| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. |
| */ |
| |
| #include "noise.h" |
| #include "device.h" |
| #include "peer.h" |
| #include "messages.h" |
| #include "queueing.h" |
| #include "peerlookup.h" |
| |
| #include <linux/rcupdate.h> |
| #include <linux/slab.h> |
| #include <linux/bitmap.h> |
| #include <linux/scatterlist.h> |
| #include <linux/highmem.h> |
| #include <crypto/algapi.h> |
| |
| /* This implements Noise_IKpsk2: |
| * |
| * <- s |
| * ****** |
| * -> e, es, s, ss, {t} |
| * <- e, ee, se, psk, {} |
| */ |
| |
| static const u8 handshake_name[37] = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s"; |
| static const u8 identifier_name[34] = "WireGuard v1 zx2c4 Jason@zx2c4.com"; |
| static u8 handshake_init_hash[NOISE_HASH_LEN] __ro_after_init; |
| static u8 handshake_init_chaining_key[NOISE_HASH_LEN] __ro_after_init; |
| static atomic64_t keypair_counter = ATOMIC64_INIT(0); |
| |
| void __init wg_noise_init(void) |
| { |
| struct blake2s_state blake; |
| |
| blake2s(handshake_init_chaining_key, handshake_name, NULL, |
| NOISE_HASH_LEN, sizeof(handshake_name), 0); |
| blake2s_init(&blake, NOISE_HASH_LEN); |
| blake2s_update(&blake, handshake_init_chaining_key, NOISE_HASH_LEN); |
| blake2s_update(&blake, identifier_name, sizeof(identifier_name)); |
| blake2s_final(&blake, handshake_init_hash); |
| } |
| |
| /* Must hold peer->handshake.static_identity->lock */ |
| void wg_noise_precompute_static_static(struct wg_peer *peer) |
| { |
| down_write(&peer->handshake.lock); |
| if (!peer->handshake.static_identity->has_identity || |
| !curve25519(peer->handshake.precomputed_static_static, |
| peer->handshake.static_identity->static_private, |
| peer->handshake.remote_static)) |
| memset(peer->handshake.precomputed_static_static, 0, |
| NOISE_PUBLIC_KEY_LEN); |
| up_write(&peer->handshake.lock); |
| } |
| |
| void wg_noise_handshake_init(struct noise_handshake *handshake, |
| struct noise_static_identity *static_identity, |
| const u8 peer_public_key[NOISE_PUBLIC_KEY_LEN], |
| const u8 peer_preshared_key[NOISE_SYMMETRIC_KEY_LEN], |
| struct wg_peer *peer) |
| { |
| memset(handshake, 0, sizeof(*handshake)); |
| init_rwsem(&handshake->lock); |
| handshake->entry.type = INDEX_HASHTABLE_HANDSHAKE; |
| handshake->entry.peer = peer; |
| memcpy(handshake->remote_static, peer_public_key, NOISE_PUBLIC_KEY_LEN); |
| if (peer_preshared_key) |
| memcpy(handshake->preshared_key, peer_preshared_key, |
| NOISE_SYMMETRIC_KEY_LEN); |
| handshake->static_identity = static_identity; |
| handshake->state = HANDSHAKE_ZEROED; |
| wg_noise_precompute_static_static(peer); |
| } |
| |
| static void handshake_zero(struct noise_handshake *handshake) |
| { |
| memset(&handshake->ephemeral_private, 0, NOISE_PUBLIC_KEY_LEN); |
| memset(&handshake->remote_ephemeral, 0, NOISE_PUBLIC_KEY_LEN); |
| memset(&handshake->hash, 0, NOISE_HASH_LEN); |
| memset(&handshake->chaining_key, 0, NOISE_HASH_LEN); |
| handshake->remote_index = 0; |
| handshake->state = HANDSHAKE_ZEROED; |
| } |
| |
| void wg_noise_handshake_clear(struct noise_handshake *handshake) |
| { |
| wg_index_hashtable_remove( |
| handshake->entry.peer->device->index_hashtable, |
| &handshake->entry); |
| down_write(&handshake->lock); |
| handshake_zero(handshake); |
| up_write(&handshake->lock); |
| wg_index_hashtable_remove( |
| handshake->entry.peer->device->index_hashtable, |
| &handshake->entry); |
| } |
| |
| static struct noise_keypair *keypair_create(struct wg_peer *peer) |
| { |
| struct noise_keypair *keypair = kzalloc(sizeof(*keypair), GFP_KERNEL); |
| |
| if (unlikely(!keypair)) |
