()) |
| eeh_send_failure_event(NULL); |
| else |
| opal_notifier_update_evt(OPAL_EVENT_PCI_ERROR, 0x0ul); |
| |
| return 0; |
| } |
| |
| static struct notifier_block pnv_eeh_nb = { |
| .notifier_call = pnv_eeh_event, |
| .next = NULL, |
| .priority = 0 |
| }; |
| |
| #ifdef CONFIG_DEBUG_FS |
| static ssize_t pnv_eeh_ei_write(struct file *filp, |
| const char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct pci_controller *hose = filp->private_data; |
| struct eeh_dev *edev; |
| struct eeh_pe *pe; |
| int pe_no, type, func; |
| unsigned long addr, mask; |
| char buf[50]; |
| int ret; |
| |
| if (!eeh_ops || !eeh_ops->err_inject) |
| return -ENXIO; |
| |
| /* Copy over argument buffer */ |
| ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count); |
| if (!ret) |
| return -EFAULT; |
| |
| /* Retrieve parameters */ |
| ret = sscanf(buf, "%x:%x:%x:%lx:%lx", |
| &pe_no, &type, &func, &addr, &mask); |
| if (ret != 5) |
| return -EINVAL; |
| |
| /* Retrieve PE */ |
| edev = kzalloc(sizeof(*edev), GFP_KERNEL); |
| if (!edev) |
| return -ENOMEM; |
| edev->phb = hose; |
| edev->pe_config_addr = pe_no; |
| pe = eeh_pe_get(edev); |
| kfree(edev); |
| if (!pe) |
| return -ENODEV; |
| |
| /* Do error injection */ |
| ret = eeh_ops->err_inject(pe, type, func, addr, mask); |
| return ret < 0 ? ret : count; |
| } |
| |
| static const struct file_operations pnv_eeh_ei_fops = { |
| .open = simple_open, |
| .llseek = no_llseek, |
| .write = pnv_eeh_ei_write, |
| }; |
| |
| static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val) |
| { |
| struct pci_controller *hose = data; |
| struct pnv_phb *phb = hose->private_data; |
| |
| out_be64(phb->regs + offset, val); |
| return 0; |
| } |
| |
| static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val) |
| { |
| struct pci_controller *hose = data; |
| struct pnv_phb *phb = hose->private_data; |
| |
| *val = in_be64(phb->regs + offset); |
| return 0; |
| } |
| |
| static int pnv_eeh_outb_dbgfs_set(void *data, u64 val) |
| { |
| return pnv_eeh_dbgfs_set(data, 0xD10, val); |
| } |
| |
| static int pnv_eeh_outb_dbgfs_get(void *data, u64 *val) |
| { |
| return pnv_eeh_dbgfs_get(data, 0xD10, val); |
| } |
| |
| static int pnv_eeh_inbA_dbgfs_set(void *data, u64 val) |
| { |
| return pnv_eeh_dbgfs_set(data, 0xD90, val); |
| } |
| |
| static int pnv_eeh_inbA_dbgfs_get(void *data, u64 *val) |
| { |
| return pnv_eeh_dbgfs_get(data, 0xD90, val); |
| } |
| |
| static int pnv_eeh_inbB_dbgfs_set(void *data, u64 val) |
| { |
| return pnv_eeh_dbgfs_set(data, 0xE10, val); |
| } |
| |
| static int pnv_eeh_inbB_dbgfs_get(void *data, u64 *val) |
| { |
| return pnv_eeh_dbgfs_get(data, 0xE10, val); |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_outb_dbgfs_ops, pnv_eeh_outb_dbgfs_get, |
| pnv_eeh_outb_dbgfs_set, "0x%llx\n"); |
| DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_inbA_dbgfs_ops, pnv_eeh_inbA_dbgfs_get, |
| pnv_eeh_inbA_dbgfs_set, "0x%llx\n"); |
| DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_inbB_dbgfs_ops, pnv_eeh_inbB_dbgfs_get, |
| pnv_eeh_inbB_dbgfs_set, "0x%llx\n"); |
| #endif /* CONFIG_DEBUG_FS */ |
| |
| /** |
| * pnv_eeh_post_init - EEH platform dependent post initialization |
| * |
| * EEH platform dependent post initialization on powernv. When |
| * the function is called, the EEH PEs and devices should have |
| * been built. If the I/O cache staff has been built, EEH is |
| * ready to supply service. |
| */ |
| static int pnv_eeh_post_init(void) |
| { |
| struct pci_controller *hose; |
| struct pnv_phb *phb; |
| int ret = 0; |
| |
| /* Register OPAL event notifier */ |
| if (!pnv_eeh_nb_init) { |
| ret = opal_notifier_register(&pnv_eeh_nb); |
| if (ret) { |
| pr_warn("%s: Can't register OPAL event notifier (%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| pnv_eeh_nb_init = true; |
| } |
| |
| list_for_each_entry(hose, &hose_list, list_node) { |
| phb = hose->private_data; |
| |
| /* |
| * If EEH is enabled, we're going to rely on that. |
| * Otherwise, we restore to conventional mechanism |
| * to clear frozen PE during PCI config access. |
| */ |
| if (eeh_enabled()) |
| phb->flags |= PNV_PHB_FLAG_EEH; |
| else |
| phb->flags &= ~PNV_PHB_FLAG_EEH; |
| |
| /* Create debugfs entries */ |
| #ifdef CONFIG_DEBUG_FS |
| if (phb->has_dbgfs || !phb->dbgfs) |
| continue; |
| |
| phb->has_dbgfs = 1; |
| debugfs_create_file("err_injct", 0200, |
| phb->dbgfs, hose, |
| &pnv_eeh_ei_fops); |
| |
| debugfs_create_file("err_injct_outbound", 0600, |
| phb->dbgfs, hose, |
| &pnv_eeh_outb_dbgfs_ops); |
| debugfs_create_file("err_injct_inboundA", 0600, |
| phb->dbgfs, hose, |
| &pnv_eeh_inbA_dbgfs_ops); |
| debugfs_create_file("err_injct_inboundB", 0600, |
| phb->dbgfs, hose, |
| &pnv_eeh_inbB_dbgfs_ops); |
| #endif /* CONFIG_DEBUG_FS */ |
| } |
| |
| |
| return ret; |
| } |
| |
| static int pnv_eeh_cap_start(struct pci_dn *pdn) |
| { |
| u32 status; |
| |
| if (!pdn) |
| return 0; |
| |
| pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status); |
| if (!(status & PCI_STATUS_CAP_LIST)) |
| return 0; |
| |
| return PCI_CAPABILITY_LIST; |
| } |
| |
