blob: b463829b92eb8a872ff39989f043033011eb0517 [file] [log] [blame]
/*
* Copyright © 2006-2007 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <linux/dmi.h>
#include <linux/module.h>
#include <linux/input.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/vgaarb.h>
#include <drm/drm_edid.h>
#include "drmP.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "drm_dp_helper.h"
#include "drm_crtc_helper.h"
#include <linux/dma_remapping.h>
#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
static void intel_increase_pllclock(struct drm_crtc *crtc);
static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
typedef struct {
/* given values */
int n;
int m1, m2;
int p1, p2;
/* derived values */
int dot;
int vco;
int m;
int p;
} intel_clock_t;
typedef struct {
int min, max;
} intel_range_t;
typedef struct {
int dot_limit;
int p2_slow, p2_fast;
} intel_p2_t;
#define INTEL_P2_NUM 2
typedef struct intel_limit intel_limit_t;
struct intel_limit {
intel_range_t dot, vco, n, m, m1, m2, p, p1;
intel_p2_t p2;
bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
int, int, intel_clock_t *, intel_clock_t *);
};
/* FDI */
#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
static bool
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
static bool
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
static bool
intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
static bool
intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
static bool
intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
static inline u32 /* units of 100MHz */
intel_fdi_link_freq(struct drm_device *dev)
{
if (IS_GEN5(dev)) {
struct drm_i915_private *dev_priv = dev->dev_private;
return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
} else
return 27;
}
static const intel_limit_t intel_limits_i8xx_dvo = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 930000, .max = 1400000 },
.n = { .min = 3, .max = 16 },
.m = { .min = 96, .max = 140 },
.m1 = { .min = 18, .max = 26 },
.m2 = { .min = 6, .max = 16 },
.p = { .min = 4, .max = 128 },
.p1 = { .min = 2, .max = 33 },
.p2 = { .dot_limit = 165000,
.p2_slow = 4, .p2_fast = 2 },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_i8xx_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 930000, .max = 1400000 },
.n = { .min = 3, .max = 16 },
.m = { .min = 96, .max = 140 },
.m1 = { .min = 18, .max = 26 },
.m2 = { .min = 6, .max = 16 },
.p = { .min = 4, .max = 128 },
.p1 = { .min = 1, .max = 6 },
.p2 = { .dot_limit = 165000,
.p2_slow = 14, .p2_fast = 7 },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_i9xx_sdvo = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1400000, .max = 2800000 },
.n = { .min = 1, .max = 6 },
.m = { .min = 70, .max = 120 },
.m1 = { .min = 10, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 200000,
.p2_slow = 10, .p2_fast = 5 },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_i9xx_lvds = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1400000, .max = 2800000 },
.n = { .min = 1, .max = 6 },
.m = { .min = 70, .max = 120 },
.m1 = { .min = 10, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 7, .max = 98 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 112000,
.p2_slow = 14, .p2_fast = 7 },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_sdvo = {
.dot = { .min = 25000, .max = 270000 },
.vco = { .min = 1750000, .max = 3500000},
.n = { .min = 1, .max = 4 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 10, .max = 30 },
.p1 = { .min = 1, .max = 3},
.p2 = { .dot_limit = 270000,
.p2_slow = 10,
.p2_fast = 10
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_hdmi = {
.dot = { .min = 22000, .max = 400000 },
.vco = { .min = 1750000, .max = 3500000},
.n = { .min = 1, .max = 4 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 16, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8},
.p2 = { .dot_limit = 165000,
.p2_slow = 10, .p2_fast = 5 },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
.dot = { .min = 20000, .max = 115000 },
.vco = { .min = 1750000, .max = 3500000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 0,
.p2_slow = 14, .p2_fast = 14
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
.dot = { .min = 80000, .max = 224000 },
.vco = { .min = 1750000, .max = 3500000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 14, .max = 42 },
.p1 = { .min = 2, .max = 6 },
.p2 = { .dot_limit = 0,
.p2_slow = 7, .p2_fast = 7
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_display_port = {
.dot = { .min = 161670, .max = 227000 },
.vco = { .min = 1750000, .max = 3500000},
.n = { .min = 1, .max = 2 },
.m = { .min = 97, .max = 108 },
.m1 = { .min = 0x10, .max = 0x12 },
.m2 = { .min = 0x05, .max = 0x06 },
.p = { .min = 10, .max = 20 },
.p1 = { .min = 1, .max = 2},
.p2 = { .dot_limit = 0,
.p2_slow = 10, .p2_fast = 10 },
.find_pll = intel_find_pll_g4x_dp,
};
static const intel_limit_t intel_limits_pineview_sdvo = {
.dot = { .min = 20000, .max = 400000},
.vco = { .min = 1700000, .max = 3500000 },
/* Pineview's Ncounter is a ring counter */
.n = { .min = 3, .max = 6 },
.m = { .min = 2, .max = 256 },
/* Pineview only has one combined m divider, which we treat as m2. */
.m1 = { .min = 0, .max = 0 },
.m2 = { .min = 0, .max = 254 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 200000,
.p2_slow = 10, .p2_fast = 5 },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_pineview_lvds = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1700000, .max = 3500000 },
.n = { .min = 3, .max = 6 },
.m = { .min = 2, .max = 256 },
.m1 = { .min = 0, .max = 0 },
.m2 = { .min = 0, .max = 254 },
.p = { .min = 7, .max = 112 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 112000,
.p2_slow = 14, .p2_fast = 14 },
.find_pll = intel_find_best_PLL,
};
/* Ironlake / Sandybridge
*
* We calculate clock using (register_value + 2) for N/M1/M2, so here
* the range value for them is (actual_value - 2).
*/
static const intel_limit_t intel_limits_ironlake_dac = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 5 },
.m = { .min = 79, .max = 127 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 10, .p2_fast = 5 },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_single_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 118 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 14, .p2_fast = 14 },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_dual_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 127 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 14, .max = 56 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 7, .p2_fast = 7 },
.find_pll = intel_g4x_find_best_PLL,
};
/* LVDS 100mhz refclk limits. */
static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 2 },
.m = { .min = 79, .max = 126 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 14, .p2_fast = 14 },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 126 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 14, .max = 42 },
.p1 = { .min = 2, .max = 6 },
.p2 = { .dot_limit = 225000,
.p2_slow = 7, .p2_fast = 7 },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_display_port = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000},
.n = { .min = 1, .max = 2 },
.m = { .min = 81, .max = 90 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 10, .max = 20 },
.p1 = { .min = 1, .max = 2},
.p2 = { .dot_limit = 0,
.p2_slow = 10, .p2_fast = 10 },
.find_pll = intel_find_pll_ironlake_dp,
};
static const intel_limit_t intel_limits_vlv_dac = {
.dot = { .min = 25000, .max = 270000 },
.vco = { .min = 4000000, .max = 6000000 },
.n = { .min = 1, .max = 7 },
.m = { .min = 22, .max = 450 }, /* guess */
.m1 = { .min = 2, .max = 3 },
.m2 = { .min = 11, .max = 156 },
.p = { .min = 10, .max = 30 },
.p1 = { .min = 2, .max = 3 },
.p2 = { .dot_limit = 270000,
.p2_slow = 2, .p2_fast = 20 },
.find_pll = intel_vlv_find_best_pll,
};
static const intel_limit_t intel_limits_vlv_hdmi = {
.dot = { .min = 20000, .max = 165000 },
.vco = { .min = 5994000, .max = 4000000 },
.n = { .min = 1, .max = 7 },
.m = { .min = 60, .max = 300 }, /* guess */
.m1 = { .min = 2, .max = 3 },
.m2 = { .min = 11, .max = 156 },
.p = { .min = 10, .max = 30 },
.p1 = { .min = 2, .max = 3 },
.p2 = { .dot_limit = 270000,
.p2_slow = 2, .p2_fast = 20 },
.find_pll = intel_vlv_find_best_pll,
};
static const intel_limit_t intel_limits_vlv_dp = {
.dot = { .min = 162000, .max = 270000 },
.vco = { .min = 5994000, .max = 4000000 },
.n = { .min = 1, .max = 7 },
.m = { .min = 60, .max = 300 }, /* guess */
.m1 = { .min = 2, .max = 3 },
.m2 = { .min = 11, .max = 156 },
.p = { .min = 10, .max = 30 },
.p1 = { .min = 2, .max = 3 },
.p2 = { .dot_limit = 270000,
.p2_slow = 2, .p2_fast = 20 },
.find_pll = intel_vlv_find_best_pll,
};
u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
{
unsigned long flags;
u32 val = 0;
spin_lock_irqsave(&dev_priv->dpio_lock, flags);
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
DRM_ERROR("DPIO idle wait timed out\n");
goto out_unlock;
}
I915_WRITE(DPIO_REG, reg);
I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
DPIO_BYTE);
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
DRM_ERROR("DPIO read wait timed out\n");
goto out_unlock;
}
val = I915_READ(DPIO_DATA);
out_unlock:
spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
return val;
}
static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
u32 val)
{
unsigned long flags;
spin_lock_irqsave(&dev_priv->dpio_lock, flags);
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
DRM_ERROR("DPIO idle wait timed out\n");
goto out_unlock;
}
I915_WRITE(DPIO_DATA, val);
I915_WRITE(DPIO_REG, reg);
I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
DPIO_BYTE);
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
DRM_ERROR("DPIO write wait timed out\n");
out_unlock:
spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
}
static void vlv_init_dpio(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* Reset the DPIO config */
I915_WRITE(DPIO_CTL, 0);
POSTING_READ(DPIO_CTL);
I915_WRITE(DPIO_CTL, 1);
POSTING_READ(DPIO_CTL);
}
static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
{
DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
return 1;
}
static const struct dmi_system_id intel_dual_link_lvds[] = {
{
.callback = intel_dual_link_lvds_callback,
.ident = "Apple MacBook Pro (Core i5/i7 Series)",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
},
},
{ } /* terminating entry */
};
static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
unsigned int reg)
{
unsigned int val;
/* use the module option value if specified */
if (i915_lvds_channel_mode > 0)
return i915_lvds_channel_mode == 2;
if (dmi_check_system(intel_dual_link_lvds))
return true;
if (dev_priv->lvds_val)
val = dev_priv->lvds_val;
else {
/* BIOS should set the proper LVDS register value at boot, but
* in reality, it doesn't set the value when the lid is closed;
* we need to check "the value to be set" in VBT when LVDS
* register is uninitialized.