| return NULL; |
| keypair->internal_id = atomic64_inc_return(&keypair_counter); |
| keypair->entry.type = INDEX_HASHTABLE_KEYPAIR; |
| keypair->entry.peer = peer; |
| kref_init(&keypair->refcount); |
| return keypair; |
| } |
| |
| static void keypair_free_rcu(struct rcu_head *rcu) |
| { |
| kzfree(container_of(rcu, struct noise_keypair, rcu)); |
| } |
| |
| static void keypair_free_kref(struct kref *kref) |
| { |
| struct noise_keypair *keypair = |
| container_of(kref, struct noise_keypair, refcount); |
| |
| net_dbg_ratelimited("%s: Keypair %llu destroyed for peer %llu\n", |
| keypair->entry.peer->device->dev->name, |
| keypair->internal_id, |
| keypair->entry.peer->internal_id); |
| wg_index_hashtable_remove(keypair->entry.peer->device->index_hashtable, |
| &keypair->entry); |
| call_rcu(&keypair->rcu, keypair_free_rcu); |
| } |
| |
| void wg_noise_keypair_put(struct noise_keypair *keypair, bool unreference_now) |
| { |
| if (unlikely(!keypair)) |
| return; |
| if (unlikely(unreference_now)) |
| wg_index_hashtable_remove( |
| keypair->entry.peer->device->index_hashtable, |
| &keypair->entry); |
| kref_put(&keypair->refcount, keypair_free_kref); |
| } |
| |
| struct noise_keypair *wg_noise_keypair_get(struct noise_keypair *keypair) |
| { |
| RCU_LOCKDEP_WARN(!rcu_read_lock_bh_held(), |
| "Taking noise keypair reference without holding the RCU BH read lock"); |
| if (unlikely(!keypair || !kref_get_unless_zero(&keypair->refcount))) |
| return NULL; |
| return keypair; |
| } |
| |
| void wg_noise_keypairs_clear(struct noise_keypairs *keypairs) |
| { |
| struct noise_keypair *old; |
| |
| spin_lock_bh(&keypairs->keypair_update_lock); |
| |
| /* We zero the next_keypair before zeroing the others, so that |
| * wg_noise_received_with_keypair returns early before subsequent ones |
| * are zeroed. |
| */ |
| old = rcu_dereference_protected(keypairs->next_keypair, |
| lockdep_is_held(&keypairs->keypair_update_lock)); |
| RCU_INIT_POINTER(keypairs->next_keypair, NULL); |
| wg_noise_keypair_put(old, true); |
| |
| old = rcu_dereference_protected(keypairs->previous_keypair, |
| lockdep_is_held(&keypairs->keypair_update_lock)); |
| RCU_INIT_POINTER(keypairs->previous_keypair, NULL); |
| wg_noise_keypair_put(old, true); |
| |
| old = rcu_dereference_protected(keypairs->current_keypair, |
| lockdep_is_held(&keypairs->keypair_update_lock)); |
| RCU_INIT_POINTER(keypairs->current_keypair, NULL); |
| wg_noise_keypair_put(old, true); |
| |
| spin_unlock_bh(&keypairs->keypair_update_lock); |
| } |
| |
| void wg_noise_expire_current_peer_keypairs(struct wg_peer *peer) |
| { |
| struct noise_keypair *keypair; |
| |
| wg_noise_handshake_clear(&peer->handshake); |
| wg_noise_reset_last_sent_handshake(&peer->last_sent_handshake); |
| |
| spin_lock_bh(&peer->keypairs.keypair_update_lock); |
| keypair = rcu_dereference_protected(peer->keypairs.next_keypair, |
| lockdep_is_held(&peer->keypairs.keypair_update_lock)); |
| if (keypair) |
| keypair->sending.is_valid = false; |
| keypair = rcu_dereference_protected(peer->keypairs.current_keypair, |
| lockdep_is_held(&peer->keypairs.keypair_update_lock)); |
| if (keypair) |
| keypair->sending.is_valid = false; |
| spin_unlock_bh(&peer->keypairs.keypair_update_lock); |
| } |
| |
| static void add_new_keypair(struct noise_keypairs *keypairs, |
| struct noise_keypair *new_keypair) |
| { |
| struct noise_keypair *previous_keypair, *next_keypair, *current_keypair; |
| |
| spin_lock_bh(&keypairs->keypair_update_lock); |
| previous_keypair = rcu_dereference_protected(keypairs->previous_keypair, |
