| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * sca3000_core.c -- support VTI sca3000 series accelerometers via SPI |
| * |
| * Copyright (c) 2009 Jonathan Cameron <jic23@kernel.org> |
| * |
| * See industrialio/accels/sca3000.h for comments. |
| */ |
| |
| #include <linux/interrupt.h> |
| #include <linux/fs.h> |
| #include <linux/device.h> |
| #include <linux/slab.h> |
| #include <linux/kernel.h> |
| #include <linux/spi/spi.h> |
| #include <linux/sysfs.h> |
| #include <linux/module.h> |
| #include <linux/uaccess.h> |
| #include <linux/iio/iio.h> |
| #include <linux/iio/sysfs.h> |
| #include <linux/iio/events.h> |
| #include <linux/iio/buffer.h> |
| #include <linux/iio/kfifo_buf.h> |
| |
| #define SCA3000_WRITE_REG(a) (((a) << 2) | 0x02) |
| #define SCA3000_READ_REG(a) ((a) << 2) |
| |
| #define SCA3000_REG_REVID_ADDR 0x00 |
| #define SCA3000_REG_REVID_MAJOR_MASK GENMASK(8, 4) |
| #define SCA3000_REG_REVID_MINOR_MASK GENMASK(3, 0) |
| |
| #define SCA3000_REG_STATUS_ADDR 0x02 |
| #define SCA3000_LOCKED BIT(5) |
| #define SCA3000_EEPROM_CS_ERROR BIT(1) |
| #define SCA3000_SPI_FRAME_ERROR BIT(0) |
| |
| /* All reads done using register decrement so no need to directly access LSBs */ |
| #define SCA3000_REG_X_MSB_ADDR 0x05 |
| #define SCA3000_REG_Y_MSB_ADDR 0x07 |
| #define SCA3000_REG_Z_MSB_ADDR 0x09 |
| |
| #define SCA3000_REG_RING_OUT_ADDR 0x0f |
| |
| /* Temp read untested - the e05 doesn't have the sensor */ |
| #define SCA3000_REG_TEMP_MSB_ADDR 0x13 |
| |
| #define SCA3000_REG_MODE_ADDR 0x14 |
| #define SCA3000_MODE_PROT_MASK 0x28 |
| #define SCA3000_REG_MODE_RING_BUF_ENABLE BIT(7) |
| #define SCA3000_REG_MODE_RING_BUF_8BIT BIT(6) |
| |
| /* |
| * Free fall detection triggers an interrupt if the acceleration |
| * is below a threshold for equivalent of 25cm drop |
| */ |
| #define SCA3000_REG_MODE_FREE_FALL_DETECT BIT(4) |
| #define SCA3000_REG_MODE_MEAS_MODE_NORMAL 0x00 |
| #define SCA3000_REG_MODE_MEAS_MODE_OP_1 0x01 |
| #define SCA3000_REG_MODE_MEAS_MODE_OP_2 0x02 |
| |
| /* |
| * In motion detection mode the accelerations are band pass filtered |
| * (approx 1 - 25Hz) and then a programmable threshold used to trigger |
| * and interrupt. |
| */ |
| #define SCA3000_REG_MODE_MEAS_MODE_MOT_DET 0x03 |
| #define SCA3000_REG_MODE_MODE_MASK 0x03 |
| |
| #define SCA3000_REG_BUF_COUNT_ADDR 0x15 |
| |
| #define SCA3000_REG_INT_STATUS_ADDR 0x16 |
| #define SCA3000_REG_INT_STATUS_THREE_QUARTERS BIT(7) |
| #define SCA3000_REG_INT_STATUS_HALF BIT(6) |
| |
| #define SCA3000_INT_STATUS_FREE_FALL BIT(3) |
| #define SCA3000_INT_STATUS_Y_TRIGGER BIT(2) |
| #define SCA3000_INT_STATUS_X_TRIGGER BIT(1) |
| #define SCA3000_INT_STATUS_Z_TRIGGER BIT(0) |
| |
| /* Used to allow access to multiplexed registers */ |
| #define SCA3000_REG_CTRL_SEL_ADDR 0x18 |
| /* Only available for SCA3000-D03 and SCA3000-D01 */ |
| #define SCA3000_REG_CTRL_SEL_I2C_DISABLE 0x01 |
| #define SCA3000_REG_CTRL_SEL_MD_CTRL 0x02 |
| #define SCA3000_REG_CTRL_SEL_MD_Y_TH 0x03 |
| #define SCA3000_REG_CTRL_SEL_MD_X_TH 0x04 |
| #define SCA3000_REG_CTRL_SEL_MD_Z_TH 0x05 |
| /* |
| * BE VERY CAREFUL WITH THIS, IF 3 BITS ARE NOT SET the device |
| * will not function |
| */ |
| #define SCA3000_REG_CTRL_SEL_OUT_CTRL 0x0B |
| |
| #define SCA3000_REG_OUT_CTRL_PROT_MASK 0xE0 |
| #define SCA3000_REG_OUT_CTRL_BUF_X_EN 0x10 |
| #define SCA3000_REG_OUT_CTRL_BUF_Y_EN 0x08 |
| #define SCA3000_REG_OUT_CTRL_BUF_Z_EN 0x04 |
| #define SCA3000_REG_OUT_CTRL_BUF_DIV_MASK 0x03 |
| #define SCA3000_REG_OUT_CTRL_BUF_DIV_4 0x02 |
| #define SCA3000_REG_OUT_CTRL_BUF_DIV_2 0x01 |
| |
| |
| /* |
| * Control which motion detector interrupts are on. |
| * For now only OR combinations are supported. |
| */ |
| #define SCA3000_MD_CTRL_PROT_MASK 0xC0 |
| #define SCA3000_MD_CTRL_OR_Y BIT(0) |
| #define SCA3000_MD_CTRL_OR_X BIT(1) |
| #define SCA3000_MD_CTRL_OR_Z BIT(2) |
| /* Currently unsupported */ |
| #define SCA3000_MD_CTRL_AND_Y BIT(3) |
| #define SCA3000_MD_CTRL_AND_X BIT(4) |
| #define SCA3000_MD_CTRL_AND_Z BIT(5) |
| |
| /* |
| * Some control registers of complex access methods requiring this register to |
| * be used to remove a lock. |
| */ |
| #define SCA3000_REG_UNLOCK_ADDR 0x1e |
| |
| #define SCA3000_REG_INT_MASK_ADDR 0x21 |
| #define SCA3000_REG_INT_MASK_PROT_MASK 0x1C |
| |
| #define SCA3000_REG_INT_MASK_RING_THREE_QUARTER BIT(7) |
| #define SCA3000_REG_INT_MASK_RING_HALF BIT(6) |
| |
| #define SCA3000_REG_INT_MASK_ALL_INTS 0x02 |
| #define SCA3000_REG_INT_MASK_ACTIVE_HIGH 0x01 |
| #define SCA3000_REG_INT_MASK_ACTIVE_LOW 0x00 |
| /* Values of multiplexed registers (write to ctrl_data after select) */ |
| #define SCA3000_REG_CTRL_DATA_ADDR 0x22 |
| |
| /* |
| * Measurement modes available on some sca3000 series chips. Code assumes others |
| * may become available in the future. |
| * |
| * Bypass - Bypass the low-pass filter in the signal channel so as to increase |
| * signal bandwidth. |
| * |
| * Narrow - Narrow low-pass filtering of the signal channel and half output |
| * data rate by decimation. |
| * |
| * Wide - Widen low-pass filtering of signal channel to increase bandwidth |
| */ |
| #define SCA3000_OP_MODE_BYPASS 0x01 |
| #define SCA3000_OP_MODE_NARROW 0x02 |
| #define SCA3000_OP_MODE_WIDE 0x04 |
| #define SCA3000_MAX_TX 6 |
| #define SCA3000_MAX_RX 2 |
| |
| /** |
| * struct sca3000_state - device instance state information |
| * @us: the associated spi device |
| * @info: chip variant information |
| * @last_timestamp: the timestamp of the last event |
| * @mo_det_use_count: reference counter for the motion detection unit |
| * @lock: lock used to protect elements of sca3000_state |
| * and the underlying device state. |
| * @tx: dma-able transmit buffer |
| * @rx: dma-able receive buffer |
| **/ |