*/
val = I915_READ(reg);
if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
val = dev_priv->bios_lvds_val;
dev_priv->lvds_val = val;
}
return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
}
static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
int refclk)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
const intel_limit_t *limit;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
/* LVDS dual channel */
if (refclk == 100000)
limit = &intel_limits_ironlake_dual_lvds_100m;
else
limit = &intel_limits_ironlake_dual_lvds;
} else {
if (refclk == 100000)
limit = &intel_limits_ironlake_single_lvds_100m;
else
limit = &intel_limits_ironlake_single_lvds;
}
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
HAS_eDP)
limit = &intel_limits_ironlake_display_port;
else
limit = &intel_limits_ironlake_dac;
return limit;
}
static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
const intel_limit_t *limit;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if (is_dual_link_lvds(dev_priv, LVDS))
/* LVDS with dual channel */
limit = &intel_limits_g4x_dual_channel_lvds;
else
/* LVDS with dual channel */
limit = &intel_limits_g4x_single_channel_lvds;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
limit = &intel_limits_g4x_hdmi;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
limit = &intel_limits_g4x_sdvo;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
limit = &intel_limits_g4x_display_port;
} else /* The option is for other outputs */
limit = &intel_limits_i9xx_sdvo;
return limit;
}
static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
{
struct drm_device *dev = crtc->dev;
const intel_limit_t *limit;
if (HAS_PCH_SPLIT(dev))
limit = intel_ironlake_limit(crtc, refclk);
else if (IS_G4X(dev)) {
limit = intel_g4x_limit(crtc);
} else if (IS_PINEVIEW(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_pineview_lvds;
else
limit = &intel_limits_pineview_sdvo;
} else if (IS_VALLEYVIEW(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
limit = &intel_limits_vlv_dac;
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
limit = &intel_limits_vlv_hdmi;
else
limit = &intel_limits_vlv_dp;
} else if (!IS_GEN2(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i9xx_lvds;
else
limit = &intel_limits_i9xx_sdvo;
} else {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i8xx_lvds;
else
limit = &intel_limits_i8xx_dvo;
}
return limit;
}
/* m1 is reserved as 0 in Pineview, n is a ring counter */
static void pineview_clock(int refclk, intel_clock_t *clock)
{
clock->m = clock->m2 + 2;
clock->p = clock->p1 * clock->p2;
clock->vco = refclk * clock->m / clock->n;
clock->dot = clock->vco / clock->p;
}
static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
{
if (IS_PINEVIEW(dev)) {
pineview_clock(refclk, clock);
return;
}
clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
clock->p = clock->p1 * clock->p2;
clock->vco = refclk * clock->m / (clock->n + 2);
clock->dot = clock->vco / clock->p;
}
/**
* Returns whether any output on the specified pipe is of the specified type
*/
bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
{
struct drm_device *dev = crtc->dev;
struct intel_encoder *encoder;
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->type == type)
return true;
return false;
}
#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
/**
* Returns whether the given set of divisors are valid for a given refclk with
* the given connectors.
*/
static bool intel_PLL_is_valid(struct drm_device *dev,
const intel_limit_t *limit,
const intel_clock_t *clock)
{
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
INTELPllInvalid("p1 out of range\n");
if (clock->p < limit->p.min || limit->p.max < clock->p)
INTELPllInvalid("p out of range\n");
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
INTELPllInvalid("m2 out of range\n");
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
INTELPllInvalid("m1 out of range\n");
if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
INTELPllInvalid("m1 <= m2\n");
if (clock->m < limit->m.min || limit->m.max < clock->m)
INTELPllInvalid("m out of range\n");
if (clock->n < limit->n.min || limit->n.max < clock->n)
INTELPllInvalid("n out of range\n");
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
INTELPllInvalid("vco out of range\n");
/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
* connector, etc., rather than just a single range.
*/
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
INTELPllInvalid("dot out of range\n");
return true;
}
static bool
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
intel_clock_t clock;
int err = target;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
(I915_READ(LVDS)) != 0) {
/*
* For LVDS, if the panel is on, just rely on its current
* settings for dual-channel. We haven't figured out how to
* reliably set up different single/dual channel state, if we
* even can.
*/
if (is_dual_link_lvds(dev_priv, LVDS))
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
clock.m1++) {
for (clock.m2 = limit->m2.min;
clock.m2 <= limit->m2.max; clock.m2++) {
/* m1 is always 0 in Pineview */
if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
break;
for (clock.n = limit->n.min;
clock.n <= limit->n.max; clock.n++) {
for (clock.p1 = limit->p1.min;
clock.p1 <= limit->p1.max; clock.p1++) {
int this_err;
intel_clock(dev, refclk, &clock);
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
if (match_clock &&
clock.p != match_clock->p)
continue;
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
}
}
return (err != target);
}
static bool
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
intel_clock_t clock;
int max_n;
bool found;
/* approximately equals target * 0.00585 */
int err_most = (target >> 8) + (target >> 9);
found = false;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
int lvds_reg;
if (HAS_PCH_SPLIT(dev))
lvds_reg = PCH_LVDS;
else
lvds_reg = LVDS;
if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP)
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
max_n = limit->n.max;
/* based on hardware requirement, prefer smaller n to precision */
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
/* based on hardware requirement, prefere larger m1,m2 */
for (clock.m1 = limit->m1.max;
clock.m1 >= limit->m1.min; clock.m1--) {
for (clock.m2 = limit->m2.max;
clock.m2 >= limit->m2.min; clock.m2--) {
for (clock.p1 = limit->p1.max;
clock.p1 >= limit->p1.min; clock.p1--) {
int this_err;
intel_clock(dev, refclk, &clock);
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
if (match_clock &&
clock.p != match_clock->p)
continue;
this_err = abs(clock.dot - target);
if (this_err < err_most) {
*best_clock = clock;
err_most = this_err;
max_n = clock.n;
found = true;
}
}
}
}
}
return found;
}
static bool
intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
intel_clock_t clock;
if (target < 200000) {
clock.n = 1;
clock.p1 = 2;
clock.p2 = 10;
clock.m1 = 12;
clock.m2 = 9;
} else {
clock.n = 2;
clock.p1 = 1;
clock.p2 = 10;
clock.m1 = 14;
clock.m2 = 8;
}
intel_clock(dev, refclk, &clock);
memcpy(best_clock, &clock, sizeof(intel_clock_t));
return true;
}
/* DisplayPort has only two frequencies, 162MHz and 270MHz */
static bool
intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
intel_clock_t clock;
if (target < 200000) {
clock.p1 = 2;
clock.p2 = 10;
clock.n = 2;
clock.m1 = 23;
clock.m2 = 8;
} else {
clock.p1 = 1;
clock.p2 = 10;
clock.n = 1;
clock.m1 = 14;
clock.m2 = 2;
}
clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
clock.p = (clock.p1 * clock.p2);
clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
clock.vco = 0;
memcpy(best_clock, &clock, sizeof(intel_clock_t));
return true;
}
static bool
intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
u32 m, n, fastclk;
u32 updrate, minupdate, fracbits, p;
unsigned long bestppm, ppm, absppm;
int dotclk, flag;
dotclk = target * 1000;
bestppm = 1000000;
ppm = absppm = 0;
fastclk = dotclk / (2*100);
updrate = 0;
minupdate = 19200;
fracbits = 1;
n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
bestm1 = bestm2 = bestp1 = bestp2 = 0;
/* based on hardware requirement, prefer smaller n to precision */
for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
updrate = refclk / n;
for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
if (p2 > 10)
p2 = p2 - 1;
p = p1 * p2;
/* based on hardware requirement, prefer bigger m1,m2 values */
for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
m2 = (((2*(fastclk * p * n / m1 )) +
refclk) / (2*refclk));
m = m1 * m2;
vco = updrate * m;
if (vco >= limit->vco.min && vco < limit->vco.max) {
ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
absppm = (ppm > 0) ? ppm : (-ppm);
if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
bestppm = 0;
flag = 1;
}
if (absppm < bestppm - 10) {
bestppm = absppm;
flag = 1;
}
if (flag) {
bestn = n;
bestm1 = m1;
bestm2 = m2;
bestp1 = p1;
bestp2 = p2;
flag = 0;
}
}
}
}
}
}
best_clock->n = bestn;
best_clock->m1 = bestm1;
best_clock->m2 = bestm2;
best_clock->p1 = bestp1;
best_clock->p2 = bestp2;
return true;
}
static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 frame, frame_reg = PIPEFRAME(pipe);
frame = I915_READ(frame_reg);
if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
DRM_DEBUG_KMS("vblank wait timed out\n");
}
/**
* intel_wait_for_vblank - wait for vblank on a given pipe
* @dev: drm device
* @pipe: pipe to wait for
*
* Wait for vblank to occur on a given pipe. Needed for various bits of
* mode setting code.
*/
void intel_wait_for_vblank(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipestat_reg = PIPESTAT(pipe);
if (INTEL_INFO(dev)->gen >= 5) {
ironlake_wait_for_vblank(dev, pipe);
return;
}
/* Clear existing vblank status. Note this will clear any other
* sticky status fields as well.
*
* This races with i915_driver_irq_handler() with the result
* that either function could miss a vblank event. Here it is not
* fatal, as we will either wait upon the next vblank interrupt or
* timeout. Generally speaking intel_wait_for_vblank() is only
* called during modeset at which time the GPU should be idle and
* should *not* be performing page flips and thus not waiting on
* vblanks...
* Currently, the result of us stealing a vblank from the irq
* handler is that a single frame will be skipped during swapbuffers.
*/
I915_WRITE(pipestat_reg,
I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
/* Wait for vblank interrupt bit to set */
if (wait_for(I915_READ(pipestat_reg) &
PIPE_VBLANK_INTERRUPT_STATUS,
50))
DRM_DEBUG_KMS("vblank wait timed out\n");
}
/*
* intel_wait_for_pipe_off - wait for pipe to turn off
* @dev: drm device
* @pipe: pipe to wait for
*
* After disabling a pipe, we can't wait for vblank in the usual way,
* spinning on the vblank interrupt status bit, since we won't actually
* see an interrupt when the pipe is disabled.
*
* On Gen4 and above:
* wait for the pipe register state bit to turn off
*
* Otherwise:
* wait for the display line value to settle (it usually
* ends up stopping at the start of the next frame).