| lockdep_is_held(&keypairs->keypair_update_lock)); |
| next_keypair = rcu_dereference_protected(keypairs->next_keypair, |
| lockdep_is_held(&keypairs->keypair_update_lock)); |
| current_keypair = rcu_dereference_protected(keypairs->current_keypair, |
| lockdep_is_held(&keypairs->keypair_update_lock)); |
| if (new_keypair->i_am_the_initiator) { |
| /* If we're the initiator, it means we've sent a handshake, and |
| * received a confirmation response, which means this new |
| * keypair can now be used. |
| */ |
| if (next_keypair) { |
| /* If there already was a next keypair pending, we |
| * demote it to be the previous keypair, and free the |
| * existing current. Note that this means KCI can result |
| * in this transition. It would perhaps be more sound to |
| * always just get rid of the unused next keypair |
| * instead of putting it in the previous slot, but this |
| * might be a bit less robust. Something to think about |
| * for the future. |
| */ |
| RCU_INIT_POINTER(keypairs->next_keypair, NULL); |
| rcu_assign_pointer(keypairs->previous_keypair, |
| next_keypair); |
| wg_noise_keypair_put(current_keypair, true); |
| } else /* If there wasn't an existing next keypair, we replace |
| * the previous with the current one. |
| */ |
| rcu_assign_pointer(keypairs->previous_keypair, |
| current_keypair); |
| /* At this point we can get rid of the old previous keypair, and |
| * set up the new keypair. |
| */ |
| wg_noise_keypair_put(previous_keypair, true); |
| rcu_assign_pointer(keypairs->current_keypair, new_keypair); |
| } else { |
| /* If we're the responder, it means we can't use the new keypair |
| * until we receive confirmation via the first data packet, so |
| * we get rid of the existing previous one, the possibly |
| * existing next one, and slide in the new next one. |
| */ |
| rcu_assign_pointer(keypairs->next_keypair, new_keypair); |
| wg_noise_keypair_put(next_keypair, true); |
| RCU_INIT_POINTER(keypairs->previous_keypair, NULL); |
| wg_noise_keypair_put(previous_keypair, true); |
| } |
| spin_unlock_bh(&keypairs->keypair_update_lock); |
| } |
| |
| bool wg_noise_received_with_keypair(struct noise_keypairs *keypairs, |
| struct noise_keypair *received_keypair) |
| { |
| struct noise_keypair *old_keypair; |
| bool key_is_new; |
| |
| /* We first check without taking the spinlock. */ |
| key_is_new = received_keypair == |
| rcu_access_pointer(keypairs->next_keypair); |
| if (likely(!key_is_new)) |
| return false; |
| |
| spin_lock_bh(&keypairs->keypair_update_lock); |
| /* After locking, we double check that things didn't change from |
| * beneath us. |
| */ |
| if (unlikely(received_keypair != |
| rcu_dereference_protected(keypairs->next_keypair, |
| lockdep_is_held(&keypairs->keypair_update_lock)))) { |
| spin_unlock_bh(&keypairs->keypair_update_lock); |
| return false; |
| } |
| |
| /* When we've finally received the confirmation, we slide the next |
| * into the current, the current into the previous, and get rid of |
| * the old previous. |
| */ |
| old_keypair = rcu_dereference_protected(keypairs->previous_keypair, |
| lockdep_is_held(&keypairs->keypair_update_lock)); |
| rcu_assign_pointer(keypairs->previous_keypair, |
| rcu_dereference_protected(keypairs->current_keypair, |
| lockdep_is_held(&keypairs->keypair_update_lock))); |
| wg_noise_keypair_put(old_keypair, true); |
| rcu_assign_pointer(keypairs->current_keypair, received_keypair); |
| RCU_INIT_POINTER(keypairs->next_keypair, NULL); |
| |
| spin_unlock_bh(&keypairs->keypair_update_lock); |
| return true; |
| } |
| |
| /* Must hold static_identity->lock */ |