| static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap) |
| { |
| int pos = pnv_eeh_cap_start(pdn); |
| int cnt = 48; /* Maximal number of capabilities */ |
| u32 id; |
| |
| if (!pos) |
| return 0; |
| |
| while (cnt--) { |
| pnv_pci_cfg_read(pdn, pos, 1, &pos); |
| if (pos < 0x40) |
| break; |
| |
| pos &= ~3; |
| pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id); |
| if (id == 0xff) |
| break; |
| |
| /* Found */ |
| if (id == cap) |
| return pos; |
| |
| /* Next one */ |
| pos += PCI_CAP_LIST_NEXT; |
| } |
| |
| return 0; |
| } |
| |
| static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap) |
| { |
| struct eeh_dev *edev = pdn_to_eeh_dev(pdn); |
| u32 header; |
| int pos = 256, ttl = (4096 - 256) / 8; |
| |
| if (!edev || !edev->pcie_cap) |
| return 0; |
| if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) |
| return 0; |
| else if (!header) |
| return 0; |
| |
| while (ttl-- > 0) { |
| if (PCI_EXT_CAP_ID(header) == cap && pos) |
| return pos; |
| |
| pos = PCI_EXT_CAP_NEXT(header); |
| if (pos < 256) |
| break; |
| |
| if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * pnv_eeh_probe - Do probe on PCI device |
| * @pdn: PCI device node |
| * @data: unused |
| * |
| * When EEH module is installed during system boot, all PCI devices |
| * are checked one by one to see if it supports EEH. The function |
| * is introduced for the purpose. By default, EEH has been enabled |
| * on all PCI devices. That's to say, we only need do necessary |
| * initialization on the corresponding eeh device and create PE |
| * accordingly. |
| * |
| * It's notable that's unsafe to retrieve the EEH device through |
| * the corresponding PCI device. During the PCI device hotplug, which |
| * was possiblly triggered by EEH core, the binding between EEH device |
| * and the PCI device isn't built yet. |
| */ |
| static void *pnv_eeh_probe(struct pci_dn *pdn, void *data) |
| { |
| struct pci_controller *hose = pdn->phb; |
| struct pnv_phb *phb = hose->private_data; |
| struct eeh_dev *edev = pdn_to_eeh_dev(pdn); |
| uint32_t pcie_flags; |
| int ret; |
| |
| /* |
| * When probing the root bridge, which doesn't have any |
| * subordinate PCI devices. We don't have OF node for |
| * the root bridge. So it's not reasonable to continue |
| * the probing. |
| */ |
| if (!edev || edev->pe) |
| return NULL; |
| |
| /* Skip for PCI-ISA bridge */ |
| if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA) |
| return NULL; |
| |
| /* Initialize eeh device */ |
| edev->class_code = pdn->class_code; |
| edev->mode &= 0xFFFFFF00; |
| edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX); |
| edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP); |
| edev->aer_cap = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR); |
| if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) { |
| edev->mode |= EEH_DEV_BRIDGE; |
| if (edev->pcie_cap) { |
| pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS, |
| 2, &pcie_flags); |
| pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4; |
| if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT) |
| edev->mode |= EEH_DEV_ROOT_PORT; |
| else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM) |
| edev->mode |= EEH_DEV_DS_PORT; |
| } |
| } |
| |
| edev->config_addr = (pdn->busno << 8) | (pdn->devfn); |
| edev->pe_config_addr = phb->ioda.pe_rmap[edev->config_addr]; |
| |
| /* Create PE */ |
| ret = eeh_add_to_parent_pe(edev); |
| if (ret) { |
| pr_warn("%s: Can't add PCI dev %04x:%02x:%02x.%01x to parent PE (%d)\n", |
| __func__, hose->global_number, pdn->busno, |
| PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn), ret); |
| return NULL; |
| } |
| |
| /* |
| * If the PE contains any one of following adapters, the |
| * PCI config space can't be accessed when dumping EEH log. |
| * Otherwise, we will run into fenced PHB caused by shortage |
| * of outbound credits in the adapter. The PCI config access |
| * should be blocked until PE reset. MMIO access is dropped |
| * by hardware certainly. In order to drop PCI config requests, |
| * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which |
| * will be checked in the backend for PE state retrival. If |
| * the PE becomes frozen for the first time and the flag has |
| * been set for the PE, we will set EEH_PE_CFG_BLOCKED for |
| * that PE to block its config space. |
| * |
| * Broadcom Austin 4-ports NICs (14e4:1657) |
| * Broadcom Shiner 2-ports 10G NICs (14e4:168e) |
| */ |
| if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && |
| pdn->device_id == 0x1657) || |
| (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && |
| pdn->device_id == 0x168e)) |
| edev->pe->state |= EEH_PE_CFG_RESTRICTED; |
| |
| /* |
| * Cache the PE primary bus, which can't be fetched when |
| * full hotplug is in progress. In that case, all child |
| * PCI devices of the PE are expected to be removed prior |
| * to PE reset. |
| */ |
| if (!edev->pe->bus) |
| edev->pe->bus = pci_find_bus(hose->global_number, |
| pdn->busno); |
| |
| /* |
| * Enable EEH explicitly so that we will do EEH check |
| * while accessing I/O stuff |
| */ |