| struct sca3000_state { |
| struct spi_device *us; |
| const struct sca3000_chip_info *info; |
| s64 last_timestamp; |
| int mo_det_use_count; |
| struct mutex lock; |
| /* Can these share a cacheline ? */ |
| u8 rx[384] ____cacheline_aligned; |
| u8 tx[6] ____cacheline_aligned; |
| }; |
| |
| /** |
| * struct sca3000_chip_info - model dependent parameters |
| * @scale: scale * 10^-6 |
| * @temp_output: some devices have temperature sensors. |
| * @measurement_mode_freq: normal mode sampling frequency |
| * @measurement_mode_3db_freq: 3db cutoff frequency of the low pass filter for |
| * the normal measurement mode. |
| * @option_mode_1: first optional mode. Not all models have one |
| * @option_mode_1_freq: option mode 1 sampling frequency |
| * @option_mode_1_3db_freq: 3db cutoff frequency of the low pass filter for |
| * the first option mode. |
| * @option_mode_2: second optional mode. Not all chips have one |
| * @option_mode_2_freq: option mode 2 sampling frequency |
| * @option_mode_2_3db_freq: 3db cutoff frequency of the low pass filter for |
| * the second option mode. |
| * @mod_det_mult_xz: Bit wise multipliers to calculate the threshold |
| * for motion detection in the x and z axis. |
| * @mod_det_mult_y: Bit wise multipliers to calculate the threshold |
| * for motion detection in the y axis. |
| * |
| * This structure is used to hold information about the functionality of a given |
| * sca3000 variant. |
| **/ |
| struct sca3000_chip_info { |
| unsigned int scale; |
| bool temp_output; |
| int measurement_mode_freq; |
| int measurement_mode_3db_freq; |
| int option_mode_1; |
| int option_mode_1_freq; |
| int option_mode_1_3db_freq; |
| int option_mode_2; |
| int option_mode_2_freq; |
| int option_mode_2_3db_freq; |
| int mot_det_mult_xz[6]; |
| int mot_det_mult_y[7]; |
| }; |
| |
| enum sca3000_variant { |
| d01, |
| e02, |
| e04, |
| e05, |
| }; |
| |
| /* |
| * Note where option modes are not defined, the chip simply does not |
| * support any. |
| * Other chips in the sca3000 series use i2c and are not included here. |
| * |
| * Some of these devices are only listed in the family data sheet and |
| * do not actually appear to be available. |
| */ |
| static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = { |
| [d01] = { |
| .scale = 7357, |
| .temp_output = true, |
| .measurement_mode_freq = 250, |
| .measurement_mode_3db_freq = 45, |
| .option_mode_1 = SCA3000_OP_MODE_BYPASS, |
| .option_mode_1_freq = 250, |
| .option_mode_1_3db_freq = 70, |
| .mot_det_mult_xz = {50, 100, 200, 350, 650, 1300}, |
| .mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750}, |
| }, |
| [e02] = { |
| .scale = 9810, |
| .measurement_mode_freq = 125, |
| .measurement_mode_3db_freq = 40, |
| .option_mode_1 = SCA3000_OP_MODE_NARROW, |
| .option_mode_1_freq = 63, |
| .option_mode_1_3db_freq = 11, |
| .mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050}, |
| .mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700}, |
| }, |
| [e04] = { |
| .scale = 19620, |
| .measurement_mode_freq = 100, |
| .measurement_mode_3db_freq = 38, |
| .option_mode_1 = SCA3000_OP_MODE_NARROW, |
| .option_mode_1_freq = 50, |
| .option_mode_1_3db_freq = 9, |
| .option_mode_2 = SCA3000_OP_MODE_WIDE, |
| .option_mode_2_freq = 400, |
| .option_mode_2_3db_freq = 70, |
| .mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100}, |
| .mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000}, |
| }, |
| [e05] = { |
| .scale = 61313, |
| .measurement_mode_freq = 200, |
| .measurement_mode_3db_freq = 60, |
| .option_mode_1 = SCA3000_OP_MODE_NARROW, |
| .option_mode_1_freq = 50, |
| .option_mode_1_3db_freq = 9, |
| .option_mode_2 = SCA3000_OP_MODE_WIDE, |
| .option_mode_2_freq = 400, |
| .option_mode_2_3db_freq = 75, |
| .mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900}, |
| .mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600}, |
| }, |
| }; |
| |
| static int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val) |
| { |
| st->tx[0] = SCA3000_WRITE_REG(address); |
| st->tx[1] = val; |
| return spi_write(st->us, st->tx, 2); |
| } |
| |
| static int sca3000_read_data_short(struct sca3000_state *st, |
| u8 reg_address_high, |
| int len) |
| { |
| struct spi_transfer xfer[2] = { |
| { |
| .len = 1, |
| .tx_buf = st->tx, |
| }, { |
| .len = len, |
| .rx_buf = st->rx, |
| } |
| }; |
| st->tx[0] = SCA3000_READ_REG(reg_address_high); |
| |
| return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer)); |
| } |
| |
| /** |
| * sca3000_reg_lock_on() - test if the ctrl register lock is on |
| * @st: Driver specific device instance data. |
| * |
| * Lock must be held. |
| **/ |
| static int sca3000_reg_lock_on(struct sca3000_state *st) |
| { |
| int ret; |
| |
| ret = sca3000_read_data_short(st, SCA3000_REG_STATUS_ADDR, 1); |
| if (ret < 0) |
| return ret; |
| |
| return !(st->rx[0] & SCA3000_LOCKED); |
| } |
| |
| /** |
| * __sca3000_unlock_reg_lock() - unlock the control registers |
| * @st: Driver specific device instance data. |
| * |
| * Note the device does not appear to support doing this in a single transfer. |
| * This should only ever be used as part of ctrl reg read. |
| * Lock must be held before calling this |
| */ |
| static int __sca3000_unlock_reg_lock(struct sca3000_state *st) |
| { |
| struct spi_transfer xfer[3] = { |
| { |
| .len = 2, |
| .cs_change = 1, |
| .tx_buf = st->tx, |
| }, { |
| .len = 2, |
| .cs_change = 1, |
| .tx_buf = st->tx + 2, |
| }, { |
| .len = 2, |
| .tx_buf = st->tx + 4, |
| }, |
| }; |
| st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR); |
| st->tx[1] = 0x00; |
| st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR); |
| st->tx[3] = 0x50; |
| st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR); |