*
*/
void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen >= 4) {
int reg = PIPECONF(pipe);
/* Wait for the Pipe State to go off */
if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
100))
DRM_DEBUG_KMS("pipe_off wait timed out\n");
} else {
u32 last_line, line_mask;
int reg = PIPEDSL(pipe);
unsigned long timeout = jiffies + msecs_to_jiffies(100);
if (IS_GEN2(dev))
line_mask = DSL_LINEMASK_GEN2;
else
line_mask = DSL_LINEMASK_GEN3;
/* Wait for the display line to settle */
do {
last_line = I915_READ(reg) & line_mask;
mdelay(5);
} while (((I915_READ(reg) & line_mask) != last_line) &&
time_after(timeout, jiffies));
if (time_after(jiffies, timeout))
DRM_DEBUG_KMS("pipe_off wait timed out\n");
}
}
static const char *state_string(bool enabled)
{
return enabled ? "on" : "off";
}
/* Only for pre-ILK configs */
static void assert_pll(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
reg = DPLL(pipe);
val = I915_READ(reg);
cur_state = !!(val & DPLL_VCO_ENABLE);
WARN(cur_state != state,
"PLL state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
#define assert_pll_enabled(d, p) assert_pll(d, p, true)
#define assert_pll_disabled(d, p) assert_pll(d, p, false)
/* For ILK+ */
static void assert_pch_pll(struct drm_i915_private *dev_priv,
struct intel_pch_pll *pll,
struct intel_crtc *crtc,
bool state)
{
u32 val;
bool cur_state;
if (HAS_PCH_LPT(dev_priv->dev)) {
DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
return;
}
if (WARN (!pll,
"asserting PCH PLL %s with no PLL\n", state_string(state)))
return;
val = I915_READ(pll->pll_reg);
cur_state = !!(val & DPLL_VCO_ENABLE);
WARN(cur_state != state,
"PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
pll->pll_reg, state_string(state), state_string(cur_state), val);
/* Make sure the selected PLL is correctly attached to the transcoder */
if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
u32 pch_dpll;
pch_dpll = I915_READ(PCH_DPLL_SEL);
cur_state = pll->pll_reg == _PCH_DPLL_B;
if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
"PLL[%d] not attached to this transcoder %d: %08x\n",
cur_state, crtc->pipe, pch_dpll)) {
cur_state = !!(val >> (4*crtc->pipe + 3));
WARN(cur_state != state,
"PLL[%d] not %s on this transcoder %d: %08x\n",
pll->pll_reg == _PCH_DPLL_B,
state_string(state),
crtc->pipe,
val);
}
}
}
#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
if (IS_HASWELL(dev_priv->dev)) {
/* On Haswell, DDI is used instead of FDI_TX_CTL */
reg = DDI_FUNC_CTL(pipe);
val = I915_READ(reg);
cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
} else {
reg = FDI_TX_CTL(pipe);
val = I915_READ(reg);
cur_state = !!(val & FDI_TX_ENABLE);
}
WARN(cur_state != state,
"FDI TX state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
static void assert_fdi_rx(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
return;
} else {
reg = FDI_RX_CTL(pipe);
val = I915_READ(reg);
cur_state = !!(val & FDI_RX_ENABLE);
}
WARN(cur_state != state,
"FDI RX state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
/* ILK FDI PLL is always enabled */
if (dev_priv->info->gen == 5)
return;
/* On Haswell, DDI ports are responsible for the FDI PLL setup */
if (IS_HASWELL(dev_priv->dev))
return;
reg = FDI_TX_CTL(pipe);
val = I915_READ(reg);
WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
}
static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
return;
}
reg = FDI_RX_CTL(pipe);
val = I915_READ(reg);
WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
}
static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int pp_reg, lvds_reg;
u32 val;
enum pipe panel_pipe = PIPE_A;
bool locked = true;
if (HAS_PCH_SPLIT(dev_priv->dev)) {
pp_reg = PCH_PP_CONTROL;
lvds_reg = PCH_LVDS;
} else {
pp_reg = PP_CONTROL;
lvds_reg = LVDS;
}
val = I915_READ(pp_reg);
if (!(val & PANEL_POWER_ON) ||
((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
locked = false;
if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
panel_pipe = PIPE_B;
WARN(panel_pipe == pipe && locked,
"panel assertion failure, pipe %c regs locked\n",
pipe_name(pipe));
}
void assert_pipe(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
/* if we need the pipe A quirk it must be always on */
if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
state = true;
reg = PIPECONF(pipe);
val = I915_READ(reg);
cur_state = !!(val & PIPECONF_ENABLE);
WARN(cur_state != state,
"pipe %c assertion failure (expected %s, current %s)\n",
pipe_name(pipe), state_string(state), state_string(cur_state));
}
static void assert_plane(struct drm_i915_private *dev_priv,
enum plane plane, bool state)
{
int reg;
u32 val;
bool cur_state;
reg = DSPCNTR(plane);
val = I915_READ(reg);
cur_state = !!(val & DISPLAY_PLANE_ENABLE);
WARN(cur_state != state,
"plane %c assertion failure (expected %s, current %s)\n",
plane_name(plane), state_string(state), state_string(cur_state));
}
#define assert_plane_enabled(d, p) assert_plane(d, p, true)
#define assert_plane_disabled(d, p) assert_plane(d, p, false)
static void assert_planes_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg, i;
u32 val;
int cur_pipe;
/* Planes are fixed to pipes on ILK+ */
if (HAS_PCH_SPLIT(dev_priv->dev)) {
reg = DSPCNTR(pipe);
val = I915_READ(reg);
WARN((val & DISPLAY_PLANE_ENABLE),
"plane %c assertion failure, should be disabled but not\n",
plane_name(pipe));
return;
}
/* Need to check both planes against the pipe */
for (i = 0; i < 2; i++) {
reg = DSPCNTR(i);
val = I915_READ(reg);
cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
DISPPLANE_SEL_PIPE_SHIFT;
WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
"plane %c assertion failure, should be off on pipe %c but is still active\n",
plane_name(i), pipe_name(pipe));
}
}
static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
{
u32 val;
bool enabled;
if (HAS_PCH_LPT(dev_priv->dev)) {
DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
return;
}
val = I915_READ(PCH_DREF_CONTROL);
enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
DREF_SUPERSPREAD_SOURCE_MASK));
WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
}
static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
bool enabled;
reg = TRANSCONF(pipe);
val = I915_READ(reg);
enabled = !!(val & TRANS_ENABLE);
WARN(enabled,
"transcoder assertion failed, should be off on pipe %c but is still active\n",
pipe_name(pipe));
}
static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 port_sel, u32 val)
{
if ((val & DP_PORT_EN) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
return false;
} else {
if ((val & DP_PIPE_MASK) != (pipe << 30))
return false;
}
return true;
}
static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 val)
{
if ((val & PORT_ENABLE) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
return false;
} else {
if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
return false;
}
return true;
}
static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 val)
{
if ((val & LVDS_PORT_EN) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
return false;
} else {
if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
return false;
}
return true;
}
static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 val)
{
if ((val & ADPA_DAC_ENABLE) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
return false;
} else {
if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
return false;
}
return true;
}
static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe, int reg, u32 port_sel)
{
u32 val = I915_READ(reg);
WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
"PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
reg, pipe_name(pipe));
WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
"IBX PCH dp port still using transcoder B\n");
}
static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe, int reg)
{
u32 val = I915_READ(reg);
WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
"PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
reg, pipe_name(pipe));
WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
"IBX PCH hdmi port still using transcoder B\n");
}
static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
reg = PCH_ADPA;
val = I915_READ(reg);
WARN(adpa_pipe_enabled(dev_priv, val, pipe),
"PCH VGA enabled on transcoder %c, should be disabled\n",
pipe_name(pipe));
reg = PCH_LVDS;
val = I915_READ(reg);
WARN(lvds_pipe_enabled(dev_priv, val, pipe),
"PCH LVDS enabled on transcoder %c, should be disabled\n",
pipe_name(pipe));
assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
}
/**
* intel_enable_pll - enable a PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to enable
*
* Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
* make sure the PLL reg is writable first though, since the panel write
* protect mechanism may be enabled.
*
* Note! This is for pre-ILK only.
*
* Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
*/
void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
{
int reg;
u32 val;
/* No really, not for ILK+ */
BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
/* PLL is protected by panel, make sure we can write it */
if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
assert_panel_unlocked(dev_priv, pipe);
reg = DPLL(pipe);
val = I915_READ(reg);
val |= DPLL_VCO_ENABLE;
/* We do this three times for luck */
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
}
/**
* intel_disable_pll - disable a PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to disable
*
* Disable the PLL for @pipe, making sure the pipe is off first.
*
* Note! This is for pre-ILK only.
*/
static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
{
int reg;
u32 val;
/* Don't disable pipe A or pipe A PLLs if needed */
if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
return;
/* Make sure the pipe isn't still relying on us */
assert_pipe_disabled(dev_priv, pipe);
reg = DPLL(pipe);
val = I915_READ(reg);
val &= ~DPLL_VCO_ENABLE;
I915_WRITE(reg, val);
POSTING_READ(reg);
}
/* SBI access */
static void
intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
{
unsigned long flags;
spin_lock_irqsave(&dev_priv->dpio_lock, flags);
if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
100)) {
DRM_ERROR("timeout waiting for SBI to become ready\n");
goto out_unlock;
}
I915_WRITE(SBI_ADDR,
(reg << 16));
I915_WRITE(SBI_DATA,
value);
I915_WRITE(SBI_CTL_STAT,
SBI_BUSY |
SBI_CTL_OP_CRWR);
if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
100)) {
DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
goto out_unlock;
}
out_unlock:
spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
}
static u32
intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
{
unsigned long flags;
u32 value = 0;
spin_lock_irqsave(&dev_priv->dpio_lock, flags);
if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
100)) {
DRM_ERROR("timeout waiting for SBI to become ready\n");
goto out_unlock;
}
I915_WRITE(SBI_ADDR,
(reg << 16));
I915_WRITE(SBI_CTL_STAT,
SBI_BUSY |
SBI_CTL_OP_CRRD);
if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
100)) {
DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
goto out_unlock;
}
value = I915_READ(SBI_DATA);
out_unlock:
spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
return value;
}
/**
* intel_enable_pch_pll - enable PCH PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to enable
*
* The PCH PLL needs to be enabled before the PCH transcoder, since it
* drives the transcoder clock.