| eeh_add_flag(EEH_ENABLED); |
| |
| /* Save memory bars */ |
| eeh_save_bars(edev); |
| |
| return NULL; |
| } |
| |
| /** |
| * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable |
| * @pe: EEH PE |
| * @option: operation to be issued |
| * |
| * The function is used to control the EEH functionality globally. |
| * Currently, following options are support according to PAPR: |
| * Enable EEH, Disable EEH, Enable MMIO and Enable DMA |
| */ |
| static int pnv_eeh_set_option(struct eeh_pe *pe, int option) |
| { |
| struct pci_controller *hose = pe->phb; |
| struct pnv_phb *phb = hose->private_data; |
| bool freeze_pe = false; |
| int opt, ret = 0; |
| s64 rc; |
| |
| /* Sanity check on option */ |
| switch (option) { |
| case EEH_OPT_DISABLE: |
| return -EPERM; |
| case EEH_OPT_ENABLE: |
| return 0; |
| case EEH_OPT_THAW_MMIO: |
| opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO; |
| break; |
| case EEH_OPT_THAW_DMA: |
| opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA; |
| break; |
| case EEH_OPT_FREEZE_PE: |
| freeze_pe = true; |
| opt = OPAL_EEH_ACTION_SET_FREEZE_ALL; |
| break; |
| default: |
| pr_warn("%s: Invalid option %d\n", __func__, option); |
| return -EINVAL; |
| } |
| |
| /* If PHB supports compound PE, to handle it */ |
| if (freeze_pe) { |
| if (phb->freeze_pe) { |
| phb->freeze_pe(phb, pe->addr); |
| } else { |
| rc = opal_pci_eeh_freeze_set(phb->opal_id, |
| pe->addr, opt); |
| if (rc != OPAL_SUCCESS) { |
| pr_warn("%s: Failure %lld freezing " |
| "PHB#%x-PE#%x\n", |
| __func__, rc, |
| phb->hose->global_number, pe->addr); |
| ret = -EIO; |
| } |
| } |
| } else { |
| if (phb->unfreeze_pe) { |
| ret = phb->unfreeze_pe(phb, pe->addr, opt); |
| } else { |
| rc = opal_pci_eeh_freeze_clear(phb->opal_id, |
| pe->addr, opt); |
| if (rc != OPAL_SUCCESS) { |
| pr_warn("%s: Failure %lld enable %d " |
| "for PHB#%x-PE#%x\n", |
| __func__, rc, option, |
| phb->hose->global_number, pe->addr); |
| ret = -EIO; |
| } |
| } |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * pnv_eeh_get_pe_addr - Retrieve PE address |
| * @pe: EEH PE |
| * |
| * Retrieve the PE address according to the given tranditional |
| * PCI BDF (Bus/Device/Function) address. |
| */ |
| static int pnv_eeh_get_pe_addr(struct eeh_pe *pe) |
| { |
| return pe->addr; |
| } |
| |
| static void pnv_eeh_get_phb_diag(struct eeh_pe *pe) |
| { |
| struct pnv_phb *phb = pe->phb->private_data; |
| s64 rc; |
| |
| rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data, |
| PNV_PCI_DIAG_BUF_SIZE); |
| if (rc != OPAL_SUCCESS) |
| pr_warn("%s: Failure %lld getting PHB#%x diag-data\n", |
| __func__, rc, pe->phb->global_number); |
| } |
| |
| static int pnv_eeh_get_phb_state(struct eeh_pe *pe) |
| { |
| struct pnv_phb *phb = pe->phb->private_data; |
| u8 fstate; |
| __be16 pcierr; |
| s64 rc; |
| int result = 0; |
| |
| rc = opal_pci_eeh_freeze_status(phb->opal_id, |
| pe->addr, |
| &fstate, |
| &pcierr, |
| NULL); |
| if (rc != OPAL_SUCCESS) { |
| pr_warn("%s: Failure %lld getting PHB#%x state\n", |
| __func__, rc, phb->hose->global_number); |
| return EEH_STATE_NOT_SUPPORT; |
| } |
| |
| /* |
| * Check PHB state. If the PHB is frozen for the |
| * first time, to dump the PHB diag-data. |
| */ |
| if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) { |
| result = (EEH_STATE_MMIO_ACTIVE | |
| EEH_STATE_DMA_ACTIVE | |
| EEH_STATE_MMIO_ENABLED | |
| EEH_STATE_DMA_ENABLED); |
| } else if (!(pe->state & EEH_PE_ISOLATED)) { |
| eeh_pe_state_mark(pe, EEH_PE_ISOLATED); |
| pnv_eeh_get_phb_diag(pe); |
| |
| if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) |
| pnv_pci_dump_phb_diag_data(pe->phb, pe->data); |
| } |
| |
| return result; |
| } |
| |
| static int pnv_eeh_get_pe_state(struct eeh_pe *pe) |
| { |
| struct pnv_phb *phb = pe->phb->private_data; |
| u8 fstate; |
| __be16 pcierr; |
| s64 rc; |
| int result; |
| |
| /* |
| * We don't clobber hardware frozen state until PE |
| * reset is completed. In order to keep EEH core |
| * moving forward, we have to return operational |
| * state during PE reset. |
| */ |
| if (pe->state & EEH_PE_RESET) { |
| result = (EEH_STATE_MMIO_ACTIVE | |
| EEH_STATE_DMA_ACTIVE | |
| EEH_STATE_MMIO_ENABLED | |
| EEH_STATE_DMA_ENABLED); |
| return result; |
| } |
| |
| /* |
| * Fetch PE state from hardware. If the PHB |
| * supports compound PE, let it handle that. |
| */ |
| if (phb->get_pe_state) { |
| fstate = phb->get_pe_state(phb, pe->addr); |
| } else { |
| rc = opal_pci_eeh_freeze_status(phb->opal_id, |
| pe->addr, |
| &fstate, |
| &pcierr, |
| NULL); |
| if (rc != OPAL_SUCCESS) { |
| pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n", |
| __func__, rc, phb->hose->global_number, |
| pe->addr); |
| return EEH_STATE_NOT_SUPPORT; |
| } |
| } |
| |
| /* Figure out state */ |
| switch (fstate) { |
| case OPAL_EEH_STOPPED_NOT_FROZEN: |
| result = (EEH_STATE_MMIO_ACTIVE | |
| EEH_STATE_DMA_ACTIVE | |
| EEH_STATE_MMIO_ENABLED | |
| EEH_STATE_DMA_ENABLED); |
| break; |
| case OPAL_EEH_STOPPED_MMIO_FREEZE: |
| result = (EEH_STATE_DMA_ACTIVE | |
| EEH_STATE_DMA_ENABLED); |
| break; |