| st->tx[5] = 0xA0; |
| |
| return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer)); |
| } |
| |
| /** |
| * sca3000_write_ctrl_reg() write to a lock protect ctrl register |
| * @st: Driver specific device instance data. |
| * @sel: selects which registers we wish to write to |
| * @val: the value to be written |
| * |
| * Certain control registers are protected against overwriting by the lock |
| * register and use a shared write address. This function allows writing of |
| * these registers. |
| * Lock must be held. |
| */ |
| static int sca3000_write_ctrl_reg(struct sca3000_state *st, |
| u8 sel, |
| uint8_t val) |
| { |
| int ret; |
| |
| ret = sca3000_reg_lock_on(st); |
| if (ret < 0) |
| goto error_ret; |
| if (ret) { |
| ret = __sca3000_unlock_reg_lock(st); |
| if (ret) |
| goto error_ret; |
| } |
| |
| /* Set the control select register */ |
| ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, sel); |
| if (ret) |
| goto error_ret; |
| |
| /* Write the actual value into the register */ |
| ret = sca3000_write_reg(st, SCA3000_REG_CTRL_DATA_ADDR, val); |
| |
| error_ret: |
| return ret; |
| } |
| |
| /** |
| * sca3000_read_ctrl_reg() read from lock protected control register. |
| * @st: Driver specific device instance data. |
| * @ctrl_reg: Which ctrl register do we want to read. |
| * |
| * Lock must be held. |
| */ |
| static int sca3000_read_ctrl_reg(struct sca3000_state *st, |
| u8 ctrl_reg) |
| { |
| int ret; |
| |
| ret = sca3000_reg_lock_on(st); |
| if (ret < 0) |
| goto error_ret; |
| if (ret) { |
| ret = __sca3000_unlock_reg_lock(st); |
| if (ret) |
| goto error_ret; |
| } |
| /* Set the control select register */ |
| ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, ctrl_reg); |
| if (ret) |
| goto error_ret; |
| ret = sca3000_read_data_short(st, SCA3000_REG_CTRL_DATA_ADDR, 1); |
| if (ret) |
| goto error_ret; |
| return st->rx[0]; |
| error_ret: |
| return ret; |
| } |
| |
| /** |
| * sca3000_show_rev() - sysfs interface to read the chip revision number |
| * @indio_dev: Device instance specific generic IIO data. |
| * Driver specific device instance data can be obtained via |
| * via iio_priv(indio_dev) |
| */ |
| static int sca3000_print_rev(struct iio_dev *indio_dev) |
| { |
| int ret; |
| struct sca3000_state *st = iio_priv(indio_dev); |
| |
| mutex_lock(&st->lock); |
| ret = sca3000_read_data_short(st, SCA3000_REG_REVID_ADDR, 1); |
| if (ret < 0) |
| goto error_ret; |
| dev_info(&indio_dev->dev, |
| "sca3000 revision major=%lu, minor=%lu\n", |
| st->rx[0] & SCA3000_REG_REVID_MAJOR_MASK, |
| st->rx[0] & SCA3000_REG_REVID_MINOR_MASK); |
| error_ret: |
| mutex_unlock(&st->lock); |
| |
| return ret; |
| } |
| |
| static ssize_t |
| sca3000_show_available_3db_freqs(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct iio_dev *indio_dev = dev_to_iio_dev(dev); |
| struct sca3000_state *st = iio_priv(indio_dev); |
| int len; |
| |
| len = sprintf(buf, "%d", st->info->measurement_mode_3db_freq); |
| if (st->info->option_mode_1) |
| len += sprintf(buf + len, " %d", |
| st->info->option_mode_1_3db_freq); |
| if (st->info->option_mode_2) |
| len += sprintf(buf + len, " %d", |
| st->info->option_mode_2_3db_freq); |
| len += sprintf(buf + len, "\n"); |
| |
| return len; |
| } |
| |
| static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available, |
| S_IRUGO, sca3000_show_available_3db_freqs, |
| NULL, 0); |
| |
| static const struct iio_event_spec sca3000_event = { |
| .type = IIO_EV_TYPE_MAG, |
| .dir = IIO_EV_DIR_RISING, |
| .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), |
| }; |
| |
| /* |
| * Note the hack in the number of bits to pretend we have 2 more than |
| * we do in the fifo. |
| */ |
| #define SCA3000_CHAN(index, mod) \ |
| { \ |
| .type = IIO_ACCEL, \ |
| .modified = 1, \ |
| .channel2 = mod, \ |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ |
| .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |\ |
| BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),\ |
| .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\ |
| .address = index, \ |
| .scan_index = index, \ |
| .scan_type = { \ |
| .sign = 's', \ |
| .realbits = 13, \ |
| .storagebits = 16, \ |
| .shift = 3, \ |
| .endianness = IIO_BE, \ |
| }, \ |
| .event_spec = &sca3000_event, \ |
| .num_event_specs = 1, \ |
| } |
| |
| static const struct iio_event_spec sca3000_freefall_event_spec = { |
| .type = IIO_EV_TYPE_MAG, |
| .dir = IIO_EV_DIR_FALLING, |
| .mask_separate = BIT(IIO_EV_INFO_ENABLE) | |
| BIT(IIO_EV_INFO_PERIOD), |
| }; |
| |
| static const struct iio_chan_spec sca3000_channels[] = { |
| SCA3000_CHAN(0, IIO_MOD_X), |
| SCA3000_CHAN(1, IIO_MOD_Y), |
| SCA3000_CHAN(2, IIO_MOD_Z), |
| { |
| .type = IIO_ACCEL, |
| .modified = 1, |
| .channel2 = IIO_MOD_X_AND_Y_AND_Z, |
| .scan_index = -1, /* Fake channel */ |
| .event_spec = &sca3000_freefall_event_spec, |
| .num_event_specs = 1, |
| }, |
| }; |
| |
| static const struct iio_chan_spec sca3000_channels_with_temp[] = { |
| SCA3000_CHAN(0, IIO_MOD_X), |
| SCA3000_CHAN(1, IIO_MOD_Y), |
| SCA3000_CHAN(2, IIO_MOD_Z), |
| { |
| .type = IIO_TEMP, |
| .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), |
| .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | |
| BIT(IIO_CHAN_INFO_OFFSET), |
| /* No buffer support */ |
| .scan_index = -1, |
| }, |
| { |
| .type = IIO_ACCEL, |
| .modified = 1, |
| .channel2 = IIO_MOD_X_AND_Y_AND_Z, |
| .scan_index = -1, /* Fake channel */ |
| .event_spec = &sca3000_freefall_event_spec, |
| .num_event_specs = 1, |
| }, |
| }; |
| |
| static u8 sca3000_addresses[3][3] = { |
| [0] = {SCA3000_REG_X_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_X_TH, |
| SCA3000_MD_CTRL_OR_X}, |
| [1] = {SCA3000_REG_Y_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Y_TH, |