| void wg_noise_set_static_identity_private_key( |
| struct noise_static_identity *static_identity, |
| const u8 private_key[NOISE_PUBLIC_KEY_LEN]) |
| { |
| memcpy(static_identity->static_private, private_key, |
| NOISE_PUBLIC_KEY_LEN); |
| curve25519_clamp_secret(static_identity->static_private); |
| static_identity->has_identity = curve25519_generate_public( |
| static_identity->static_public, private_key); |
| } |
| |
| /* This is Hugo Krawczyk's HKDF: |
| * - https://eprint.iacr.org/2010/264.pdf |
| * - https://tools.ietf.org/html/rfc5869 |
| */ |
| static void kdf(u8 *first_dst, u8 *second_dst, u8 *third_dst, const u8 *data, |
| size_t first_len, size_t second_len, size_t third_len, |
| size_t data_len, const u8 chaining_key[NOISE_HASH_LEN]) |
| { |
| u8 output[BLAKE2S_HASH_SIZE + 1]; |
| u8 secret[BLAKE2S_HASH_SIZE]; |
| |
| WARN_ON(IS_ENABLED(DEBUG) && |
| (first_len > BLAKE2S_HASH_SIZE || |
| second_len > BLAKE2S_HASH_SIZE || |
| third_len > BLAKE2S_HASH_SIZE || |
| ((second_len || second_dst || third_len || third_dst) && |
| (!first_len || !first_dst)) || |
| ((third_len || third_dst) && (!second_len || !second_dst)))); |
| |
| /* Extract entropy from data into secret */ |
| blake2s256_hmac(secret, data, chaining_key, data_len, NOISE_HASH_LEN); |
| |
| if (!first_dst || !first_len) |
| goto out; |
| |
| /* Expand first key: key = secret, data = 0x1 */ |
| output[0] = 1; |
| blake2s256_hmac(output, output, secret, 1, BLAKE2S_HASH_SIZE); |
| memcpy(first_dst, output, first_len); |
| |
| if (!second_dst || !second_len) |
| goto out; |
| |
| /* Expand second key: key = secret, data = first-key || 0x2 */ |
| output[BLAKE2S_HASH_SIZE] = 2; |
| blake2s256_hmac(output, output, secret, BLAKE2S_HASH_SIZE + 1, |
| BLAKE2S_HASH_SIZE); |
| memcpy(second_dst, output, second_len); |
| |
| if (!third_dst || !third_len) |
| goto out; |
| |
| /* Expand third key: key = secret, data = second-key || 0x3 */ |
| output[BLAKE2S_HASH_SIZE] = 3; |
| blake2s256_hmac(output, output, secret, BLAKE2S_HASH_SIZE + 1, |
| BLAKE2S_HASH_SIZE); |
| memcpy(third_dst, output, third_len); |
| |
| out: |
| /* Clear sensitive data from stack */ |
| memzero_explicit(secret, BLAKE2S_HASH_SIZE); |
| memzero_explicit(output, BLAKE2S_HASH_SIZE + 1); |
| } |
| |
| static void symmetric_key_init(struct noise_symmetric_key *key) |
| { |
| spin_lock_init(&key->counter.receive.lock); |
| atomic64_set(&key->counter.counter, 0); |
| memset(key->counter.receive.backtrack, 0, |
| sizeof(key->counter.receive.backtrack)); |
| key->birthdate = ktime_get_coarse_boottime_ns(); |
| key->is_valid = true; |
| } |
| |
| static void derive_keys(struct noise_symmetric_key *first_dst, |
| struct noise_symmetric_key *second_dst, |
| const u8 chaining_key[NOISE_HASH_LEN]) |
| { |
| kdf(first_dst->key, second_dst->key, NULL, NULL, |
| NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, 0, |
| chaining_key); |
| symmetric_key_init(first_dst); |
| symmetric_key_init(second_dst); |
| } |
| |
| static bool __must_check mix_dh(u8 chaining_key[NOISE_HASH_LEN], |
| u8 key[NOISE_SYMMETRIC_KEY_LEN], |
| const u8 private[NOISE_PUBLIC_KEY_LEN], |
| const u8 public[NOISE_PUBLIC_KEY_LEN]) |
| { |
| u8 dh_calculation[NOISE_PUBLIC_KEY_LEN]; |
| |
| if (unlikely(!curve25519(dh_calculation, private, public))) |
| return false; |
| kdf(chaining_key, key, NULL, dh_calculation, NOISE_HASH_LEN, |
| NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN, chaining_key); |
| memzero_explicit(dh_calculation, NOISE_PUBLIC_KEY_LEN); |
| return true; |
| } |
| |
| static bool __must_check mix_precomputed_dh(u8 chaining_key[NOISE_HASH_LEN], |