*/
static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
struct intel_pch_pll *pll;
int reg;
u32 val;
/* PCH PLLs only available on ILK, SNB and IVB */
BUG_ON(dev_priv->info->gen < 5);
pll = intel_crtc->pch_pll;
if (pll == NULL)
return;
if (WARN_ON(pll->refcount == 0))
return;
DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
pll->pll_reg, pll->active, pll->on,
intel_crtc->base.base.id);
/* PCH refclock must be enabled first */
assert_pch_refclk_enabled(dev_priv);
if (pll->active++ && pll->on) {
assert_pch_pll_enabled(dev_priv, pll, NULL);
return;
}
DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
reg = pll->pll_reg;
val = I915_READ(reg);
val |= DPLL_VCO_ENABLE;
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(200);
pll->on = true;
}
static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
struct intel_pch_pll *pll = intel_crtc->pch_pll;
int reg;
u32 val;
/* PCH only available on ILK+ */
BUG_ON(dev_priv->info->gen < 5);
if (pll == NULL)
return;
if (WARN_ON(pll->refcount == 0))
return;
DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
pll->pll_reg, pll->active, pll->on,
intel_crtc->base.base.id);
if (WARN_ON(pll->active == 0)) {
assert_pch_pll_disabled(dev_priv, pll, NULL);
return;
}
if (--pll->active) {
assert_pch_pll_enabled(dev_priv, pll, NULL);
return;
}
DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
/* Make sure transcoder isn't still depending on us */
assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
reg = pll->pll_reg;
val = I915_READ(reg);
val &= ~DPLL_VCO_ENABLE;
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(200);
pll->on = false;
}
static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val, pipeconf_val;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
/* PCH only available on ILK+ */
BUG_ON(dev_priv->info->gen < 5);
/* Make sure PCH DPLL is enabled */
assert_pch_pll_enabled(dev_priv,
to_intel_crtc(crtc)->pch_pll,
to_intel_crtc(crtc));
/* FDI must be feeding us bits for PCH ports */
assert_fdi_tx_enabled(dev_priv, pipe);
assert_fdi_rx_enabled(dev_priv, pipe);
if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
return;
}
reg = TRANSCONF(pipe);
val = I915_READ(reg);
pipeconf_val = I915_READ(PIPECONF(pipe));
if (HAS_PCH_IBX(dev_priv->dev)) {
/*
* make the BPC in transcoder be consistent with
* that in pipeconf reg.
*/
val &= ~PIPE_BPC_MASK;
val |= pipeconf_val & PIPE_BPC_MASK;
}
val &= ~TRANS_INTERLACE_MASK;
if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
if (HAS_PCH_IBX(dev_priv->dev) &&
intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
val |= TRANS_LEGACY_INTERLACED_ILK;
else
val |= TRANS_INTERLACED;
else
val |= TRANS_PROGRESSIVE;
I915_WRITE(reg, val | TRANS_ENABLE);
if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
DRM_ERROR("failed to enable transcoder %d\n", pipe);
}
static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
/* FDI relies on the transcoder */
assert_fdi_tx_disabled(dev_priv, pipe);
assert_fdi_rx_disabled(dev_priv, pipe);
/* Ports must be off as well */
assert_pch_ports_disabled(dev_priv, pipe);
reg = TRANSCONF(pipe);
val = I915_READ(reg);
val &= ~TRANS_ENABLE;
I915_WRITE(reg, val);
/* wait for PCH transcoder off, transcoder state */
if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
DRM_ERROR("failed to disable transcoder %d\n", pipe);
}
/**
* intel_enable_pipe - enable a pipe, asserting requirements
* @dev_priv: i915 private structure
* @pipe: pipe to enable
* @pch_port: on ILK+, is this pipe driving a PCH port or not
*
* Enable @pipe, making sure that various hardware specific requirements
* are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
*
* @pipe should be %PIPE_A or %PIPE_B.
*
* Will wait until the pipe is actually running (i.e. first vblank) before
* returning.
*/
static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
bool pch_port)
{
int reg;
u32 val;
/*
* A pipe without a PLL won't actually be able to drive bits from
* a plane. On ILK+ the pipe PLLs are integrated, so we don't
* need the check.
*/
if (!HAS_PCH_SPLIT(dev_priv->dev))
assert_pll_enabled(dev_priv, pipe);
else {
if (pch_port) {
/* if driving the PCH, we need FDI enabled */
assert_fdi_rx_pll_enabled(dev_priv, pipe);
assert_fdi_tx_pll_enabled(dev_priv, pipe);
}
/* FIXME: assert CPU port conditions for SNB+ */
}
reg = PIPECONF(pipe);
val = I915_READ(reg);
if (val & PIPECONF_ENABLE)
return;
I915_WRITE(reg, val | PIPECONF_ENABLE);
intel_wait_for_vblank(dev_priv->dev, pipe);
}
/**
* intel_disable_pipe - disable a pipe, asserting requirements
* @dev_priv: i915 private structure
* @pipe: pipe to disable
*
* Disable @pipe, making sure that various hardware specific requirements
* are met, if applicable, e.g. plane disabled, panel fitter off, etc.
*
* @pipe should be %PIPE_A or %PIPE_B.
*
* Will wait until the pipe has shut down before returning.
*/
static void intel_disable_pipe(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
/*
* Make sure planes won't keep trying to pump pixels to us,
* or we might hang the display.
*/
assert_planes_disabled(dev_priv, pipe);
/* Don't disable pipe A or pipe A PLLs if needed */
if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
return;
reg = PIPECONF(pipe);
val = I915_READ(reg);
if ((val & PIPECONF_ENABLE) == 0)
return;
I915_WRITE(reg, val & ~PIPECONF_ENABLE);
intel_wait_for_pipe_off(dev_priv->dev, pipe);
}
/*
* Plane regs are double buffered, going from enabled->disabled needs a
* trigger in order to latch. The display address reg provides this.
*/
void intel_flush_display_plane(struct drm_i915_private *dev_priv,
enum plane plane)
{
I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
}
/**
* intel_enable_plane - enable a display plane on a given pipe
* @dev_priv: i915 private structure
* @plane: plane to enable
* @pipe: pipe being fed
*
* Enable @plane on @pipe, making sure that @pipe is running first.
*/
static void intel_enable_plane(struct drm_i915_private *dev_priv,
enum plane plane, enum pipe pipe)
{
int reg;
u32 val;
/* If the pipe isn't enabled, we can't pump pixels and may hang */
assert_pipe_enabled(dev_priv, pipe);
reg = DSPCNTR(plane);
val = I915_READ(reg);
if (val & DISPLAY_PLANE_ENABLE)
return;
I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
intel_flush_display_plane(dev_priv, plane);
intel_wait_for_vblank(dev_priv->dev, pipe);
}
/**
* intel_disable_plane - disable a display plane
* @dev_priv: i915 private structure
* @plane: plane to disable
* @pipe: pipe consuming the data
*
* Disable @plane; should be an independent operation.
*/
static void intel_disable_plane(struct drm_i915_private *dev_priv,
enum plane plane, enum pipe pipe)
{
int reg;
u32 val;
reg = DSPCNTR(plane);
val = I915_READ(reg);
if ((val & DISPLAY_PLANE_ENABLE) == 0)
return;
I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
intel_flush_display_plane(dev_priv, plane);
intel_wait_for_vblank(dev_priv->dev, pipe);
}
static void disable_pch_dp(struct drm_i915_private *dev_priv,
enum pipe pipe, int reg, u32 port_sel)
{
u32 val = I915_READ(reg);
if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
I915_WRITE(reg, val & ~DP_PORT_EN);
}
}
static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
enum pipe pipe, int reg)
{
u32 val = I915_READ(reg);
if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
reg, pipe);
I915_WRITE(reg, val & ~PORT_ENABLE);
}
}
/* Disable any ports connected to this transcoder */
static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
u32 reg, val;
val = I915_READ(PCH_PP_CONTROL);
I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
reg = PCH_ADPA;
val = I915_READ(reg);
if (adpa_pipe_enabled(dev_priv, val, pipe))
I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
reg = PCH_LVDS;
val = I915_READ(reg);
if (lvds_pipe_enabled(dev_priv, val, pipe)) {
DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
I915_WRITE(reg, val & ~LVDS_PORT_EN);
POSTING_READ(reg);
udelay(100);
}
disable_pch_hdmi(dev_priv, pipe, HDMIB);
disable_pch_hdmi(dev_priv, pipe, HDMIC);
disable_pch_hdmi(dev_priv, pipe, HDMID);
}
int
intel_pin_and_fence_fb_obj(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct intel_ring_buffer *pipelined)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 alignment;
int ret;
switch (obj->tiling_mode) {
case I915_TILING_NONE:
if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
alignment = 128 * 1024;
else if (INTEL_INFO(dev)->gen >= 4)
alignment = 4 * 1024;
else
alignment = 64 * 1024;
break;
case I915_TILING_X:
/* pin() will align the object as required by fence */
alignment = 0;
break;
case I915_TILING_Y:
/* FIXME: Is this true? */
DRM_ERROR("Y tiled not allowed for scan out buffers\n");
return -EINVAL;
default:
BUG();
}
dev_priv->mm.interruptible = false;
ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
if (ret)
goto err_interruptible;
/* Install a fence for tiled scan-out. Pre-i965 always needs a
* fence, whereas 965+ only requires a fence if using
* framebuffer compression. For simplicity, we always install
* a fence as the cost is not that onerous.