| SCA3000_MD_CTRL_OR_Y}, |
| [2] = {SCA3000_REG_Z_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Z_TH, |
| SCA3000_MD_CTRL_OR_Z}, |
| }; |
| |
| /** |
| * __sca3000_get_base_freq() - obtain mode specific base frequency |
| * @st: Private driver specific device instance specific state. |
| * @info: chip type specific information. |
| * @base_freq: Base frequency for the current measurement mode. |
| * |
| * lock must be held |
| */ |
| static inline int __sca3000_get_base_freq(struct sca3000_state *st, |
| const struct sca3000_chip_info *info, |
| int *base_freq) |
| { |
| int ret; |
| |
| ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); |
| if (ret) |
| goto error_ret; |
| switch (SCA3000_REG_MODE_MODE_MASK & st->rx[0]) { |
| case SCA3000_REG_MODE_MEAS_MODE_NORMAL: |
| *base_freq = info->measurement_mode_freq; |
| break; |
| case SCA3000_REG_MODE_MEAS_MODE_OP_1: |
| *base_freq = info->option_mode_1_freq; |
| break; |
| case SCA3000_REG_MODE_MEAS_MODE_OP_2: |
| *base_freq = info->option_mode_2_freq; |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| error_ret: |
| return ret; |
| } |
| |
| /** |
| * sca3000_read_raw_samp_freq() - read_raw handler for IIO_CHAN_INFO_SAMP_FREQ |
| * @st: Private driver specific device instance specific state. |
| * @val: The frequency read back. |
| * |
| * lock must be held |
| **/ |
| static int sca3000_read_raw_samp_freq(struct sca3000_state *st, int *val) |
| { |
| int ret; |
| |
| ret = __sca3000_get_base_freq(st, st->info, val); |
| if (ret) |
| return ret; |
| |
| ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL); |
| if (ret < 0) |
| return ret; |
| |
| if (*val > 0) { |
| ret &= SCA3000_REG_OUT_CTRL_BUF_DIV_MASK; |
| switch (ret) { |
| case SCA3000_REG_OUT_CTRL_BUF_DIV_2: |
| *val /= 2; |
| break; |
| case SCA3000_REG_OUT_CTRL_BUF_DIV_4: |
| *val /= 4; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * sca3000_write_raw_samp_freq() - write_raw handler for IIO_CHAN_INFO_SAMP_FREQ |
| * @st: Private driver specific device instance specific state. |
| * @val: The frequency desired. |
| * |
| * lock must be held |
| */ |
| static int sca3000_write_raw_samp_freq(struct sca3000_state *st, int val) |
| { |
| int ret, base_freq, ctrlval; |
| |
| ret = __sca3000_get_base_freq(st, st->info, &base_freq); |
| if (ret) |
| return ret; |
| |
| ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL); |
| if (ret < 0) |
| return ret; |
| |
| ctrlval = ret & ~SCA3000_REG_OUT_CTRL_BUF_DIV_MASK; |
| |
| if (val == base_freq / 2) |
| ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_2; |
| if (val == base_freq / 4) |
| ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_4; |
| else if (val != base_freq) |
| return -EINVAL; |
| |
| return sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL, |
| ctrlval); |
| } |
| |
| static int sca3000_read_3db_freq(struct sca3000_state *st, int *val) |
| { |
| int ret; |
| |
| ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); |
| if (ret) |
| return ret; |
| |
| /* mask bottom 2 bits - only ones that are relevant */ |
| st->rx[0] &= SCA3000_REG_MODE_MODE_MASK; |
| switch (st->rx[0]) { |
| case SCA3000_REG_MODE_MEAS_MODE_NORMAL: |
| *val = st->info->measurement_mode_3db_freq; |
| return IIO_VAL_INT; |
| case SCA3000_REG_MODE_MEAS_MODE_MOT_DET: |
| return -EBUSY; |
| case SCA3000_REG_MODE_MEAS_MODE_OP_1: |
| *val = st->info->option_mode_1_3db_freq; |
| return IIO_VAL_INT; |
| case SCA3000_REG_MODE_MEAS_MODE_OP_2: |
| *val = st->info->option_mode_2_3db_freq; |
| return IIO_VAL_INT; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int sca3000_write_3db_freq(struct sca3000_state *st, int val) |
| { |
| int ret; |
| int mode; |
| |
| if (val == st->info->measurement_mode_3db_freq) |
| mode = SCA3000_REG_MODE_MEAS_MODE_NORMAL; |
| else if (st->info->option_mode_1 && |
| (val == st->info->option_mode_1_3db_freq)) |
| mode = SCA3000_REG_MODE_MEAS_MODE_OP_1; |
| else if (st->info->option_mode_2 && |
| (val == st->info->option_mode_2_3db_freq)) |
| mode = SCA3000_REG_MODE_MEAS_MODE_OP_2; |
| else |
| return -EINVAL; |
| ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); |
| if (ret) |
| return ret; |
| |
| st->rx[0] &= ~SCA3000_REG_MODE_MODE_MASK; |
| st->rx[0] |= (mode & SCA3000_REG_MODE_MODE_MASK); |
| |
| return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0]); |
| } |
| |
| static int sca3000_read_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| int *val, |
| int *val2, |
| long mask) |
| { |
| struct sca3000_state *st = iio_priv(indio_dev); |
| int ret; |
| u8 address; |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_RAW: |
| mutex_lock(&st->lock); |
| if (chan->type == IIO_ACCEL) { |
| if (st->mo_det_use_count) { |
| mutex_unlock(&st->lock); |
| return -EBUSY; |
| } |
| address = sca3000_addresses[chan->address][0]; |
| ret = sca3000_read_data_short(st, address, 2); |
| if (ret < 0) { |
| mutex_unlock(&st->lock); |
| return ret; |
| } |
| *val = (be16_to_cpup((__be16 *)st->rx) >> 3) & 0x1FFF; |
| *val = ((*val) << (sizeof(*val) * 8 - 13)) >> |
| (sizeof(*val) * 8 - 13); |
| } else { |
| /* get the temperature when available */ |
| ret = sca3000_read_data_short(st, |
| SCA3000_REG_TEMP_MSB_ADDR, |
| 2); |
| if (ret < 0) { |
| mutex_unlock(&st->lock); |
| return ret; |
| } |
| *val = ((st->rx[0] & 0x3F) << 3) | |
| ((st->rx[1] & 0xE0) >> 5); |
| } |
| mutex_unlock(&st->lock); |
| return IIO_VAL_INT; |
| case IIO_CHAN_INFO_SCALE: |
| *val = 0; |
| if (chan->type == IIO_ACCEL) |
| *val2 = st->info->scale; |
| else /* temperature */ |
| *val2 = 555556; |
| return IIO_VAL_INT_PLUS_MICRO; |
| case IIO_CHAN_INFO_OFFSET: |
| *val = -214; |
| *val2 = 600000; |
| return IIO_VAL_INT_PLUS_MICRO; |
| case IIO_CHAN_INFO_SAMP_FREQ: |