| u8 key[NOISE_SYMMETRIC_KEY_LEN], |
| const u8 precomputed[NOISE_PUBLIC_KEY_LEN]) |
| { |
| static u8 zero_point[NOISE_PUBLIC_KEY_LEN]; |
| if (unlikely(!crypto_memneq(precomputed, zero_point, NOISE_PUBLIC_KEY_LEN))) |
| return false; |
| kdf(chaining_key, key, NULL, precomputed, NOISE_HASH_LEN, |
| NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN, |
| chaining_key); |
| return true; |
| } |
| |
| static void mix_hash(u8 hash[NOISE_HASH_LEN], const u8 *src, size_t src_len) |
| { |
| struct blake2s_state blake; |
| |
| blake2s_init(&blake, NOISE_HASH_LEN); |
| blake2s_update(&blake, hash, NOISE_HASH_LEN); |
| blake2s_update(&blake, src, src_len); |
| blake2s_final(&blake, hash); |
| } |
| |
| static void mix_psk(u8 chaining_key[NOISE_HASH_LEN], u8 hash[NOISE_HASH_LEN], |
| u8 key[NOISE_SYMMETRIC_KEY_LEN], |
| const u8 psk[NOISE_SYMMETRIC_KEY_LEN]) |
| { |
| u8 temp_hash[NOISE_HASH_LEN]; |
| |
| kdf(chaining_key, temp_hash, key, psk, NOISE_HASH_LEN, NOISE_HASH_LEN, |
| NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, chaining_key); |
| mix_hash(hash, temp_hash, NOISE_HASH_LEN); |
| memzero_explicit(temp_hash, NOISE_HASH_LEN); |
| } |
| |
| static void handshake_init(u8 chaining_key[NOISE_HASH_LEN], |
| u8 hash[NOISE_HASH_LEN], |
| const u8 remote_static[NOISE_PUBLIC_KEY_LEN]) |
| { |
| memcpy(hash, handshake_init_hash, NOISE_HASH_LEN); |
| memcpy(chaining_key, handshake_init_chaining_key, NOISE_HASH_LEN); |
| mix_hash(hash, remote_static, NOISE_PUBLIC_KEY_LEN); |
| } |
| |
| static void message_encrypt(u8 *dst_ciphertext, const u8 *src_plaintext, |
| size_t src_len, u8 key[NOISE_SYMMETRIC_KEY_LEN], |
| u8 hash[NOISE_HASH_LEN]) |
| { |
| chacha20poly1305_encrypt(dst_ciphertext, src_plaintext, src_len, hash, |
| NOISE_HASH_LEN, |
| 0 /* Always zero for Noise_IK */, key); |
| mix_hash(hash, dst_ciphertext, noise_encrypted_len(src_len)); |
| } |
| |
| static bool message_decrypt(u8 *dst_plaintext, const u8 *src_ciphertext, |
| size_t src_len, u8 key[NOISE_SYMMETRIC_KEY_LEN], |
| u8 hash[NOISE_HASH_LEN]) |
| { |
| if (!chacha20poly1305_decrypt(dst_plaintext, src_ciphertext, src_len, |
| hash, NOISE_HASH_LEN, |
| 0 /* Always zero for Noise_IK */, key)) |
| return false; |
| mix_hash(hash, src_ciphertext, src_len); |
| return true; |
| } |
| |
| static void message_ephemeral(u8 ephemeral_dst[NOISE_PUBLIC_KEY_LEN], |
| const u8 ephemeral_src[NOISE_PUBLIC_KEY_LEN], |
| u8 chaining_key[NOISE_HASH_LEN], |
| u8 hash[NOISE_HASH_LEN]) |
| { |
| if (ephemeral_dst != ephemeral_src) |
| memcpy(ephemeral_dst, ephemeral_src, NOISE_PUBLIC_KEY_LEN); |
| mix_hash(hash, ephemeral_src, NOISE_PUBLIC_KEY_LEN); |
| kdf(chaining_key, NULL, NULL, ephemeral_src, NOISE_HASH_LEN, 0, 0, |
| NOISE_PUBLIC_KEY_LEN, chaining_key); |
| } |
| |
| static void tai64n_now(u8 output[NOISE_TIMESTAMP_LEN]) |
| { |
| struct timespec64 now; |
| |
| ktime_get_real_ts64(&now); |
| |
| /* In order to prevent some sort of infoleak from precise timers, we |
| * round down the nanoseconds part to the closest rounded-down power of |
| * two to the maximum initiations per second allowed anyway by the |
| * implementation. |
| */ |
| now.tv_nsec = ALIGN_DOWN(now.tv_nsec, |
| rounddown_pow_of_two(NSEC_PER_SEC / INITIATIONS_PER_SECOND)); |
| |
| /* https://cr.yp.to/libtai/tai64.html */ |
| *(__be64 *)output = cpu_to_be64(0x400000000000000aULL + now.tv_sec); |
| *(__be32 *)(output + sizeof(__be64)) = cpu_to_be32(now.tv_nsec); |
| } |
| |
| bool |
| wg_noise_handshake_create_initiation(struct message_handshake_initiation *dst, |
| struct noise_handshake *handshake) |