*/
ret = i915_gem_object_get_fence(obj);
if (ret)
goto err_unpin;
i915_gem_object_pin_fence(obj);
dev_priv->mm.interruptible = true;
return 0;
err_unpin:
i915_gem_object_unpin(obj);
err_interruptible:
dev_priv->mm.interruptible = true;
return ret;
}
void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
{
i915_gem_object_unpin_fence(obj);
i915_gem_object_unpin(obj);
}
/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
* is assumed to be a power-of-two. */
static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
unsigned int bpp,
unsigned int pitch)
{
int tile_rows, tiles;
tile_rows = *y / 8;
*y %= 8;
tiles = *x / (512/bpp);
*x %= 512/bpp;
return tile_rows * pitch * 8 + tiles * 4096;
}
static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
int x, int y)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj;
int plane = intel_crtc->plane;
unsigned long linear_offset;
u32 dspcntr;
u32 reg;
switch (plane) {
case 0:
case 1:
break;
default:
DRM_ERROR("Can't update plane %d in SAREA\n", plane);
return -EINVAL;
}
intel_fb = to_intel_framebuffer(fb);
obj = intel_fb->obj;
reg = DSPCNTR(plane);
dspcntr = I915_READ(reg);
/* Mask out pixel format bits in case we change it */
dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
switch (fb->bits_per_pixel) {
case 8:
dspcntr |= DISPPLANE_8BPP;
break;
case 16:
if (fb->depth == 15)
dspcntr |= DISPPLANE_15_16BPP;
else
dspcntr |= DISPPLANE_16BPP;
break;
case 24:
case 32:
dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
break;
default:
DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
return -EINVAL;
}
if (INTEL_INFO(dev)->gen >= 4) {
if (obj->tiling_mode != I915_TILING_NONE)
dspcntr |= DISPPLANE_TILED;
else
dspcntr &= ~DISPPLANE_TILED;
}
I915_WRITE(reg, dspcntr);
linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
if (INTEL_INFO(dev)->gen >= 4) {
intel_crtc->dspaddr_offset =
gen4_compute_dspaddr_offset_xtiled(&x, &y,
fb->bits_per_pixel / 8,
fb->pitches[0]);
linear_offset -= intel_crtc->dspaddr_offset;
} else {
intel_crtc->dspaddr_offset = linear_offset;
}
DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
if (INTEL_INFO(dev)->gen >= 4) {
I915_MODIFY_DISPBASE(DSPSURF(plane),
obj->gtt_offset + intel_crtc->dspaddr_offset);
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
I915_WRITE(DSPLINOFF(plane), linear_offset);
} else
I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
POSTING_READ(reg);
return 0;
}
static int ironlake_update_plane(struct drm_crtc *crtc,
struct drm_framebuffer *fb, int x, int y)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj;
int plane = intel_crtc->plane;
unsigned long linear_offset;
u32 dspcntr;
u32 reg;
switch (plane) {
case 0:
case 1:
case 2:
break;
default:
DRM_ERROR("Can't update plane %d in SAREA\n", plane);
return -EINVAL;
}
intel_fb = to_intel_framebuffer(fb);
obj = intel_fb->obj;
reg = DSPCNTR(plane);
dspcntr = I915_READ(reg);
/* Mask out pixel format bits in case we change it */
dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
switch (fb->bits_per_pixel) {
case 8:
dspcntr |= DISPPLANE_8BPP;
break;
case 16:
if (fb->depth != 16)
return -EINVAL;
dspcntr |= DISPPLANE_16BPP;
break;
case 24:
case 32:
if (fb->depth == 24)
dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
else if (fb->depth == 30)
dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
else
return -EINVAL;
break;
default:
DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
return -EINVAL;
}
if (obj->tiling_mode != I915_TILING_NONE)
dspcntr |= DISPPLANE_TILED;
else
dspcntr &= ~DISPPLANE_TILED;
/* must disable */
dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
I915_WRITE(reg, dspcntr);
linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
intel_crtc->dspaddr_offset =
gen4_compute_dspaddr_offset_xtiled(&x, &y,
fb->bits_per_pixel / 8,
fb->pitches[0]);
linear_offset -= intel_crtc->dspaddr_offset;
DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
I915_MODIFY_DISPBASE(DSPSURF(plane),
obj->gtt_offset + intel_crtc->dspaddr_offset);
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
I915_WRITE(DSPLINOFF(plane), linear_offset);
POSTING_READ(reg);
return 0;
}
/* Assume fb object is pinned & idle & fenced and just update base pointers */
static int
intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
int x, int y, enum mode_set_atomic state)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->display.disable_fbc)
dev_priv->display.disable_fbc(dev);
intel_increase_pllclock(crtc);
return dev_priv->display.update_plane(crtc, fb, x, y);
}
static int
intel_finish_fb(struct drm_framebuffer *old_fb)
{
struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
bool was_interruptible = dev_priv->mm.interruptible;
int ret;
wait_event(dev_priv->pending_flip_queue,
atomic_read(&dev_priv->mm.wedged) ||
atomic_read(&obj->pending_flip) == 0);
/* Big Hammer, we also need to ensure that any pending
* MI_WAIT_FOR_EVENT inside a user batch buffer on the
* current scanout is retired before unpinning the old
* framebuffer.
*
* This should only fail upon a hung GPU, in which case we
* can safely continue.
*/
dev_priv->mm.interruptible = false;
ret = i915_gem_object_finish_gpu(obj);
dev_priv->mm.interruptible = was_interruptible;
return ret;
}
static int
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_master_private *master_priv;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int ret;
/* no fb bound */
if (!crtc->fb) {
DRM_ERROR("No FB bound\n");
return 0;
}
if(intel_crtc->plane > dev_priv->num_pipe) {
DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
intel_crtc->plane,
dev_priv->num_pipe);
return -EINVAL;
}
mutex_lock(&dev->struct_mutex);
ret = intel_pin_and_fence_fb_obj(dev,
to_intel_framebuffer(crtc->fb)->obj,
NULL);
if (ret != 0) {
mutex_unlock(&dev->struct_mutex);
DRM_ERROR("pin & fence failed\n");
return ret;
}
if (old_fb)
intel_finish_fb(old_fb);
ret = dev_priv->display.update_plane(crtc, crtc->fb, x, y);
if (ret) {
intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
mutex_unlock(&dev->struct_mutex);
DRM_ERROR("failed to update base address\n");
return ret;
}
if (old_fb) {
intel_wait_for_vblank(dev, intel_crtc->pipe);
intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
}
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
if (!dev->primary->master)
return 0;
master_priv = dev->primary->master->driver_priv;
if (!master_priv->sarea_priv)
return 0;
if (intel_crtc->pipe) {
master_priv->sarea_priv->pipeB_x = x;
master_priv->sarea_priv->pipeB_y = y;
} else {
master_priv->sarea_priv->pipeA_x = x;
master_priv->sarea_priv->pipeA_y = y;
}
return 0;
}
static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
dpa_ctl = I915_READ(DP_A);
dpa_ctl &= ~DP_PLL_FREQ_MASK;
if (clock < 200000) {
u32 temp;
dpa_ctl |= DP_PLL_FREQ_160MHZ;
/* workaround for 160Mhz:
1) program 0x4600c bits 15:0 = 0x8124
2) program 0x46010 bit 0 = 1
3) program 0x46034 bit 24 = 1
4) program 0x64000 bit 14 = 1
*/
temp = I915_READ(0x4600c);
temp &= 0xffff0000;
I915_WRITE(0x4600c, temp | 0x8124);
temp = I915_READ(0x46010);
I915_WRITE(0x46010, temp | 1);
temp = I915_READ(0x46034);
I915_WRITE(0x46034, temp | (1 << 24));
} else {
dpa_ctl |= DP_PLL_FREQ_270MHZ;
}
I915_WRITE(DP_A, dpa_ctl);
POSTING_READ(DP_A);
udelay(500);
}
static void intel_fdi_normal_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp;
/* enable normal train */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
if (IS_IVYBRIDGE(dev)) {
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
}
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_NORMAL_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_NONE;
}
I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
/* wait one idle pattern time */
POSTING_READ(reg);
udelay(1000);
/* IVB wants error correction enabled */
if (IS_IVYBRIDGE(dev))
I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
FDI_FE_ERRC_ENABLE);
}
static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 flags = I915_READ(SOUTH_CHICKEN1);
flags |= FDI_PHASE_SYNC_OVR(pipe);
I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
flags |= FDI_PHASE_SYNC_EN(pipe);
I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
POSTING_READ(SOUTH_CHICKEN1);
}
/* The FDI link training functions for ILK/Ibexpeak. */
static void ironlake_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
u32 reg, temp, tries;
/* FDI needs bits from pipe & plane first */
assert_pipe_enabled(dev_priv, pipe);
assert_plane_enabled(dev_priv, plane);
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = I915_READ(reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(reg, temp);
I915_READ(reg);
udelay(150);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(7 << 19);
temp |= (intel_crtc->fdi_lanes - 1) << 19;
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp | FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(150);
/* Ironlake workaround, enable clock pointer after FDI enable*/
if (HAS_PCH_IBX(dev)) {
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
FDI_RX_PHASE_SYNC_POINTER_EN);
}
reg = FDI_RX_IIR(pipe);
for (tries = 0; tries < 5; tries++) {
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if ((temp & FDI_RX_BIT_LOCK)) {
DRM_DEBUG_KMS("FDI train 1 done.\n");
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
break;
}
}
if (tries == 5)
DRM_ERROR("FDI train 1 fail!\n");
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
reg = FDI_RX_IIR(pipe);
for (tries = 0; tries < 5; tries++) {
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done.\n");
break;
}
}
if (tries == 5)
DRM_ERROR("FDI train 2 fail!\n");
DRM_DEBUG_KMS("FDI train done\n");
}
static const int snb_b_fdi_train_param[] = {
FDI_LINK_TRAIN_400MV_0DB_SNB_B,
FDI_LINK_TRAIN_400MV_6DB_SNB_B,
FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
FDI_LINK_TRAIN_800MV_0DB_SNB_B,
};
/* The FDI link training functions for SNB/Cougarpoint. */
static void gen6_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp, i, retry;
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = I915_READ(reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(7 << 19);
temp |= (intel_crtc->fdi_lanes - 1) << 19;
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
/* SNB-B */
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
}
I915_WRITE(reg, temp | FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(150);
if (HAS_PCH_CPT(dev))
cpt_phase_pointer_enable(dev, pipe);
for (i = 0; i < 4; i++) {
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(500);
for (retry = 0; retry < 5; retry++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_BIT_LOCK) {
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
DRM_DEBUG_KMS("FDI train 1 done.\n");
break;
}
udelay(50);
}
if (retry < 5)
break;
}
if (i == 4)
DRM_ERROR("FDI train 1 fail!\n");
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
if (IS_GEN6(dev)) {
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
/* SNB-B */
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
}
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
}
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
for (i = 0; i < 4; i++) {
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(500);
for (retry = 0; retry < 5; retry++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done.\n");
break;
}
udelay(50);
}
if (retry < 5)
break;
}
if (i == 4)
DRM_ERROR("FDI train 2 fail!\n");
DRM_DEBUG_KMS("FDI train done.\n");
}
/* Manual link training for Ivy Bridge A0 parts */
static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp, i;
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = I915_READ(reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(7 << 19);
temp |= (intel_crtc->fdi_lanes - 1) << 19;
temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
temp |= FDI_COMPOSITE_SYNC;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_AUTO;
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
temp |= FDI_COMPOSITE_SYNC;
I915_WRITE(reg, temp | FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(150);
if (HAS_PCH_CPT(dev))
cpt_phase_pointer_enable(dev, pipe);
for (i = 0; i < 4; i++) {
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(500);
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_BIT_LOCK ||
(I915_READ(reg) & FDI_RX_BIT_LOCK)) {
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
DRM_DEBUG_KMS("FDI train 1 done.\n");
break;
}
}
if (i == 4)
DRM_ERROR("FDI train 1 fail!\n");
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
for (i = 0; i < 4; i++) {
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(500);
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done.\n");
break;
}
}
if (i == 4)
DRM_ERROR("FDI train 2 fail!\n");
DRM_DEBUG_KMS("FDI train done.\n");
}
static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp;
/* Write the TU size bits so error detection works */
I915_WRITE(FDI_RX_TUSIZE1(pipe),
I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~((0x7 << 19) | (0x7 << 16));
temp |= (intel_crtc->fdi_lanes - 1) << 19;
temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
POSTING_READ(reg);
udelay(200);
/* Switch from Rawclk to PCDclk */
temp = I915_READ(reg);
I915_WRITE(reg, temp | FDI_PCDCLK);
POSTING_READ(reg);
udelay(200);
/* On Haswell, the PLL configuration for ports and pipes is handled
* separately, as part of DDI setup */
if (!IS_HASWELL(dev)) {
/* Enable CPU FDI TX PLL, always on for Ironlake */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
if ((temp & FDI_TX_PLL_ENABLE) == 0) {
I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
POSTING_READ(reg);
udelay(100);
}
}
}
static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 flags = I915_READ(SOUTH_CHICKEN1);
flags &= ~(FDI_PHASE_SYNC_EN(pipe));
I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
POSTING_READ(SOUTH_CHICKEN1);
}
static void ironlake_fdi_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp;
/* disable CPU FDI tx and PCH FDI rx */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
POSTING_READ(reg);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(0x7 << 16);
temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(100);
/* Ironlake workaround, disable clock pointer after downing FDI */
if (HAS_PCH_IBX(dev)) {
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
I915_WRITE(FDI_RX_CHICKEN(pipe),
I915_READ(FDI_RX_CHICKEN(pipe) &
~FDI_RX_PHASE_SYNC_POINTER_EN));
} else if (HAS_PCH_CPT(dev)) {
cpt_phase_pointer_disable(dev, pipe);
}
/* still set train pattern 1 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
}
/* BPC in FDI rx is consistent with that in PIPECONF */
temp &= ~(0x07 << 16);
temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(100);
}
static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
if (crtc->fb == NULL)
return;
mutex_lock(&dev->struct_mutex);
intel_finish_fb(crtc->fb);
mutex_unlock(&dev->struct_mutex);
}
static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_encoder *encoder;
/*
* If there's a non-PCH eDP on this crtc, it must be DP_A, and that
* must be driven by its own crtc; no sharing is possible.