| mutex_lock(&st->lock); |
| ret = sca3000_read_raw_samp_freq(st, val); |
| mutex_unlock(&st->lock); |
| return ret ? ret : IIO_VAL_INT; |
| case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: |
| mutex_lock(&st->lock); |
| ret = sca3000_read_3db_freq(st, val); |
| mutex_unlock(&st->lock); |
| return ret; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int sca3000_write_raw(struct iio_dev *indio_dev, |
| struct iio_chan_spec const *chan, |
| int val, int val2, long mask) |
| { |
| struct sca3000_state *st = iio_priv(indio_dev); |
| int ret; |
| |
| switch (mask) { |
| case IIO_CHAN_INFO_SAMP_FREQ: |
| if (val2) |
| return -EINVAL; |
| mutex_lock(&st->lock); |
| ret = sca3000_write_raw_samp_freq(st, val); |
| mutex_unlock(&st->lock); |
| return ret; |
| case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: |
| if (val2) |
| return -EINVAL; |
| mutex_lock(&st->lock); |
| ret = sca3000_write_3db_freq(st, val); |
| mutex_unlock(&st->lock); |
| return ret; |
| default: |
| return -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * sca3000_read_av_freq() - sysfs function to get available frequencies |
| * @dev: Device structure for this device. |
| * @attr: Description of the attribute. |
| * @buf: Incoming string |
| * |
| * The later modes are only relevant to the ring buffer - and depend on current |
| * mode. Note that data sheet gives rather wide tolerances for these so integer |
| * division will give good enough answer and not all chips have them specified |
| * at all. |
| **/ |
| static ssize_t sca3000_read_av_freq(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct iio_dev *indio_dev = dev_to_iio_dev(dev); |
| struct sca3000_state *st = iio_priv(indio_dev); |
| int len = 0, ret, val; |
| |
| mutex_lock(&st->lock); |
| ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); |
| val = st->rx[0]; |
| mutex_unlock(&st->lock); |
| if (ret) |
| goto error_ret; |
| |
| switch (val & SCA3000_REG_MODE_MODE_MASK) { |
| case SCA3000_REG_MODE_MEAS_MODE_NORMAL: |
| len += sprintf(buf + len, "%d %d %d\n", |
| st->info->measurement_mode_freq, |
| st->info->measurement_mode_freq / 2, |
| st->info->measurement_mode_freq / 4); |
| break; |
| case SCA3000_REG_MODE_MEAS_MODE_OP_1: |
| len += sprintf(buf + len, "%d %d %d\n", |
| st->info->option_mode_1_freq, |
| st->info->option_mode_1_freq / 2, |
| st->info->option_mode_1_freq / 4); |
| break; |
| case SCA3000_REG_MODE_MEAS_MODE_OP_2: |
| len += sprintf(buf + len, "%d %d %d\n", |
| st->info->option_mode_2_freq, |
| st->info->option_mode_2_freq / 2, |
| st->info->option_mode_2_freq / 4); |
| break; |
| } |
| return len; |
| error_ret: |
| return ret; |
| } |
| |
| /* |
| * Should only really be registered if ring buffer support is compiled in. |
| * Does no harm however and doing it right would add a fair bit of complexity |
| */ |
| static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq); |
| |
| /** |
| * sca3000_read_event_value() - query of a threshold or period |
| **/ |
| static int sca3000_read_event_value(struct iio_dev *indio_dev, |
| const struct iio_chan_spec *chan, |
| enum iio_event_type type, |
| enum iio_event_direction dir, |
| enum iio_event_info info, |
| int *val, int *val2) |
| { |
| struct sca3000_state *st = iio_priv(indio_dev); |
| long ret; |
| int i; |
| |
| switch (info) { |
| case IIO_EV_INFO_VALUE: |
| mutex_lock(&st->lock); |
| ret = sca3000_read_ctrl_reg(st, |
| sca3000_addresses[chan->address][1]); |
| mutex_unlock(&st->lock); |
| if (ret < 0) |
| return ret; |
| *val = 0; |
| if (chan->channel2 == IIO_MOD_Y) |
| for_each_set_bit(i, &ret, |
| ARRAY_SIZE(st->info->mot_det_mult_y)) |
| *val += st->info->mot_det_mult_y[i]; |
| else |
| for_each_set_bit(i, &ret, |
| ARRAY_SIZE(st->info->mot_det_mult_xz)) |
| *val += st->info->mot_det_mult_xz[i]; |
| |
| return IIO_VAL_INT; |
| case IIO_EV_INFO_PERIOD: |
| *val = 0; |
| *val2 = 226000; |
| return IIO_VAL_INT_PLUS_MICRO; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| /** |
| * sca3000_write_value() - control of threshold and period |
| * @indio_dev: Device instance specific IIO information. |
| * @chan: Description of the channel for which the event is being |
| * configured. |
| * @type: The type of event being configured, here magnitude rising |
| * as everything else is read only. |
| * @dir: Direction of the event (here rising) |
| * @info: What information about the event are we configuring. |
| * Here the threshold only. |
| * @val: Integer part of the value being written.. |
| * @val2: Non integer part of the value being written. Here always 0. |
| */ |
| static int sca3000_write_event_value(struct iio_dev *indio_dev, |
| const struct iio_chan_spec *chan, |
| enum iio_event_type type, |
| enum iio_event_direction dir, |
| enum iio_event_info info, |
| int val, int val2) |
| { |
| struct sca3000_state *st = iio_priv(indio_dev); |
| int ret; |
| int i; |
| u8 nonlinear = 0; |
| |
| if (chan->channel2 == IIO_MOD_Y) { |
| i = ARRAY_SIZE(st->info->mot_det_mult_y); |
| while (i > 0) |
| if (val >= st->info->mot_det_mult_y[--i]) { |
| nonlinear |= (1 << i); |
| val -= st->info->mot_det_mult_y[i]; |
| } |
| } else { |
| i = ARRAY_SIZE(st->info->mot_det_mult_xz); |
| while (i > 0) |
| if (val >= st->info->mot_det_mult_xz[--i]) { |
| nonlinear |= (1 << i); |
| val -= st->info->mot_det_mult_xz[i]; |
| } |
| } |
| |
| mutex_lock(&st->lock); |
| ret = sca3000_write_ctrl_reg(st, |
| sca3000_addresses[chan->address][1], |
| nonlinear); |
| mutex_unlock(&st->lock); |
| |
| return ret; |
| } |
| |
| static struct attribute *sca3000_attributes[] = { |
| &iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr, |
| &iio_dev_attr_sampling_frequency_available.dev_attr.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group sca3000_attribute_group = { |