| { |
| u8 timestamp[NOISE_TIMESTAMP_LEN]; |
| u8 key[NOISE_SYMMETRIC_KEY_LEN]; |
| bool ret = false; |
| |
| /* We need to wait for crng _before_ taking any locks, since |
| * curve25519_generate_secret uses get_random_bytes_wait. |
| */ |
| wait_for_random_bytes(); |
| |
| down_read(&handshake->static_identity->lock); |
| down_write(&handshake->lock); |
| |
| if (unlikely(!handshake->static_identity->has_identity)) |
| goto out; |
| |
| dst->header.type = cpu_to_le32(MESSAGE_HANDSHAKE_INITIATION); |
| |
| handshake_init(handshake->chaining_key, handshake->hash, |
| handshake->remote_static); |
| |
| /* e */ |
| curve25519_generate_secret(handshake->ephemeral_private); |
| if (!curve25519_generate_public(dst->unencrypted_ephemeral, |
| handshake->ephemeral_private)) |
| goto out; |
| message_ephemeral(dst->unencrypted_ephemeral, |
| dst->unencrypted_ephemeral, handshake->chaining_key, |
| handshake->hash); |
| |
| /* es */ |
| if (!mix_dh(handshake->chaining_key, key, handshake->ephemeral_private, |
| handshake->remote_static)) |
| goto out; |
| |
| /* s */ |
| message_encrypt(dst->encrypted_static, |
| handshake->static_identity->static_public, |
| NOISE_PUBLIC_KEY_LEN, key, handshake->hash); |
| |
| /* ss */ |
| if (!mix_precomputed_dh(handshake->chaining_key, key, |
| handshake->precomputed_static_static)) |
| goto out; |
| |
| /* {t} */ |
| tai64n_now(timestamp); |
| message_encrypt(dst->encrypted_timestamp, timestamp, |
| NOISE_TIMESTAMP_LEN, key, handshake->hash); |
| |
| dst->sender_index = wg_index_hashtable_insert( |
| handshake->entry.peer->device->index_hashtable, |
| &handshake->entry); |
| |
| handshake->state = HANDSHAKE_CREATED_INITIATION; |
| ret = true; |
| |
| out: |
| up_write(&handshake->lock); |
| up_read(&handshake->static_identity->lock); |
| memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN); |
| return ret; |
| } |
| |
| struct wg_peer * |
| wg_noise_handshake_consume_initiation(struct message_handshake_initiation *src, |
| struct wg_device *wg) |
| { |
| struct wg_peer *peer = NULL, *ret_peer = NULL; |
| struct noise_handshake *handshake; |
| bool replay_attack, flood_attack; |
| u8 key[NOISE_SYMMETRIC_KEY_LEN]; |
| u8 chaining_key[NOISE_HASH_LEN]; |
| u8 hash[NOISE_HASH_LEN]; |
| u8 s[NOISE_PUBLIC_KEY_LEN]; |
| u8 e[NOISE_PUBLIC_KEY_LEN]; |
| u8 t[NOISE_TIMESTAMP_LEN]; |
| u64 initiation_consumption; |
| |
| down_read(&wg->static_identity.lock); |
| if (unlikely(!wg->static_identity.has_identity)) |
| goto out; |
| |
| handshake_init(chaining_key, hash, wg->static_identity.static_public); |
| |
| /* e */ |
| message_ephemeral(e, src->unencrypted_ephemeral, chaining_key, hash); |
| |
| /* es */ |
| if (!mix_dh(chaining_key, key, wg->static_identity.static_private, e)) |
| goto out; |
| |
| /* s */ |
| if (!message_decrypt(s, src->encrypted_static, |
| sizeof(src->encrypted_static), key, hash)) |
| goto out; |
| |
| /* Lookup which peer we're actually talking to */ |
| peer = wg_pubkey_hashtable_lookup(wg->peer_hashtable, s); |
| if (!peer) |
| goto out; |
| handshake = &peer->handshake; |
| |
| /* ss */ |
| if (!mix_precomputed_dh(chaining_key, key, |
| handshake->precomputed_static_static)) |
| goto out; |
| |
| /* {t} */ |
| if (!message_decrypt(t, src->encrypted_timestamp, |
| sizeof(src->encrypted_timestamp), key, hash)) |
| goto out; |
| |
| down_read(&handshake->lock); |
| replay_attack = memcmp(t, handshake->latest_timestamp, |
| NOISE_TIMESTAMP_LEN) <= 0; |
| flood_attack = (s64)handshake->last_initiation_consumption + |
| NSEC_PER_SEC / INITIATIONS_PER_SECOND > |