| case OPAL_EEH_STOPPED_DMA_FREEZE: |
| result = (EEH_STATE_MMIO_ACTIVE | |
| EEH_STATE_MMIO_ENABLED); |
| break; |
| case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE: |
| result = 0; |
| break; |
| case OPAL_EEH_STOPPED_RESET: |
| result = EEH_STATE_RESET_ACTIVE; |
| break; |
| case OPAL_EEH_STOPPED_TEMP_UNAVAIL: |
| result = EEH_STATE_UNAVAILABLE; |
| break; |
| case OPAL_EEH_STOPPED_PERM_UNAVAIL: |
| result = EEH_STATE_NOT_SUPPORT; |
| break; |
| default: |
| result = EEH_STATE_NOT_SUPPORT; |
| pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n", |
| __func__, phb->hose->global_number, |
| pe->addr, fstate); |
| } |
| |
| /* |
| * If PHB supports compound PE, to freeze all |
| * slave PEs for consistency. |
| * |
| * If the PE is switching to frozen state for the |
| * first time, to dump the PHB diag-data. |
| */ |
| if (!(result & EEH_STATE_NOT_SUPPORT) && |
| !(result & EEH_STATE_UNAVAILABLE) && |
| !(result & EEH_STATE_MMIO_ACTIVE) && |
| !(result & EEH_STATE_DMA_ACTIVE) && |
| !(pe->state & EEH_PE_ISOLATED)) { |
| if (phb->freeze_pe) |
| phb->freeze_pe(phb, pe->addr); |
| |
| eeh_pe_state_mark(pe, EEH_PE_ISOLATED); |
| pnv_eeh_get_phb_diag(pe); |
| |
| if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) |
| pnv_pci_dump_phb_diag_data(pe->phb, pe->data); |
| } |
| |
| return result; |
| } |
| |
| /** |
| * pnv_eeh_get_state - Retrieve PE state |
| * @pe: EEH PE |
| * @delay: delay while PE state is temporarily unavailable |
| * |
| * Retrieve the state of the specified PE. For IODA-compitable |
| * platform, it should be retrieved from IODA table. Therefore, |
| * we prefer passing down to hardware implementation to handle |
| * it. |
| */ |
| static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay) |
| { |
| int ret; |
| |
| if (pe->type & EEH_PE_PHB) |
| ret = pnv_eeh_get_phb_state(pe); |
| else |
| ret = pnv_eeh_get_pe_state(pe); |
| |
| if (!delay) |
| return ret; |
| |
| /* |
| * If the PE state is temporarily unavailable, |
| * to inform the EEH core delay for default |
| * period (1 second) |
| */ |
| *delay = 0; |
| if (ret & EEH_STATE_UNAVAILABLE) |
| *delay = 1000; |
| |
| return ret; |
| } |
| |
| static s64 pnv_eeh_phb_poll(struct pnv_phb *phb) |
| { |
| s64 rc = OPAL_HARDWARE; |
| |
| while (1) { |
| rc = opal_pci_poll(phb->opal_id); |
| if (rc <= 0) |
| break; |
| |
| if (system_state < SYSTEM_RUNNING) |
| udelay(1000 * rc); |
| else |
| msleep(rc); |
| } |
| |
| return rc; |
| } |
| |
| int pnv_eeh_phb_reset(struct pci_controller *hose, int option) |
| { |
| struct pnv_phb *phb = hose->private_data; |
| s64 rc = OPAL_HARDWARE; |
| |
| pr_debug("%s: Reset PHB#%x, option=%d\n", |
| __func__, hose->global_number, option); |
| |
| /* Issue PHB complete reset request */ |
| if (option == EEH_RESET_FUNDAMENTAL || |
| option == EEH_RESET_HOT) |
| rc = opal_pci_reset(phb->opal_id, |
| OPAL_RESET_PHB_COMPLETE, |
| OPAL_ASSERT_RESET); |
| else if (option == EEH_RESET_DEACTIVATE) |
| rc = opal_pci_reset(phb->opal_id, |
| OPAL_RESET_PHB_COMPLETE, |
| OPAL_DEASSERT_RESET); |
| if (rc < 0) |
| goto out; |
| |
| /* |
| * Poll state of the PHB until the request is done |
| * successfully. The PHB reset is usually PHB complete |
| * reset followed by hot reset on root bus. So we also |
| * need the PCI bus settlement delay. |
| */ |
| rc = pnv_eeh_phb_poll(phb); |
| if (option == EEH_RESET_DEACTIVATE) { |
| if (system_state < SYSTEM_RUNNING) |
| udelay(1000 * EEH_PE_RST_SETTLE_TIME); |
| else |
| msleep(EEH_PE_RST_SETTLE_TIME); |
| } |
| out: |
| if (rc != OPAL_SUCCESS) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int pnv_eeh_root_reset(struct pci_controller *hose, int option) |
| { |
| struct pnv_phb *phb = hose->private_data; |
| s64 rc = OPAL_HARDWARE; |
| |
| pr_debug("%s: Reset PHB#%x, option=%d\n", |
| __func__, hose->global_number, option); |
| |
| /* |
| * During the reset deassert time, we needn't care |
| * the reset scope because the firmware does nothing |
| * for fundamental or hot reset during deassert phase. |
| */ |
| if (option == EEH_RESET_FUNDAMENTAL) |
| rc = opal_pci_reset(phb->opal_id, |
| OPAL_RESET_PCI_FUNDAMENTAL, |
| OPAL_ASSERT_RESET); |
| else if (option == EEH_RESET_HOT) |
| rc = opal_pci_reset(phb->opal_id, |
| OPAL_RESET_PCI_HOT, |
| OPAL_ASSERT_RESET); |
| else if (option == EEH_RESET_DEACTIVATE) |
| rc = opal_pci_reset(phb->opal_id, |
| OPAL_RESET_PCI_HOT, |
| OPAL_DEASSERT_RESET); |
| if (rc < 0) |
| goto out; |
| |
| /* Poll state of the PHB until the request is done */ |
| rc = pnv_eeh_phb_poll(phb); |
| if (option == EEH_RESET_DEACTIVATE) |
| msleep(EEH_PE_RST_SETTLE_TIME); |
| out: |
| if (rc != OPAL_SUCCESS) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int pnv_eeh_bridge_reset(struct pci_dev *dev, int option) |
| { |
| struct device_node *dn = pci_device_to_OF_node(dev); |
| struct eeh_dev *edev = of_node_to_eeh_dev(dn); |
| int aer = edev ? edev->aer_cap : 0; |
| u32 ctrl; |
| |
| pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n", |
| __func__, pci_domain_nr(dev->bus), |
| dev->bus->number, option); |
| |
| switch (option) { |
| case EEH_RESET_FUNDAMENTAL: |