| .attrs = sca3000_attributes, |
| }; |
| |
| static int sca3000_read_data(struct sca3000_state *st, |
| u8 reg_address_high, |
| u8 *rx, |
| int len) |
| { |
| int ret; |
| struct spi_transfer xfer[2] = { |
| { |
| .len = 1, |
| .tx_buf = st->tx, |
| }, { |
| .len = len, |
| .rx_buf = rx, |
| } |
| }; |
| |
| st->tx[0] = SCA3000_READ_REG(reg_address_high); |
| ret = spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer)); |
| if (ret) { |
| dev_err(get_device(&st->us->dev), "problem reading register"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * sca3000_ring_int_process() - ring specific interrupt handling. |
| * @val: Value of the interrupt status register. |
| * @indio_dev: Device instance specific IIO device structure. |
| */ |
| static void sca3000_ring_int_process(u8 val, struct iio_dev *indio_dev) |
| { |
| struct sca3000_state *st = iio_priv(indio_dev); |
| int ret, i, num_available; |
| |
| mutex_lock(&st->lock); |
| |
| if (val & SCA3000_REG_INT_STATUS_HALF) { |
| ret = sca3000_read_data_short(st, SCA3000_REG_BUF_COUNT_ADDR, |
| 1); |
| if (ret) |
| goto error_ret; |
| num_available = st->rx[0]; |
| /* |
| * num_available is the total number of samples available |
| * i.e. number of time points * number of channels. |
| */ |
| ret = sca3000_read_data(st, SCA3000_REG_RING_OUT_ADDR, st->rx, |
| num_available * 2); |
| if (ret) |
| goto error_ret; |
| for (i = 0; i < num_available / 3; i++) { |
| /* |
| * Dirty hack to cover for 11 bit in fifo, 13 bit |
| * direct reading. |
| * |
| * In theory the bottom two bits are undefined. |
| * In reality they appear to always be 0. |
| */ |
| iio_push_to_buffers(indio_dev, st->rx + i * 3 * 2); |
| } |
| } |
| error_ret: |
| mutex_unlock(&st->lock); |
| } |
| |
| /** |
| * sca3000_event_handler() - handling ring and non ring events |
| * @irq: The irq being handled. |
| * @private: struct iio_device pointer for the device. |
| * |
| * Ring related interrupt handler. Depending on event, push to |
| * the ring buffer event chrdev or the event one. |
| * |
| * This function is complicated by the fact that the devices can signify ring |
| * and non ring events via the same interrupt line and they can only |
| * be distinguished via a read of the relevant status register. |
| */ |
| static irqreturn_t sca3000_event_handler(int irq, void *private) |
| { |
| struct iio_dev *indio_dev = private; |
| struct sca3000_state *st = iio_priv(indio_dev); |
| int ret, val; |
| s64 last_timestamp = iio_get_time_ns(indio_dev); |
| |
| /* |
| * Could lead if badly timed to an extra read of status reg, |
| * but ensures no interrupt is missed. |
| */ |
| mutex_lock(&st->lock); |
| ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1); |
| val = st->rx[0]; |
| mutex_unlock(&st->lock); |
| if (ret) |
| goto done; |
| |
| sca3000_ring_int_process(val, indio_dev); |
| |
| if (val & SCA3000_INT_STATUS_FREE_FALL) |
| iio_push_event(indio_dev, |
| IIO_MOD_EVENT_CODE(IIO_ACCEL, |
| 0, |
| IIO_MOD_X_AND_Y_AND_Z, |
| IIO_EV_TYPE_MAG, |
| IIO_EV_DIR_FALLING), |
| last_timestamp); |
| |
| if (val & SCA3000_INT_STATUS_Y_TRIGGER) |
| iio_push_event(indio_dev, |
| IIO_MOD_EVENT_CODE(IIO_ACCEL, |
| 0, |
| IIO_MOD_Y, |
| IIO_EV_TYPE_MAG, |
| IIO_EV_DIR_RISING), |
| last_timestamp); |
| |
| if (val & SCA3000_INT_STATUS_X_TRIGGER) |
| iio_push_event(indio_dev, |
| IIO_MOD_EVENT_CODE(IIO_ACCEL, |
| 0, |
| IIO_MOD_X, |
| IIO_EV_TYPE_MAG, |
| IIO_EV_DIR_RISING), |
| last_timestamp); |
| |
| if (val & SCA3000_INT_STATUS_Z_TRIGGER) |
| iio_push_event(indio_dev, |
| IIO_MOD_EVENT_CODE(IIO_ACCEL, |
| 0, |
| IIO_MOD_Z, |
| IIO_EV_TYPE_MAG, |
| IIO_EV_DIR_RISING), |
| last_timestamp); |
| |
| done: |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * sca3000_read_event_config() what events are enabled |
| **/ |
| static int sca3000_read_event_config(struct iio_dev *indio_dev, |
| const struct iio_chan_spec *chan, |
| enum iio_event_type type, |
| enum iio_event_direction dir) |
| { |
| struct sca3000_state *st = iio_priv(indio_dev); |
| int ret; |
| /* read current value of mode register */ |
| mutex_lock(&st->lock); |
| |
| ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); |
| if (ret) |
| goto error_ret; |
| |
| switch (chan->channel2) { |
| case IIO_MOD_X_AND_Y_AND_Z: |
| ret = !!(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT); |
| break; |
| case IIO_MOD_X: |
| case IIO_MOD_Y: |
| case IIO_MOD_Z: |
| /* |
| * Motion detection mode cannot run at the same time as |
| * acceleration data being read. |
| */ |
| if ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK) |
| != SCA3000_REG_MODE_MEAS_MODE_MOT_DET) { |
| ret = 0; |
| } else { |
| ret = sca3000_read_ctrl_reg(st, |
| SCA3000_REG_CTRL_SEL_MD_CTRL); |
| if (ret < 0) |
| goto error_ret; |
| /* only supporting logical or's for now */ |
| ret = !!(ret & sca3000_addresses[chan->address][2]); |
| } |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| error_ret: |
| mutex_unlock(&st->lock); |
| |
| return ret; |
| } |
| |
| static int sca3000_freefall_set_state(struct iio_dev *indio_dev, int state) |
| { |
| struct sca3000_state *st = iio_priv(indio_dev); |
| int ret; |
| |
| /* read current value of mode register */ |
| ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); |
| if (ret) |
| return ret; |
| |
| /* if off and should be on */ |
| if (state && !(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT)) |
| return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, |
| st->rx[0] | SCA3000_REG_MODE_FREE_FALL_DETECT); |
| /* if on and should be off */ |
| else if (!state && (st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT)) |
| return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, |
| st->rx[0] & ~SCA3000_REG_MODE_FREE_FALL_DETECT); |