| (s64)ktime_get_coarse_boottime_ns(); |
| up_read(&handshake->lock); |
| if (replay_attack || flood_attack) |
| goto out; |
| |
| /* Success! Copy everything to peer */ |
| down_write(&handshake->lock); |
| memcpy(handshake->remote_ephemeral, e, NOISE_PUBLIC_KEY_LEN); |
| if (memcmp(t, handshake->latest_timestamp, NOISE_TIMESTAMP_LEN) > 0) |
| memcpy(handshake->latest_timestamp, t, NOISE_TIMESTAMP_LEN); |
| memcpy(handshake->hash, hash, NOISE_HASH_LEN); |
| memcpy(handshake->chaining_key, chaining_key, NOISE_HASH_LEN); |
| handshake->remote_index = src->sender_index; |
| if ((s64)(handshake->last_initiation_consumption - |
| (initiation_consumption = ktime_get_coarse_boottime_ns())) < 0) |
| handshake->last_initiation_consumption = initiation_consumption; |
| handshake->state = HANDSHAKE_CONSUMED_INITIATION; |
| up_write(&handshake->lock); |
| ret_peer = peer; |
| |
| out: |
| memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN); |
| memzero_explicit(hash, NOISE_HASH_LEN); |
| memzero_explicit(chaining_key, NOISE_HASH_LEN); |
| up_read(&wg->static_identity.lock); |
| if (!ret_peer) |
| wg_peer_put(peer); |
| return ret_peer; |
| } |
| |
| bool wg_noise_handshake_create_response(struct message_handshake_response *dst, |
| struct noise_handshake *handshake) |
| { |
| u8 key[NOISE_SYMMETRIC_KEY_LEN]; |
| bool ret = false; |
| |
| /* We need to wait for crng _before_ taking any locks, since |
| * curve25519_generate_secret uses get_random_bytes_wait. |
| */ |
| wait_for_random_bytes(); |
| |
| down_read(&handshake->static_identity->lock); |
| down_write(&handshake->lock); |
| |
| if (handshake->state != HANDSHAKE_CONSUMED_INITIATION) |
| goto out; |
| |
| dst->header.type = cpu_to_le32(MESSAGE_HANDSHAKE_RESPONSE); |
| dst->receiver_index = handshake->remote_index; |
| |
| /* e */ |
| curve25519_generate_secret(handshake->ephemeral_private); |
| if (!curve25519_generate_public(dst->unencrypted_ephemeral, |
| handshake->ephemeral_private)) |
| goto out; |
| message_ephemeral(dst->unencrypted_ephemeral, |
| dst->unencrypted_ephemeral, handshake->chaining_key, |
| handshake->hash); |
| |
| /* ee */ |
| if (!mix_dh(handshake->chaining_key, NULL, handshake->ephemeral_private, |
| handshake->remote_ephemeral)) |
| goto out; |
| |
| /* se */ |
| if (!mix_dh(handshake->chaining_key, NULL, handshake->ephemeral_private, |
| handshake->remote_static)) |
| goto out; |
| |
| /* psk */ |
| mix_psk(handshake->chaining_key, handshake->hash, key, |
| handshake->preshared_key); |
| |
| /* {} */ |
| message_encrypt(dst->encrypted_nothing, NULL, 0, key, handshake->hash); |
| |
| dst->sender_index = wg_index_hashtable_insert( |
| handshake->entry.peer->device->index_hashtable, |
| &handshake->entry); |
| |
| handshake->state = HANDSHAKE_CREATED_RESPONSE; |
| ret = true; |
| |
| out: |
| up_write(&handshake->lock); |
| up_read(&handshake->static_identity->lock); |
| memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN); |
| return ret; |
| } |
| |
| struct wg_peer * |
| wg_noise_handshake_consume_response(struct message_handshake_response *src, |
| struct wg_device *wg) |
| { |
| enum noise_handshake_state state = HANDSHAKE_ZEROED; |
| struct wg_peer *peer = NULL, *ret_peer = NULL; |
| struct noise_handshake *handshake; |
| u8 key[NOISE_SYMMETRIC_KEY_LEN]; |
| u8 hash[NOISE_HASH_LEN]; |
| u8 chaining_key[NOISE_HASH_LEN]; |
| u8 e[NOISE_PUBLIC_KEY_LEN]; |
| u8 ephemeral_private[NOISE_PUBLIC_KEY_LEN]; |
| u8 static_private[NOISE_PUBLIC_KEY_LEN]; |
| |
| down_read(&wg->static_identity.lock); |
| |
| if (unlikely(!wg->static_identity.has_identity)) |
| goto out; |