*/
for_each_encoder_on_crtc(dev, crtc, encoder) {
/* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
* CPU handles all others */
if (IS_HASWELL(dev)) {
/* It is still unclear how this will work on PPT, so throw up a warning */
WARN_ON(!HAS_PCH_LPT(dev));
if (encoder->type == DRM_MODE_ENCODER_DAC) {
DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
return true;
} else {
DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
encoder->type);
return false;
}
}
switch (encoder->type) {
case INTEL_OUTPUT_EDP:
if (!intel_encoder_is_pch_edp(&encoder->base))
return false;
continue;
}
}
return true;
}
/* Program iCLKIP clock to the desired frequency */
static void lpt_program_iclkip(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 divsel, phaseinc, auxdiv, phasedir = 0;
u32 temp;
/* It is necessary to ungate the pixclk gate prior to programming
* the divisors, and gate it back when it is done.
*/
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
/* Disable SSCCTL */
intel_sbi_write(dev_priv, SBI_SSCCTL6,
intel_sbi_read(dev_priv, SBI_SSCCTL6) |
SBI_SSCCTL_DISABLE);
/* 20MHz is a corner case which is out of range for the 7-bit divisor */
if (crtc->mode.clock == 20000) {
auxdiv = 1;
divsel = 0x41;
phaseinc = 0x20;
} else {
/* The iCLK virtual clock root frequency is in MHz,
* but the crtc->mode.clock in in KHz. To get the divisors,
* it is necessary to divide one by another, so we
* convert the virtual clock precision to KHz here for higher
* precision.
*/
u32 iclk_virtual_root_freq = 172800 * 1000;
u32 iclk_pi_range = 64;
u32 desired_divisor, msb_divisor_value, pi_value;
desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
msb_divisor_value = desired_divisor / iclk_pi_range;
pi_value = desired_divisor % iclk_pi_range;
auxdiv = 0;
divsel = msb_divisor_value - 2;
phaseinc = pi_value;
}
/* This should not happen with any sane values */
WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
~SBI_SSCDIVINTPHASE_INCVAL_MASK);
DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
crtc->mode.clock,
auxdiv,
divsel,
phasedir,
phaseinc);
/* Program SSCDIVINTPHASE6 */
temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
intel_sbi_write(dev_priv,
SBI_SSCDIVINTPHASE6,
temp);
/* Program SSCAUXDIV */
temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
intel_sbi_write(dev_priv,
SBI_SSCAUXDIV6,
temp);
/* Enable modulator and associated divider */
temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
temp &= ~SBI_SSCCTL_DISABLE;
intel_sbi_write(dev_priv,
SBI_SSCCTL6,
temp);
/* Wait for initialization time */
udelay(24);
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
}
/*
* Enable PCH resources required for PCH ports:
* - PCH PLLs
* - FDI training & RX/TX
* - update transcoder timings
* - DP transcoding bits
* - transcoder
*/
static void ironlake_pch_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp;
assert_transcoder_disabled(dev_priv, pipe);
/* For PCH output, training FDI link */
dev_priv->display.fdi_link_train(crtc);
intel_enable_pch_pll(intel_crtc);
if (HAS_PCH_LPT(dev)) {
DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
lpt_program_iclkip(crtc);
} else if (HAS_PCH_CPT(dev)) {
u32 sel;
temp = I915_READ(PCH_DPLL_SEL);
switch (pipe) {
default:
case 0:
temp |= TRANSA_DPLL_ENABLE;
sel = TRANSA_DPLLB_SEL;
break;
case 1:
temp |= TRANSB_DPLL_ENABLE;
sel = TRANSB_DPLLB_SEL;
break;
case 2:
temp |= TRANSC_DPLL_ENABLE;
sel = TRANSC_DPLLB_SEL;
break;
}
if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
temp |= sel;
else
temp &= ~sel;
I915_WRITE(PCH_DPLL_SEL, temp);
}
/* set transcoder timing, panel must allow it */
assert_panel_unlocked(dev_priv, pipe);
I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
if (!IS_HASWELL(dev))
intel_fdi_normal_train(crtc);
/* For PCH DP, enable TRANS_DP_CTL */
if (HAS_PCH_CPT(dev) &&
(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
reg = TRANS_DP_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(TRANS_DP_PORT_SEL_MASK |
TRANS_DP_SYNC_MASK |
TRANS_DP_BPC_MASK);
temp |= (TRANS_DP_OUTPUT_ENABLE |
TRANS_DP_ENH_FRAMING);
temp |= bpc << 9; /* same format but at 11:9 */
if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
switch (intel_trans_dp_port_sel(crtc)) {
case PCH_DP_B:
temp |= TRANS_DP_PORT_SEL_B;
break;
case PCH_DP_C:
temp |= TRANS_DP_PORT_SEL_C;
break;
case PCH_DP_D:
temp |= TRANS_DP_PORT_SEL_D;
break;
default:
DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
temp |= TRANS_DP_PORT_SEL_B;
break;
}
I915_WRITE(reg, temp);
}
intel_enable_transcoder(dev_priv, pipe);
}
static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
{
struct intel_pch_pll *pll = intel_crtc->pch_pll;
if (pll == NULL)
return;
if (pll->refcount == 0) {
WARN(1, "bad PCH PLL refcount\n");
return;
}
--pll->refcount;
intel_crtc->pch_pll = NULL;
}
static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
{
struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
struct intel_pch_pll *pll;
int i;
pll = intel_crtc->pch_pll;
if (pll) {
DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
intel_crtc->base.base.id, pll->pll_reg);
goto prepare;
}
if (HAS_PCH_IBX(dev_priv->dev)) {
/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
i = intel_crtc->pipe;
pll = &dev_priv->pch_plls[i];
DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
intel_crtc->base.base.id, pll->pll_reg);
goto found;
}
for (i = 0; i < dev_priv->num_pch_pll; i++) {
pll = &dev_priv->pch_plls[i];
/* Only want to check enabled timings first */
if (pll->refcount == 0)
continue;
if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
fp == I915_READ(pll->fp0_reg)) {
DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
intel_crtc->base.base.id,
pll->pll_reg, pll->refcount, pll->active);
goto found;
}
}
/* Ok no matching timings, maybe there's a free one? */
for (i = 0; i < dev_priv->num_pch_pll; i++) {
pll = &dev_priv->pch_plls[i];
if (pll->refcount == 0) {
DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
intel_crtc->base.base.id, pll->pll_reg);
goto found;
}
}
return NULL;
found:
intel_crtc->pch_pll = pll;
pll->refcount++;
DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
prepare: /* separate function? */
DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
/* Wait for the clocks to stabilize before rewriting the regs */
I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
POSTING_READ(pll->pll_reg);
udelay(150);
I915_WRITE(pll->fp0_reg, fp);
I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
pll->on = false;
return pll;
}
void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
u32 temp;
temp = I915_READ(dslreg);
udelay(500);
if (wait_for(I915_READ(dslreg) != temp, 5)) {
/* Without this, mode sets may fail silently on FDI */
I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
udelay(250);
I915_WRITE(tc2reg, 0);
if (wait_for(I915_READ(dslreg) != temp, 5))
DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
}
}
static void ironlake_crtc_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
u32 temp;
bool is_pch_port;
if (intel_crtc->active)
return;
intel_crtc->active = true;
intel_update_watermarks(dev);
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
temp = I915_READ(PCH_LVDS);
if ((temp & LVDS_PORT_EN) == 0)
I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
}
is_pch_port = intel_crtc_driving_pch(crtc);
if (is_pch_port)
ironlake_fdi_pll_enable(crtc);
else
ironlake_fdi_disable(crtc);
/* Enable panel fitting for LVDS */
if (dev_priv->pch_pf_size &&
(intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
/* Force use of hard-coded filter coefficients
* as some pre-programmed values are broken,
* e.g. x201.