| case EEH_RESET_HOT: |
| /* Don't report linkDown event */ |
| if (aer) { |
| eeh_ops->read_config(dn, aer + PCI_ERR_UNCOR_MASK, |
| 4, &ctrl); |
| ctrl |= PCI_ERR_UNC_SURPDN; |
| eeh_ops->write_config(dn, aer + PCI_ERR_UNCOR_MASK, |
| 4, ctrl); |
| } |
| |
| eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &ctrl); |
| ctrl |= PCI_BRIDGE_CTL_BUS_RESET; |
| eeh_ops->write_config(dn, PCI_BRIDGE_CONTROL, 2, ctrl); |
| |
| msleep(EEH_PE_RST_HOLD_TIME); |
| break; |
| case EEH_RESET_DEACTIVATE: |
| eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &ctrl); |
| ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; |
| eeh_ops->write_config(dn, PCI_BRIDGE_CONTROL, 2, ctrl); |
| |
| msleep(EEH_PE_RST_SETTLE_TIME); |
| |
| /* Continue reporting linkDown event */ |
| if (aer) { |
| eeh_ops->read_config(dn, aer + PCI_ERR_UNCOR_MASK, |
| 4, &ctrl); |
| ctrl &= ~PCI_ERR_UNC_SURPDN; |
| eeh_ops->write_config(dn, aer + PCI_ERR_UNCOR_MASK, |
| 4, ctrl); |
| } |
| |
| break; |
| } |
| |
| return 0; |
| } |
| |
| void pnv_pci_reset_secondary_bus(struct pci_dev *dev) |
| { |
| struct pci_controller *hose; |
| |
| if (pci_is_root_bus(dev->bus)) { |
| hose = pci_bus_to_host(dev->bus); |
| pnv_eeh_root_reset(hose, EEH_RESET_HOT); |
| pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE); |
| } else { |
| pnv_eeh_bridge_reset(dev, EEH_RESET_HOT); |
| pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE); |
| } |
| } |
| |
| /** |
| * pnv_eeh_reset - Reset the specified PE |
| * @pe: EEH PE |
| * @option: reset option |
| * |
| * Do reset on the indicated PE. For PCI bus sensitive PE, |
| * we need to reset the parent p2p bridge. The PHB has to |
| * be reinitialized if the p2p bridge is root bridge. For |
| * PCI device sensitive PE, we will try to reset the device |
| * through FLR. For now, we don't have OPAL APIs to do HARD |
| * reset yet, so all reset would be SOFT (HOT) reset. |
| */ |
| static int pnv_eeh_reset(struct eeh_pe *pe, int option) |
| { |
| struct pci_controller *hose = pe->phb; |
| struct pci_bus *bus; |
| int ret; |
| |
| /* |
| * For PHB reset, we always have complete reset. For those PEs whose |
| * primary bus derived from root complex (root bus) or root port |
| * (usually bus#1), we apply hot or fundamental reset on the root port. |
| * For other PEs, we always have hot reset on the PE primary bus. |
| * |
| * Here, we have different design to pHyp, which always clear the |
| * frozen state during PE reset. However, the good idea here from |
| * benh is to keep frozen state before we get PE reset done completely |
| * (until BAR restore). With the frozen state, HW drops illegal IO |
| * or MMIO access, which can incur recrusive frozen PE during PE |
| * reset. The side effect is that EEH core has to clear the frozen |
| * state explicitly after BAR restore. |
| */ |
| if (pe->type & EEH_PE_PHB) { |
| ret = pnv_eeh_phb_reset(hose, option); |
| } else { |
| struct pnv_phb *phb; |
| s64 rc; |
| |
| /* |
| * The frozen PE might be caused by PAPR error injection |
| * registers, which are expected to be cleared after hitting |
| * frozen PE as stated in the hardware spec. Unfortunately, |
| * that's not true on P7IOC. So we have to clear it manually |
| * to avoid recursive EEH errors during recovery. |
| */ |
| phb = hose->private_data; |
| if (phb->model == PNV_PHB_MODEL_P7IOC && |
| (option == EEH_RESET_HOT || |
| option == EEH_RESET_FUNDAMENTAL)) { |
| rc = opal_pci_reset(phb->opal_id, |
| OPAL_RESET_PHB_ERROR, |
| OPAL_ASSERT_RESET); |
| if (rc != OPAL_SUCCESS) { |
| pr_warn("%s: Failure %lld clearing " |
| "error injection registers\n", |
| __func__, rc); |
| return -EIO; |
| } |
| } |
| |
| bus = eeh_pe_bus_get(pe); |
| if (pci_is_root_bus(bus) || |
| pci_is_root_bus(bus->parent)) |
| ret = pnv_eeh_root_reset(hose, option); |
| else |
| ret = pnv_eeh_bridge_reset(bus->self, option); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * pnv_eeh_wait_state - Wait for PE state |
| * @pe: EEH PE |
| * @max_wait: maximal period in microsecond |
| * |
| * Wait for the state of associated PE. It might take some time |
| * to retrieve the PE's state. |
| */ |
| static int pnv_eeh_wait_state(struct eeh_pe *pe, int max_wait) |
| { |
| int ret; |
| int mwait; |
| |
| while (1) { |
| ret = pnv_eeh_get_state(pe, &mwait); |
| |
| /* |
| * If the PE's state is temporarily unavailable, |
| * we have to wait for the specified time. Otherwise, |
| * the PE's state will be returned immediately. |
| */ |
| if (ret != EEH_STATE_UNAVAILABLE) |
| return ret; |
| |
| max_wait -= mwait; |
| if (max_wait <= 0) { |
| pr_warn("%s: Timeout getting PE#%x's state (%d)\n", |
| __func__, pe->addr, max_wait); |
| return EEH_STATE_NOT_SUPPORT; |
| } |
| |
| msleep(mwait); |
| } |
| |
| return EEH_STATE_NOT_SUPPORT; |
| } |
| |
| /** |
| * pnv_eeh_get_log - Retrieve error log |
| * @pe: EEH PE |
| * @severity: temporary or permanent error log |
| * @drv_log: driver log to be combined with retrieved error log |
| * @len: length of driver log |
| * |
| * Retrieve the temporary or permanent error from the PE. |
| */ |