| else |
| return 0; |
| } |
| |
| static int sca3000_motion_detect_set_state(struct iio_dev *indio_dev, int axis, |
| int state) |
| { |
| struct sca3000_state *st = iio_priv(indio_dev); |
| int ret, ctrlval; |
| |
| /* |
| * First read the motion detector config to find out if |
| * this axis is on |
| */ |
| ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL); |
| if (ret < 0) |
| return ret; |
| ctrlval = ret; |
| /* if off and should be on */ |
| if (state && !(ctrlval & sca3000_addresses[axis][2])) { |
| ret = sca3000_write_ctrl_reg(st, |
| SCA3000_REG_CTRL_SEL_MD_CTRL, |
| ctrlval | |
| sca3000_addresses[axis][2]); |
| if (ret) |
| return ret; |
| st->mo_det_use_count++; |
| } else if (!state && (ctrlval & sca3000_addresses[axis][2])) { |
| ret = sca3000_write_ctrl_reg(st, |
| SCA3000_REG_CTRL_SEL_MD_CTRL, |
| ctrlval & |
| ~(sca3000_addresses[axis][2])); |
| if (ret) |
| return ret; |
| st->mo_det_use_count--; |
| } |
| |
| /* read current value of mode register */ |
| ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); |
| if (ret) |
| return ret; |
| /* if off and should be on */ |
| if ((st->mo_det_use_count) && |
| ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK) |
| != SCA3000_REG_MODE_MEAS_MODE_MOT_DET)) |
| return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, |
| (st->rx[0] & ~SCA3000_REG_MODE_MODE_MASK) |
| | SCA3000_REG_MODE_MEAS_MODE_MOT_DET); |
| /* if on and should be off */ |
| else if (!(st->mo_det_use_count) && |
| ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK) |
| == SCA3000_REG_MODE_MEAS_MODE_MOT_DET)) |
| return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, |
| st->rx[0] & SCA3000_REG_MODE_MODE_MASK); |
| else |
| return 0; |
| } |
| |
| /** |
| * sca3000_write_event_config() - simple on off control for motion detector |
| * @indio_dev: IIO device instance specific structure. Data specific to this |
| * particular driver may be accessed via iio_priv(indio_dev). |
| * @chan: Description of the channel whose event we are configuring. |
| * @type: The type of event. |
| * @dir: The direction of the event. |
| * @state: Desired state of event being configured. |
| * |
| * This is a per axis control, but enabling any will result in the |
| * motion detector unit being enabled. |
| * N.B. enabling motion detector stops normal data acquisition. |
| * There is a complexity in knowing which mode to return to when |
| * this mode is disabled. Currently normal mode is assumed. |
| **/ |
| static int sca3000_write_event_config(struct iio_dev *indio_dev, |
| const struct iio_chan_spec *chan, |
| enum iio_event_type type, |
| enum iio_event_direction dir, |
| int state) |
| { |
| struct sca3000_state *st = iio_priv(indio_dev); |
| int ret; |
| |
| mutex_lock(&st->lock); |
| switch (chan->channel2) { |
| case IIO_MOD_X_AND_Y_AND_Z: |
| ret = sca3000_freefall_set_state(indio_dev, state); |
| break; |
| |
| case IIO_MOD_X: |
| case IIO_MOD_Y: |
| case IIO_MOD_Z: |
| ret = sca3000_motion_detect_set_state(indio_dev, |
| chan->address, |
| state); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| mutex_unlock(&st->lock); |
| |
| return ret; |
| } |
| |
| static int sca3000_configure_ring(struct iio_dev *indio_dev) |
| { |
| struct iio_buffer *buffer; |
| |
| buffer = devm_iio_kfifo_allocate(&indio_dev->dev); |
| if (!buffer) |
| return -ENOMEM; |
| |
| iio_device_attach_buffer(indio_dev, buffer); |
| indio_dev->modes |= INDIO_BUFFER_SOFTWARE; |
| |
| return 0; |
| } |
| |
| static inline |
| int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state) |
| { |
| struct sca3000_state *st = iio_priv(indio_dev); |
| int ret; |
| |
| mutex_lock(&st->lock); |
| ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); |
| if (ret) |
| goto error_ret; |
| if (state) { |
| dev_info(&indio_dev->dev, "supposedly enabling ring buffer\n"); |
| ret = sca3000_write_reg(st, |
| SCA3000_REG_MODE_ADDR, |
| (st->rx[0] | SCA3000_REG_MODE_RING_BUF_ENABLE)); |
| } else |
| ret = sca3000_write_reg(st, |
| SCA3000_REG_MODE_ADDR, |
| (st->rx[0] & ~SCA3000_REG_MODE_RING_BUF_ENABLE)); |
| error_ret: |
| mutex_unlock(&st->lock); |
| |
| return ret; |
| } |
| |
| /** |
| * sca3000_hw_ring_preenable() - hw ring buffer preenable function |
| * @indio_dev: structure representing the IIO device. Device instance |
| * specific state can be accessed via iio_priv(indio_dev). |
| * |
| * Very simple enable function as the chip will allows normal reads |
| * during ring buffer operation so as long as it is indeed running |
| * before we notify the core, the precise ordering does not matter. |
| */ |
| static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev) |
| { |
| int ret; |
| struct sca3000_state *st = iio_priv(indio_dev); |
| |
| mutex_lock(&st->lock); |
| |
| /* Enable the 50% full interrupt */ |
| ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1); |
| if (ret) |
| goto error_unlock; |
| ret = sca3000_write_reg(st, |
| SCA3000_REG_INT_MASK_ADDR, |
| st->rx[0] | SCA3000_REG_INT_MASK_RING_HALF); |
| if (ret) |
| goto error_unlock; |
| |
| mutex_unlock(&st->lock); |
| |
| return __sca3000_hw_ring_state_set(indio_dev, 1); |
| |
| error_unlock: |
| mutex_unlock(&st->lock); |
| |
| return ret; |
| } |
| |
| static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev) |
| { |
| int ret; |
| struct sca3000_state *st = iio_priv(indio_dev); |
| |
| ret = __sca3000_hw_ring_state_set(indio_dev, 0); |
| if (ret) |
| return ret; |
| |
| /* Disable the 50% full interrupt */ |
| mutex_lock(&st->lock); |
| |
| ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1); |
| if (ret) |
| goto unlock; |
| ret = sca3000_write_reg(st, |
| SCA3000_REG_INT_MASK_ADDR, |
| st->rx[0] & ~SCA3000_REG_INT_MASK_RING_HALF); |
| unlock: |