| |
| handshake = (struct noise_handshake *)wg_index_hashtable_lookup( |
| wg->index_hashtable, INDEX_HASHTABLE_HANDSHAKE, |
| src->receiver_index, &peer); |
| if (unlikely(!handshake)) |
| goto out; |
| |
| down_read(&handshake->lock); |
| state = handshake->state; |
| memcpy(hash, handshake->hash, NOISE_HASH_LEN); |
| memcpy(chaining_key, handshake->chaining_key, NOISE_HASH_LEN); |
| memcpy(ephemeral_private, handshake->ephemeral_private, |
| NOISE_PUBLIC_KEY_LEN); |
| up_read(&handshake->lock); |
| |
| if (state != HANDSHAKE_CREATED_INITIATION) |
| goto fail; |
| |
| /* e */ |
| message_ephemeral(e, src->unencrypted_ephemeral, chaining_key, hash); |
| |
| /* ee */ |
| if (!mix_dh(chaining_key, NULL, ephemeral_private, e)) |
| goto fail; |
| |
| /* se */ |
| if (!mix_dh(chaining_key, NULL, wg->static_identity.static_private, e)) |
| goto fail; |
| |
| /* psk */ |
| mix_psk(chaining_key, hash, key, handshake->preshared_key); |
| |
| /* {} */ |
| if (!message_decrypt(NULL, src->encrypted_nothing, |
| sizeof(src->encrypted_nothing), key, hash)) |
| goto fail; |
| |
| /* Success! Copy everything to peer */ |
| down_write(&handshake->lock); |
| /* It's important to check that the state is still the same, while we |
| * have an exclusive lock. |
| */ |
| if (handshake->state != state) { |
| up_write(&handshake->lock); |
| goto fail; |
| } |
| memcpy(handshake->remote_ephemeral, e, NOISE_PUBLIC_KEY_LEN); |
| memcpy(handshake->hash, hash, NOISE_HASH_LEN); |
| memcpy(handshake->chaining_key, chaining_key, NOISE_HASH_LEN); |
| handshake->remote_index = src->sender_index; |
| handshake->state = HANDSHAKE_CONSUMED_RESPONSE; |
| up_write(&handshake->lock); |
| ret_peer = peer; |
| goto out; |
| |
| fail: |
| wg_peer_put(peer); |
| out: |
| memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN); |
| memzero_explicit(hash, NOISE_HASH_LEN); |
| memzero_explicit(chaining_key, NOISE_HASH_LEN); |
| memzero_explicit(ephemeral_private, NOISE_PUBLIC_KEY_LEN); |
| memzero_explicit(static_private, NOISE_PUBLIC_KEY_LEN); |
| up_read(&wg->static_identity.lock); |
| return ret_peer; |
| } |
| |
| bool wg_noise_handshake_begin_session(struct noise_handshake *handshake, |
| struct noise_keypairs *keypairs) |
| { |
| struct noise_keypair *new_keypair; |
| bool ret = false; |
| |
| down_write(&handshake->lock); |
| if (handshake->state != HANDSHAKE_CREATED_RESPONSE && |
| handshake->state != HANDSHAKE_CONSUMED_RESPONSE) |
| goto out; |
| |
| new_keypair = keypair_create(handshake->entry.peer); |
| if (!new_keypair) |
| goto out; |
| new_keypair->i_am_the_initiator = handshake->state == |
| HANDSHAKE_CONSUMED_RESPONSE; |
| new_keypair->remote_index = handshake->remote_index; |
| |
| if (new_keypair->i_am_the_initiator) |
| derive_keys(&new_keypair->sending, &new_keypair->receiving, |
| handshake->chaining_key); |
| else |
| derive_keys(&new_keypair->receiving, &new_keypair->sending, |
| handshake->chaining_key); |
| |
| handshake_zero(handshake); |
| rcu_read_lock_bh(); |
| if (likely(!READ_ONCE(container_of(handshake, struct wg_peer, |
| handshake)->is_dead))) { |
| add_new_keypair(keypairs, new_keypair); |
| net_dbg_ratelimited("%s: Keypair %llu created for peer %llu\n", |
| handshake->entry.peer->device->dev->name, |
| new_keypair->internal_id, |
| handshake->entry.peer->internal_id); |
| ret = wg_index_hashtable_replace( |
| handshake->entry.peer->device->index_hashtable, |
| &handshake->entry, &new_keypair->entry); |
| } else { |
| kzfree(new_keypair); |
| } |
| rcu_read_unlock_bh(); |
| |
| out: |
| up_write(&handshake->lock); |
| return ret; |
| } |