| static int pnv_eeh_get_log(struct eeh_pe *pe, int severity, |
| char *drv_log, unsigned long len) |
| { |
| if (!eeh_has_flag(EEH_EARLY_DUMP_LOG)) |
| pnv_pci_dump_phb_diag_data(pe->phb, pe->data); |
| |
| return 0; |
| } |
| |
| /** |
| * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE |
| * @pe: EEH PE |
| * |
| * The function will be called to reconfigure the bridges included |
| * in the specified PE so that the mulfunctional PE would be recovered |
| * again. |
| */ |
| static int pnv_eeh_configure_bridge(struct eeh_pe *pe) |
| { |
| return 0; |
| } |
| |
| /** |
| * pnv_pe_err_inject - Inject specified error to the indicated PE |
| * @pe: the indicated PE |
| * @type: error type |
| * @func: specific error type |
| * @addr: address |
| * @mask: address mask |
| * |
| * The routine is called to inject specified error, which is |
| * determined by @type and @func, to the indicated PE for |
| * testing purpose. |
| */ |
| static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func, |
| unsigned long addr, unsigned long mask) |
| { |
| struct pci_controller *hose = pe->phb; |
| struct pnv_phb *phb = hose->private_data; |
| s64 rc; |
| |
| /* Sanity check on error type */ |
| if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR && |
| type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) { |
| pr_warn("%s: Invalid error type %d\n", |
| __func__, type); |
| return -ERANGE; |
| } |
| |
| if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR || |
| func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) { |
| pr_warn("%s: Invalid error function %d\n", |
| __func__, func); |
| return -ERANGE; |
| } |
| |
| /* Firmware supports error injection ? */ |
| if (!opal_check_token(OPAL_PCI_ERR_INJECT)) { |
| pr_warn("%s: Firmware doesn't support error injection\n", |
| __func__); |
| return -ENXIO; |
| } |
| |
| /* Do error injection */ |
| rc = opal_pci_err_inject(phb->opal_id, pe->addr, |
| type, func, addr, mask); |
| if (rc != OPAL_SUCCESS) { |
| pr_warn("%s: Failure %lld injecting error " |
| "%d-%d to PHB#%x-PE#%x\n", |
| __func__, rc, type, func, |
| hose->global_number, pe->addr); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static inline bool pnv_eeh_cfg_blocked(struct device_node *dn) |
| { |
| struct eeh_dev *edev = of_node_to_eeh_dev(dn); |
| |
| if (!edev || !edev->pe) |
| return false; |
| |
| if (edev->pe->state & EEH_PE_CFG_BLOCKED) |
| return true; |
| |
| return false; |
| } |
| |
| static int pnv_eeh_read_config(struct device_node *dn, |
| int where, int size, u32 *val) |
| { |
| struct pci_dn *pdn = PCI_DN(dn); |
| |
| if (!pdn) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| |
| if (pnv_eeh_cfg_blocked(dn)) { |
| *val = 0xFFFFFFFF; |
| return PCIBIOS_SET_FAILED; |
| } |
| |
| return pnv_pci_cfg_read(pdn, where, size, val); |
| } |
| |
| static int pnv_eeh_write_config(struct device_node *dn, |
| int where, int size, u32 val) |
| { |
| struct pci_dn *pdn = PCI_DN(dn); |
| |
| if (!pdn) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| |
| if (pnv_eeh_cfg_blocked(dn)) |
| return PCIBIOS_SET_FAILED; |
| |
| return pnv_pci_cfg_write(pdn, where, size, val); |
| } |
| |
| static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data) |
| { |
| /* GEM */ |
| if (data->gemXfir || data->gemRfir || |
| data->gemRirqfir || data->gemMask || data->gemRwof) |
| pr_info(" GEM: %016llx %016llx %016llx %016llx %016llx\n", |
| be64_to_cpu(data->gemXfir), |
| be64_to_cpu(data->gemRfir), |
| be64_to_cpu(data->gemRirqfir), |
| be64_to_cpu(data->gemMask), |
| be64_to_cpu(data->gemRwof)); |
| |
| /* LEM */ |
| if (data->lemFir || data->lemErrMask || |
| data->lemAction0 || data->lemAction1 || data->lemWof) |
| pr_info(" LEM: %016llx %016llx %016llx %016llx %016llx\n", |
| be64_to_cpu(data->lemFir), |
| be64_to_cpu(data->lemErrMask), |
| be64_to_cpu(data->lemAction0), |
| be64_to_cpu(data->lemAction1), |
| be64_to_cpu(data->lemWof)); |
| } |
| |
| static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose) |
| { |
| struct pnv_phb *phb = hose->private_data; |
| struct OpalIoP7IOCErrorData *data = &phb->diag.hub_diag; |
| long rc; |
| |
| rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data)); |
| if (rc != OPAL_SUCCESS) { |
| pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n", |
| __func__, phb->hub_id, rc); |
| return; |
| } |
| |
| switch (data->type) { |
| case OPAL_P7IOC_DIAG_TYPE_RGC: |
| pr_info("P7IOC diag-data for RGC\n\n"); |
| pnv_eeh_dump_hub_diag_common(data); |
| if (data->rgc.rgcStatus || data->rgc.rgcLdcp) |
| pr_info(" RGC: %016llx %016llx\n", |
| be64_to_cpu(data->rgc.rgcStatus), |
| be64_to_cpu(data->rgc.rgcLdcp)); |
| break; |
| case OPAL_P7IOC_DIAG_TYPE_BI: |
| pr_info("P7IOC diag-data for BI %s\n\n", |
| data->bi.biDownbound ? "Downbound" : "Upbound"); |
| pnv_eeh_dump_hub_diag_common(data); |
| if (data->bi.biLdcp0 || data->bi.biLdcp1 || |
| data->bi.biLdcp2 || data->bi.biFenceStatus) |
| pr_info(" BI: %016llx %016llx %016llx %016llx\n", |
| be64_to_cpu(data->bi.biLdcp0), |
| be64_to_cpu(data->bi.biLdcp1), |
| be64_to_cpu(data->bi.biLdcp2), |