| mutex_unlock(&st->lock); |
| return ret; |
| } |
| |
| static const struct iio_buffer_setup_ops sca3000_ring_setup_ops = { |
| .preenable = &sca3000_hw_ring_preenable, |
| .postdisable = &sca3000_hw_ring_postdisable, |
| }; |
| |
| /** |
| * sca3000_clean_setup() - get the device into a predictable state |
| * @st: Device instance specific private data structure |
| * |
| * Devices use flash memory to store many of the register values |
| * and hence can come up in somewhat unpredictable states. |
| * Hence reset everything on driver load. |
| */ |
| static int sca3000_clean_setup(struct sca3000_state *st) |
| { |
| int ret; |
| |
| mutex_lock(&st->lock); |
| /* Ensure all interrupts have been acknowledged */ |
| ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1); |
| if (ret) |
| goto error_ret; |
| |
| /* Turn off all motion detection channels */ |
| ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL); |
| if (ret < 0) |
| goto error_ret; |
| ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL, |
| ret & SCA3000_MD_CTRL_PROT_MASK); |
| if (ret) |
| goto error_ret; |
| |
| /* Disable ring buffer */ |
| ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL); |
| if (ret < 0) |
| goto error_ret; |
| ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL, |
| (ret & SCA3000_REG_OUT_CTRL_PROT_MASK) |
| | SCA3000_REG_OUT_CTRL_BUF_X_EN |
| | SCA3000_REG_OUT_CTRL_BUF_Y_EN |
| | SCA3000_REG_OUT_CTRL_BUF_Z_EN |
| | SCA3000_REG_OUT_CTRL_BUF_DIV_4); |
| if (ret) |
| goto error_ret; |
| /* Enable interrupts, relevant to mode and set up as active low */ |
| ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1); |
| if (ret) |
| goto error_ret; |
| ret = sca3000_write_reg(st, |
| SCA3000_REG_INT_MASK_ADDR, |
| (ret & SCA3000_REG_INT_MASK_PROT_MASK) |
| | SCA3000_REG_INT_MASK_ACTIVE_LOW); |
| if (ret) |
| goto error_ret; |
| /* |
| * Select normal measurement mode, free fall off, ring off |
| * Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5 |
| * as that occurs in one of the example on the datasheet |
| */ |
| ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); |
| if (ret) |
| goto error_ret; |
| ret = sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, |
| (st->rx[0] & SCA3000_MODE_PROT_MASK)); |
| |
| error_ret: |
| mutex_unlock(&st->lock); |
| return ret; |
| } |
| |
| static const struct iio_info sca3000_info = { |
| .attrs = &sca3000_attribute_group, |
| .read_raw = &sca3000_read_raw, |
| .write_raw = &sca3000_write_raw, |
| .read_event_value = &sca3000_read_event_value, |
| .write_event_value = &sca3000_write_event_value, |
| .read_event_config = &sca3000_read_event_config, |
| .write_event_config = &sca3000_write_event_config, |
| }; |
| |
| static int sca3000_probe(struct spi_device *spi) |
| { |
| int ret; |
| struct sca3000_state *st; |
| struct iio_dev *indio_dev; |
| |
| indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); |
| if (!indio_dev) |
| return -ENOMEM; |
| |
| st = iio_priv(indio_dev); |
| spi_set_drvdata(spi, indio_dev); |
| st->us = spi; |
| mutex_init(&st->lock); |
| st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi) |
| ->driver_data]; |
| |
| indio_dev->dev.parent = &spi->dev; |
| indio_dev->name = spi_get_device_id(spi)->name; |
| indio_dev->info = &sca3000_info; |
| if (st->info->temp_output) { |
| indio_dev->channels = sca3000_channels_with_temp; |
| indio_dev->num_channels = |
| ARRAY_SIZE(sca3000_channels_with_temp); |
| } else { |
| indio_dev->channels = sca3000_channels; |
| indio_dev->num_channels = ARRAY_SIZE(sca3000_channels); |
| } |
| indio_dev->modes = INDIO_DIRECT_MODE; |
| |
| ret = sca3000_configure_ring(indio_dev); |
| if (ret) |
| return ret; |
| |
| if (spi->irq) { |
| ret = request_threaded_irq(spi->irq, |
| NULL, |
| &sca3000_event_handler, |
| IRQF_TRIGGER_FALLING | IRQF_ONESHOT, |
| "sca3000", |
| indio_dev); |
| if (ret) |
| return ret; |
| } |
| indio_dev->setup_ops = &sca3000_ring_setup_ops; |
| ret = sca3000_clean_setup(st); |
| if (ret) |
| goto error_free_irq; |
| |
| ret = sca3000_print_rev(indio_dev); |
| if (ret) |
| goto error_free_irq; |
| |
| return iio_device_register(indio_dev); |
| |
| error_free_irq: |
| if (spi->irq) |
| free_irq(spi->irq, indio_dev); |
| |
| return ret; |
| } |
| |
| static int sca3000_stop_all_interrupts(struct sca3000_state *st) |
| { |
| int ret; |
| |
| mutex_lock(&st->lock); |
| ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1); |
| if (ret) |
| goto error_ret; |
| ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR, |
| (st->rx[0] & |
| ~(SCA3000_REG_INT_MASK_RING_THREE_QUARTER | |
| SCA3000_REG_INT_MASK_RING_HALF | |
| SCA3000_REG_INT_MASK_ALL_INTS))); |
| error_ret: |
| mutex_unlock(&st->lock); |
| return ret; |
| } |
| |
| static int sca3000_remove(struct spi_device *spi) |
| { |
| struct iio_dev *indio_dev = spi_get_drvdata(spi); |
| struct sca3000_state *st = iio_priv(indio_dev); |
| |
| iio_device_unregister(indio_dev); |
| |
| /* Must ensure no interrupts can be generated after this! */ |
| sca3000_stop_all_interrupts(st); |
| if (spi->irq) |
| free_irq(spi->irq, indio_dev); |
| |
| return 0; |
| } |
| |
| static const struct spi_device_id sca3000_id[] = { |
| {"sca3000_d01", d01}, |
| {"sca3000_e02", e02}, |
| {"sca3000_e04", e04}, |
| {"sca3000_e05", e05}, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(spi, sca3000_id); |
| |
| static struct spi_driver sca3000_driver = { |
| .driver = { |
| .name = "sca3000", |
| }, |
| .probe = sca3000_probe, |
| .remove = sca3000_remove, |
| .id_table = sca3000_id, |
| }; |
| module_spi_driver(sca3000_driver); |
| |
| MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>"); |
| MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver"); |
| MODULE_LICENSE("GPL v2"); |