*/
I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
}
/*
* On ILK+ LUT must be loaded before the pipe is running but with
* clocks enabled
*/
intel_crtc_load_lut(crtc);
intel_enable_pipe(dev_priv, pipe, is_pch_port);
intel_enable_plane(dev_priv, plane, pipe);
if (is_pch_port)
ironlake_pch_enable(crtc);
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
intel_crtc_update_cursor(crtc, true);
}
static void ironlake_crtc_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
u32 reg, temp;
if (!intel_crtc->active)
return;
intel_crtc_wait_for_pending_flips(crtc);
drm_vblank_off(dev, pipe);
intel_crtc_update_cursor(crtc, false);
intel_disable_plane(dev_priv, plane, pipe);
if (dev_priv->cfb_plane == plane)
intel_disable_fbc(dev);
intel_disable_pipe(dev_priv, pipe);
/* Disable PF */
I915_WRITE(PF_CTL(pipe), 0);
I915_WRITE(PF_WIN_SZ(pipe), 0);
ironlake_fdi_disable(crtc);
/* This is a horrible layering violation; we should be doing this in
* the connector/encoder ->prepare instead, but we don't always have
* enough information there about the config to know whether it will
* actually be necessary or just cause undesired flicker.
*/
intel_disable_pch_ports(dev_priv, pipe);
intel_disable_transcoder(dev_priv, pipe);
if (HAS_PCH_CPT(dev)) {
/* disable TRANS_DP_CTL */
reg = TRANS_DP_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
temp |= TRANS_DP_PORT_SEL_NONE;
I915_WRITE(reg, temp);
/* disable DPLL_SEL */
temp = I915_READ(PCH_DPLL_SEL);
switch (pipe) {
case 0:
temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
break;
case 1:
temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
break;
case 2:
/* C shares PLL A or B */
temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
break;
default:
BUG(); /* wtf */
}
I915_WRITE(PCH_DPLL_SEL, temp);
}
/* disable PCH DPLL */
intel_disable_pch_pll(intel_crtc);
/* Switch from PCDclk to Rawclk */
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_PCDCLK);
/* Disable CPU FDI TX PLL */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
POSTING_READ(reg);
udelay(100);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
/* Wait for the clocks to turn off. */
POSTING_READ(reg);
udelay(100);
intel_crtc->active = false;
intel_update_watermarks(dev);
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
}
static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
/* XXX: When our outputs are all unaware of DPMS modes other than off
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
*/
switch (mode) {
case DRM_MODE_DPMS_ON:
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
ironlake_crtc_enable(crtc);
break;
case DRM_MODE_DPMS_OFF:
DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
ironlake_crtc_disable(crtc);
break;
}
}
static void ironlake_crtc_off(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
intel_put_pch_pll(intel_crtc);
}
static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
{
if (!enable && intel_crtc->overlay) {
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
mutex_lock(&dev->struct_mutex);
dev_priv->mm.interruptible = false;
(void) intel_overlay_switch_off(intel_crtc->overlay);
dev_priv->mm.interruptible = true;
mutex_unlock(&dev->struct_mutex);
}
/* Let userspace switch the overlay on again. In most cases userspace
* has to recompute where to put it anyway.
*/
}
static void i9xx_crtc_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
if (intel_crtc->active)
return;
intel_crtc->active = true;
intel_update_watermarks(dev);
intel_enable_pll(dev_priv, pipe);
intel_enable_pipe(dev_priv, pipe, false);
intel_enable_plane(dev_priv, plane, pipe);
intel_crtc_load_lut(crtc);
intel_update_fbc(dev);
/* Give the overlay scaler a chance to enable if it's on this pipe */
intel_crtc_dpms_overlay(intel_crtc, true);
intel_crtc_update_cursor(crtc, true);
}
static void i9xx_crtc_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
if (!intel_crtc->active)
return;
/* Give the overlay scaler a chance to disable if it's on this pipe */
intel_crtc_wait_for_pending_flips(crtc);
drm_vblank_off(dev, pipe);
intel_crtc_dpms_overlay(intel_crtc, false);
intel_crtc_update_cursor(crtc, false);
if (dev_priv->cfb_plane == plane)
intel_disable_fbc(dev);
intel_disable_plane(dev_priv, plane, pipe);
intel_disable_pipe(dev_priv, pipe);
intel_disable_pll(dev_priv, pipe);
intel_crtc->active = false;
intel_update_fbc(dev);
intel_update_watermarks(dev);
}
static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
{
/* XXX: When our outputs are all unaware of DPMS modes other than off
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
*/
switch (mode) {
case DRM_MODE_DPMS_ON:
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
i9xx_crtc_enable(crtc);
break;
case DRM_MODE_DPMS_OFF:
i9xx_crtc_disable(crtc);
break;
}
}
static void i9xx_crtc_off(struct drm_crtc *crtc)
{
}
/**
* Sets the power management mode of the pipe and plane.
*/
static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_master_private *master_priv;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
bool enabled;
if (intel_crtc->dpms_mode == mode)
return;
intel_crtc->dpms_mode = mode;
dev_priv->display.dpms(crtc, mode);
if (!dev->primary->master)
return;
master_priv = dev->primary->master->driver_priv;
if (!master_priv->sarea_priv)
return;
enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
switch (pipe) {
case 0:
master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
break;
case 1:
master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
break;
default:
DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
break;
}
}
static void intel_crtc_disable(struct drm_crtc *crtc)
{
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
dev_priv->display.off(crtc);
assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
if (crtc->fb) {
mutex_lock(&dev->struct_mutex);
intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
mutex_unlock(&dev->struct_mutex);
}
}
/* Prepare for a mode set.
*
* Note we could be a lot smarter here. We need to figure out which outputs
* will be enabled, which disabled (in short, how the config will changes)
* and perform the minimum necessary steps to accomplish that, e.g. updating
* watermarks, FBC configuration, making sure PLLs are programmed correctly,
* panel fitting is in the proper state, etc.
*/
static void i9xx_crtc_prepare(struct drm_crtc *crtc)
{
i9xx_crtc_disable(crtc);
}
static void i9xx_crtc_commit(struct drm_crtc *crtc)
{
i9xx_crtc_enable(crtc);
}
static void ironlake_crtc_prepare(struct drm_crtc *crtc)
{
ironlake_crtc_disable(crtc);
}
static void ironlake_crtc_commit(struct drm_crtc *crtc)
{
ironlake_crtc_enable(crtc);
}
void intel_encoder_prepare(struct drm_encoder *encoder)
{
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
/* lvds has its own version of prepare see intel_lvds_prepare */
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
}
void intel_encoder_commit(struct drm_encoder *encoder)
{
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
struct drm_device *dev = encoder->dev;
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
/* lvds has its own version of commit see intel_lvds_commit */
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
if (HAS_PCH_CPT(dev))
intel_cpt_verify_modeset(dev, intel_crtc->pipe);
}
void intel_encoder_destroy(struct drm_encoder *encoder)
{
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
drm_encoder_cleanup(encoder);
kfree(intel_encoder);
}
static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
if (HAS_PCH_SPLIT(dev)) {
/* FDI link clock is fixed at 2.7G */
if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
return false;
}
/* All interlaced capable intel hw wants timings in frames. Note though
* that intel_lvds_mode_fixup does some funny tricks with the crtc
* timings, so we need to be careful not to clobber these.*/
if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
drm_mode_set_crtcinfo(adjusted_mode, 0);
return true;
}
static int valleyview_get_display_clock_speed(struct drm_device *dev)
{
return 400000; /* FIXME */
}
static int i945_get_display_clock_speed(struct drm_device *dev)
{
return 400000;
}
static int i915_get_display_clock_speed(struct drm_device *dev)
{
return 333000;
}
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
{
return 200000;
}
static int i915gm_get_display_clock_speed(struct drm_device *dev)
{
u16 gcfgc = 0;
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
return 133000;
else {
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
case GC_DISPLAY_CLOCK_333_MHZ:
return 333000;
default:
case GC_DISPLAY_CLOCK_190_200_MHZ:
return 190000;
}
}
}
static int i865_get_display_clock_speed(struct drm_device *dev)
{
return 266000;
}
static int i855_get_display_clock_speed(struct drm_device *dev)
{
u16 hpllcc = 0;
/* Assume that the hardware is in the high speed state. This
* should be the default.
*/
switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
case GC_CLOCK_133_200:
case GC_CLOCK_100_200:
return 200000;
case GC_CLOCK_166_250:
return 250000;
case GC_CLOCK_100_133:
return 133000;
}
/* Shouldn't happen */
return 0;
}
static int i830_get_display_clock_speed(struct drm_device *dev)
{
return 133000;
}
struct fdi_m_n {
u32 tu;
u32 gmch_m;
u32 gmch_n;
u32 link_m;
u32 link_n;
};
static void
fdi_reduce_ratio(u32 *num, u32 *den)
{
while (*num > 0xffffff || *den > 0xffffff) {
*num >>= 1;
*den >>= 1;
}
}
static void
ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
int link_clock, struct fdi_m_n *m_n)
{
m_n->tu = 64; /* default size */
/* BUG_ON(pixel_clock > INT_MAX / 36); */
m_n->gmch_m = bits_per_pixel * pixel_clock;
m_n->gmch_n = link_clock * nlanes * 8;
fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
m_n->link_m = pixel_clock;
m_n->link_n = link_clock;
fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
}
static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
{
if (i915_panel_use_ssc >= 0)
return i915_panel_use_ssc != 0;
return dev_priv->lvds_use_ssc
&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
}
/**
* intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
* @crtc: CRTC structure
* @mode: requested mode
*
* A pipe may be connected to one or more outputs. Based on the depth of the
* attached framebuffer, choose a good color depth to use on the pipe.
*
* If possible, match the pipe depth to the fb depth. In some cases, this
* isn't ideal, because the connected output supports a lesser or restricted
* set of depths. Resolve that here:
* LVDS typically supports only 6bpc, so clamp down in that case
* HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
* Displays may support a restricted set as well, check EDID and clamp as
* appropriate.
* DP may want to dither down to 6bpc to fit larger modes
*
* RETURNS:
* Dithering requirement (i.e. false if display bpc and pipe bpc match,
* true if they don't match).