| be64_to_cpu(data->bi.biFenceStatus)); |
| break; |
| case OPAL_P7IOC_DIAG_TYPE_CI: |
| pr_info("P7IOC diag-data for CI Port %d\n\n", |
| data->ci.ciPort); |
| pnv_eeh_dump_hub_diag_common(data); |
| if (data->ci.ciPortStatus || data->ci.ciPortLdcp) |
| pr_info(" CI: %016llx %016llx\n", |
| be64_to_cpu(data->ci.ciPortStatus), |
| be64_to_cpu(data->ci.ciPortLdcp)); |
| break; |
| case OPAL_P7IOC_DIAG_TYPE_MISC: |
| pr_info("P7IOC diag-data for MISC\n\n"); |
| pnv_eeh_dump_hub_diag_common(data); |
| break; |
| case OPAL_P7IOC_DIAG_TYPE_I2C: |
| pr_info("P7IOC diag-data for I2C\n\n"); |
| pnv_eeh_dump_hub_diag_common(data); |
| break; |
| default: |
| pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n", |
| __func__, phb->hub_id, data->type); |
| } |
| } |
| |
| static int pnv_eeh_get_pe(struct pci_controller *hose, |
| u16 pe_no, struct eeh_pe **pe) |
| { |
| struct pnv_phb *phb = hose->private_data; |
| struct pnv_ioda_pe *pnv_pe; |
| struct eeh_pe *dev_pe; |
| struct eeh_dev edev; |
| |
| /* |
| * If PHB supports compound PE, to fetch |
| * the master PE because slave PE is invisible |
| * to EEH core. |
| */ |
| pnv_pe = &phb->ioda.pe_array[pe_no]; |
| if (pnv_pe->flags & PNV_IODA_PE_SLAVE) { |
| pnv_pe = pnv_pe->master; |
| WARN_ON(!pnv_pe || |
| !(pnv_pe->flags & PNV_IODA_PE_MASTER)); |
| pe_no = pnv_pe->pe_number; |
| } |
| |
| /* Find the PE according to PE# */ |
| memset(&edev, 0, sizeof(struct eeh_dev)); |
| edev.phb = hose; |
| edev.pe_config_addr = pe_no; |
| dev_pe = eeh_pe_get(&edev); |
| if (!dev_pe) |
| return -EEXIST; |
| |
| /* Freeze the (compound) PE */ |
| *pe = dev_pe; |
| if (!(dev_pe->state & EEH_PE_ISOLATED)) |
| phb->freeze_pe(phb, pe_no); |
| |
| /* |
| * At this point, we're sure the (compound) PE should |
| * have been frozen. However, we still need poke until |
| * hitting the frozen PE on top level. |
| */ |
| dev_pe = dev_pe->parent; |
| while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) { |
| int ret; |
| int active_flags = (EEH_STATE_MMIO_ACTIVE | |
| EEH_STATE_DMA_ACTIVE); |
| |
| ret = eeh_ops->get_state(dev_pe, NULL); |
| if (ret <= 0 || (ret & active_flags) == active_flags) { |
| dev_pe = dev_pe->parent; |
| continue; |
| } |
| |
| /* Frozen parent PE */ |
| *pe = dev_pe; |
| if (!(dev_pe->state & EEH_PE_ISOLATED)) |
| phb->freeze_pe(phb, dev_pe->addr); |
| |
| /* Next one */ |
| dev_pe = dev_pe->parent; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * pnv_eeh_next_error - Retrieve next EEH error to handle |
| * @pe: Affected PE |
| * |
| * The function is expected to be called by EEH core while it gets |
| * special EEH event (without binding PE). The function calls to |
| * OPAL APIs for next error to handle. The informational error is |
| * handled internally by platform. However, the dead IOC, dead PHB, |
| * fenced PHB and frozen PE should be handled by EEH core eventually. |
| */ |
| static int pnv_eeh_next_error(struct eeh_pe **pe) |
| { |
| struct pci_controller *hose; |
| struct pnv_phb *phb; |
| struct eeh_pe *phb_pe, *parent_pe; |
| __be64 frozen_pe_no; |
| __be16 err_type, severity; |
| int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE); |
| long rc; |
| int state, ret = EEH_NEXT_ERR_NONE; |
| |
| /* |
| * While running here, it's safe to purge the event queue. |
| * And we should keep the cached OPAL notifier event sychronized |
| * between the kernel and firmware. |
| */ |
| eeh_remove_event(NULL, false); |
| opal_notifier_update_evt(OPAL_EVENT_PCI_ERROR, 0x0ul); |
| |
| list_for_each_entry(hose, &hose_list, list_node) { |
| /* |
| * If the subordinate PCI buses of the PHB has been |
| * removed or is exactly under error recovery, we |
| * needn't take care of it any more. |
| */ |
| phb = hose->private_data; |
| phb_pe = eeh_phb_pe_get(hose); |
| if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED)) |
| continue; |
| |
| rc = opal_pci_next_error(phb->opal_id, |
| &frozen_pe_no, &err_type, &severity); |
| if (rc != OPAL_SUCCESS) { |
| pr_devel("%s: Invalid return value on " |
| "PHB#%x (0x%lx) from opal_pci_next_error", |
| __func__, hose->global_number, rc); |
| continue; |
| } |
| |
| /* If the PHB doesn't have error, stop processing */ |
| if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR || |
| be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) { |
| pr_devel("%s: No error found on PHB#%x\n", |
| __func__, hose->global_number); |
| continue; |
| } |
| |
| /* |
| * Processing the error. We're expecting the error with |
| * highest priority reported upon multiple errors on the |
| * specific PHB. |
| */ |
| pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n", |
| __func__, be16_to_cpu(err_type), |
| be16_to_cpu(severity), be64_to_cpu(frozen_pe_no), |
| hose->global_number); |
| switch (be16_to_cpu(err_type)) { |
| case OPAL_EEH_IOC_ERROR: |
| if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) { |
| pr_err("EEH: dead IOC detected\n"); |
| ret = EEH_NEXT_ERR_DEAD_IOC; |
| } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { |
| pr_info("EEH: IOC informative error " |
| "detected\n"); |
| pnv_eeh_get_and_dump_hub_diag(hose); |
| ret = EEH_NEXT_ERR_NONE; |
| } |
| |
| break; |
| case OPAL_EEH_PHB_ERROR: |
| if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) { |
| *pe = phb_pe; |
| pr_err("EEH: dead PHB#%x detected, " |
| "location: %s\n", |
| hose->global_number, |
| eeh_pe_loc_get(phb_pe)); |
| ret = EEH_NEXT_ERR_DEAD_PHB; |
| } else if (be16_to_cpu(severity) == |
| OPAL_EEH_SEV_PHB_FENCED) { |
| *pe = phb_pe; |
| pr_err("EEH: Fenced PHB#%x detected, " |
| "location: %s\n", |
| hose->global_number, |
| eeh_pe_loc_get(phb_pe)); |
| ret = EEH_NEXT_ERR_FENCED_PHB; |
| } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { |
| pr_info("EEH: PHB#%x informative error " |
| "detected, location: %s\n", |
| hose->global_number, |
| eeh_pe_loc_get(phb_pe)); |
| pnv_eeh_get_phb_diag(phb_pe); |
| pnv_pci_dump_phb_diag_data(hose, phb_pe->data); |
| ret = EEH_NEXT_ERR_NONE; |
| } |
| |
| break; |
| case OPAL_EEH_PE_ERROR: |
| /* |
| * If we can't find the corresponding PE, we |
| * just try to unfreeze. |
| */ |
| if (pnv_eeh_get_pe(hose, |
| be64_to_cpu(frozen_pe_no), pe)) { |
| /* Try best to clear it */ |
| pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n", |
| hose->global_number, frozen_pe_no); |
| pr_info("EEH: PHB location: %s\n", |
| eeh_pe_loc_get(phb_pe)); |
| opal_pci_eeh_freeze_clear(phb->opal_id, |
| frozen_pe_no, |
| OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); |
| ret = EEH_NEXT_ERR_NONE; |
| } else if ((*pe)->state & EEH_PE_ISOLATED || |
| eeh_pe_passed(*pe)) { |
| ret = EEH_NEXT_ERR_NONE; |
| } else { |
| pr_err("EEH: Frozen PE#%x " |
| "on PHB#%x detected\n", |
| (*pe)->addr, |
| (*pe)->phb->global_number); |
| pr_err("EEH: PE location: %s, " |
| "PHB location: %s\n", |
| eeh_pe_loc_get(*pe), |
| eeh_pe_loc_get(phb_pe)); |
| ret = EEH_NEXT_ERR_FROZEN_PE; |
| } |
| |
| break; |
| default: |
| pr_warn("%s: Unexpected error type %d\n", |
| __func__, be16_to_cpu(err_type)); |
| } |
| |
| /* |
| * EEH core will try recover from fenced PHB or |
| * frozen PE. In the time for frozen PE, EEH core |
| * enable IO path for that before collecting logs, |
| * but it ruins the site. So we have to dump the |
| * log in advance here. |
| */ |
| if ((ret == EEH_NEXT_ERR_FROZEN_PE || |
| ret == EEH_NEXT_ERR_FENCED_PHB) && |
| !((*pe)->state & EEH_PE_ISOLATED)) { |
| eeh_pe_state_mark(*pe, EEH_PE_ISOLATED); |
| pnv_eeh_get_phb_diag(*pe); |
| |
| if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) |
| pnv_pci_dump_phb_diag_data((*pe)->phb, |
| (*pe)->data); |
| } |
| |
| /* |
| * We probably have the frozen parent PE out there and |
| * we need have to handle frozen parent PE firstly. |
| */ |
| if (ret == EEH_NEXT_ERR_FROZEN_PE) { |
| parent_pe = (*pe)->parent; |
| while (parent_pe) { |
| /* Hit the ceiling ? */ |
| if (parent_pe->type & EEH_PE_PHB) |
| break; |
| |
| /* Frozen parent PE ? */ |
| state = eeh_ops->get_state(parent_pe, NULL); |
| if (state > 0 && |
| (state & active_flags) != active_flags) |
| *pe = parent_pe; |
| |
| /* Next parent level */ |
| parent_pe = parent_pe->parent; |
| } |
| |
| /* We possibly migrate to another PE */ |
| eeh_pe_state_mark(*pe, EEH_PE_ISOLATED); |
| } |
| |
| /* |
| * If we have no errors on the specific PHB or only |
| * informative error there, we continue poking it. |
| * Otherwise, we need actions to be taken by upper |
| * layer. |
| */ |
| if (ret > EEH_NEXT_ERR_INF) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int pnv_eeh_restore_config(struct device_node *dn) |
| { |
| struct eeh_dev *edev = of_node_to_eeh_dev(dn); |
| struct pnv_phb *phb; |
| s64 ret; |
| |
| if (!edev) |
| return -EEXIST; |
| |
| phb = edev->phb->private_data; |
| ret = opal_pci_reinit(phb->opal_id, |
| OPAL_REINIT_PCI_DEV, edev->config_addr); |
| if (ret) { |
| pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n", |
| __func__, edev->config_addr, ret); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static struct eeh_ops pnv_eeh_ops = { |
| .name = "powernv", |
| .init = pnv_eeh_init, |
| .post_init = pnv_eeh_post_init, |
| .probe = pnv_eeh_probe, |
| .set_option = pnv_eeh_set_option, |
| .get_pe_addr = pnv_eeh_get_pe_addr, |
| .get_state = pnv_eeh_get_state, |
| .reset = pnv_eeh_reset, |
| .wait_state = pnv_eeh_wait_state, |
| .get_log = pnv_eeh_get_log, |
| .configure_bridge = pnv_eeh_configure_bridge, |
| .err_inject = pnv_eeh_err_inject, |
| .read_config = pnv_eeh_read_config, |
| .write_config = pnv_eeh_write_config, |
| .next_error = pnv_eeh_next_error, |
| .restore_config = pnv_eeh_restore_config |
| }; |
| |
| /** |
| * eeh_powernv_init - Register platform dependent EEH operations |
| * |
| * EEH initialization on powernv platform. This function should be |
| * called before any EEH related functions. |
| */ |
| static int __init eeh_powernv_init(void) |
| { |
| int ret = -EINVAL; |
| |
| eeh_set_pe_aux_size(PNV_PCI_DIAG_BUF_SIZE); |
| ret = eeh_ops_register(&pnv_eeh_ops); |
| if (!ret) |
| pr_info("EEH: PowerNV platform initialized\n"); |
| else |
| pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret); |
| |
| return ret; |
| } |
| machine_early_initcall(powernv, eeh_powernv_init); |