*/
static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
unsigned int *pipe_bpp,
struct drm_display_mode *mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_connector *connector;
struct intel_encoder *intel_encoder;
unsigned int display_bpc = UINT_MAX, bpc;
/* Walk the encoders & connectors on this crtc, get min bpc */
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
unsigned int lvds_bpc;
if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
LVDS_A3_POWER_UP)
lvds_bpc = 8;
else
lvds_bpc = 6;
if (lvds_bpc < display_bpc) {
DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
display_bpc = lvds_bpc;
}
continue;
}
if (intel_encoder->type == INTEL_OUTPUT_EDP) {
/* Use VBT settings if we have an eDP panel */
unsigned int edp_bpc = dev_priv->edp.bpp / 3;
if (edp_bpc < display_bpc) {
DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
display_bpc = edp_bpc;
}
continue;
}
/* Not one of the known troublemakers, check the EDID */
list_for_each_entry(connector, &dev->mode_config.connector_list,
head) {
if (connector->encoder != &intel_encoder->base)
continue;
/* Don't use an invalid EDID bpc value */
if (connector->display_info.bpc &&
connector->display_info.bpc < display_bpc) {
DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
display_bpc = connector->display_info.bpc;
}
}
/*
* HDMI is either 12 or 8, so if the display lets 10bpc sneak
* through, clamp it down. (Note: >12bpc will be caught below.)
*/
if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
if (display_bpc > 8 && display_bpc < 12) {
DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
display_bpc = 12;
} else {
DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
display_bpc = 8;
}
}
}
if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
display_bpc = 6;
}
/*
* We could just drive the pipe at the highest bpc all the time and
* enable dithering as needed, but that costs bandwidth. So choose
* the minimum value that expresses the full color range of the fb but
* also stays within the max display bpc discovered above.
*/
switch (crtc->fb->depth) {
case 8:
bpc = 8; /* since we go through a colormap */
break;
case 15:
case 16:
bpc = 6; /* min is 18bpp */
break;
case 24:
bpc = 8;
break;
case 30:
bpc = 10;
break;
case 48:
bpc = 12;
break;
default:
DRM_DEBUG("unsupported depth, assuming 24 bits\n");
bpc = min((unsigned int)8, display_bpc);
break;
}
display_bpc = min(display_bpc, bpc);
DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
bpc, display_bpc);
*pipe_bpp = display_bpc * 3;
return display_bpc != bpc;
}
static int vlv_get_refclk(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int refclk = 27000; /* for DP & HDMI */
return 100000; /* only one validated so far */
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
refclk = 96000;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if (intel_panel_use_ssc(dev_priv))
refclk = 100000;
else
refclk = 96000;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
refclk = 100000;
}
return refclk;
}
static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int refclk;
if (IS_VALLEYVIEW(dev)) {
refclk = vlv_get_refclk(crtc);
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
refclk = dev_priv->lvds_ssc_freq * 1000;
DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
refclk / 1000);
} else if (!IS_GEN2(dev)) {
refclk = 96000;
} else {
refclk = 48000;
}
return refclk;
}
static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
intel_clock_t *clock)
{
/* SDVO TV has fixed PLL values depend on its clock range,
this mirrors vbios setting. */
if (adjusted_mode->clock >= 100000
&& adjusted_mode->clock < 140500) {
clock->p1 = 2;
clock->p2 = 10;
clock->n = 3;
clock->m1 = 16;
clock->m2 = 8;
} else if (adjusted_mode->clock >= 140500
&& adjusted_mode->clock <= 200000) {
clock->p1 = 1;
clock->p2 = 10;
clock->n = 6;
clock->m1 = 12;
clock->m2 = 8;
}
}
static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
intel_clock_t *clock,
intel_clock_t *reduced_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 fp, fp2 = 0;
if (IS_PINEVIEW(dev)) {
fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
if (reduced_clock)
fp2 = (1 << reduced_clock->n) << 16 |
reduced_clock->m1 << 8 | reduced_clock->m2;
} else {
fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
if (reduced_clock)
fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
reduced_clock->m2;
}
I915_WRITE(FP0(pipe), fp);
intel_crtc->lowfreq_avail = false;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
reduced_clock && i915_powersave) {
I915_WRITE(FP1(pipe), fp2);
intel_crtc->lowfreq_avail = true;
} else {
I915_WRITE(FP1(pipe), fp);
}
}
static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 temp;
temp = I915_READ(LVDS);
temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
if (pipe == 1) {
temp |= LVDS_PIPEB_SELECT;
} else {
temp &= ~LVDS_PIPEB_SELECT;
}
/* set the corresponsding LVDS_BORDER bit */
temp |= dev_priv->lvds_border_bits;
/* Set the B0-B3 data pairs corresponding to whether we're going to
* set the DPLLs for dual-channel mode or not.
*/
if (clock->p2 == 7)
temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
else
temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
* appropriately here, but we need to look more thoroughly into how
* panels behave in the two modes.
*/
/* set the dithering flag on LVDS as needed */
if (INTEL_INFO(dev)->gen >= 4) {
if (dev_priv->lvds_dither)
temp |= LVDS_ENABLE_DITHER;
else
temp &= ~LVDS_ENABLE_DITHER;
}
temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
temp |= LVDS_HSYNC_POLARITY;
if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
temp |= LVDS_VSYNC_POLARITY;
I915_WRITE(LVDS, temp);
}
static void vlv_update_pll(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
intel_clock_t *clock, intel_clock_t *reduced_clock,
int refclk, int num_connectors)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 dpll, mdiv, pdiv;
u32 bestn, bestm1, bestm2, bestp1, bestp2;
bool is_hdmi;
is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
bestn = clock->n;
bestm1 = clock->m1;
bestm2 = clock->m2;
bestp1 = clock->p1;
bestp2 = clock->p2;
/* Enable DPIO clock input */
dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
I915_WRITE(DPLL(pipe), dpll);
POSTING_READ(DPLL(pipe));
mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
mdiv |= ((bestn << DPIO_N_SHIFT));
mdiv |= (1 << DPIO_POST_DIV_SHIFT);
mdiv |= (1 << DPIO_K_SHIFT);
mdiv |= DPIO_ENABLE_CALIBRATION;
intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
(3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
(8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
dpll |= DPLL_VCO_ENABLE;
I915_WRITE(DPLL(pipe), dpll);
POSTING_READ(DPLL(pipe));
if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
DRM_ERROR("DPLL %d failed to lock\n", pipe);
if (is_hdmi) {
u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
if (temp > 1)
temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
else
temp = 0;
I915_WRITE(DPLL_MD(pipe), temp);
POSTING_READ(DPLL_MD(pipe));
}
intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
}
static void i9xx_update_pll(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
intel_clock_t *clock, intel_clock_t *reduced_clock,
int num_connectors)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 dpll;
bool is_sdvo;
is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
dpll = DPLL_VGA_MODE_DIS;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
if (is_sdvo) {
int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
if (pixel_multiplier > 1) {
if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
}
dpll |= DPLL_DVO_HIGH_SPEED;
}
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
dpll |= DPLL_DVO_HIGH_SPEED;
/* compute bitmask from p1 value */
if (IS_PINEVIEW(dev))
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
else {
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (IS_G4X(dev) && reduced_clock)
dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
}
switch (clock->p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
if (INTEL_INFO(dev)->gen >= 4)
dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
dpll |= PLL_REF_INPUT_TVCLKINBC;
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
/* XXX: just matching BIOS for now */
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
dpll |= 3;
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
dpll |= DPLL_VCO_ENABLE;
I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
POSTING_READ(DPLL(pipe));
udelay(150);
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
* This is an exception to the general rule that mode_set doesn't turn
* things on.
*/
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
intel_update_lvds(crtc, clock, adjusted_mode);
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
intel_dp_set_m_n(crtc, mode, adjusted_mode);
I915_WRITE(DPLL(pipe), dpll);
/* Wait for the clocks to stabilize. */
POSTING_READ(DPLL(pipe));
udelay(150);
if (INTEL_INFO(dev)->gen >= 4) {
u32 temp = 0;
if (is_sdvo) {
temp = intel_mode_get_pixel_multiplier(adjusted_mode);
if (temp > 1)
temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
else
temp = 0;
}
I915_WRITE(DPLL_MD(pipe), temp);
} else {
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(DPLL(pipe), dpll);
}
}
static void i8xx_update_pll(struct drm_crtc *crtc,
struct drm_display_mode *adjusted_mode,
intel_clock_t *clock,
int num_connectors)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 dpll;
dpll = DPLL_VGA_MODE_DIS;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
} else {
if (clock->p1 == 2)
dpll |= PLL_P1_DIVIDE_BY_TWO;
else
dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (clock->p2 == 4)
dpll |= PLL_P2_DIVIDE_BY_4;
}
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
/* XXX: just matching BIOS for now */
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
dpll |= 3;
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
dpll |= DPLL_VCO_ENABLE;
I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
POSTING_READ(DPLL(pipe));
udelay(150);
I915_WRITE(DPLL(pipe), dpll);
/* Wait for the clocks to stabilize. */
POSTING_READ(DPLL(pipe));
udelay(150);
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
* This is an exception to the general rule that mode_set doesn't turn
* things on.
*/
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
intel_update_lvds(crtc, clock, adjusted_mode);
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(DPLL(pipe), dpll);
}
static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
int refclk, num_connectors = 0;
intel_clock_t clock, reduced_clock;
u32 dspcntr, pipeconf, vsyncshift;
bool ok, has_reduced_clock = false, is_sdvo = false;
bool is_lvds = false, is_tv = false, is_dp = false;
struct intel_encoder *encoder;
const intel_limit_t *limit;
int ret;
for_each_encoder_on_crtc(dev, crtc, encoder) {
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_SDVO:
case INTEL_OUTPUT_HDMI:
is_sdvo = true;
if (encoder->needs_tv_clock)
is_tv = true;
break;
case INTEL_OUTPUT_TVOUT:
is_tv = true;
break;
case INTEL_OUTPUT_DISPLAYPORT:
is_dp = true;
break;
}
num_connectors++;
}
refclk = i9xx_get_refclk(crtc, num_connectors);
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
limit = intel_limit(crtc, refclk);
ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
&clock);
if (!ok) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
/* Ensure that the cursor is valid for the new mode before changing... */
intel_crtc_update_cursor(crtc, true);
if (is_lvds && dev_priv->lvds_downclock_avail) {
/*
* Ensure we match the reduced clock's P to the target clock.
* If the clocks don't match, we can't switch the display clock
* by using the FP0/FP1. In such case we will disable the LVDS
* downclock feature.
*/
has_reduced_clock = limit->find_pll(limit, crtc,
dev_priv->lvds_downclock,
refclk,
&clock,
&reduced_clock);
}
if (is_sdvo && is_tv)
i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
&reduced_clock : NULL);
if (IS_GEN2(dev))
i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
else if (IS_VALLEYVIEW(dev))
vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
refclk, num_connectors);
else
i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
has_reduced_clock ? &reduced_clock : NULL,
num_connectors);
/* setup pipeconf */
pipeconf = I915_READ(PIPECONF(pipe));
/* Set up the display plane register */
dspcntr = DISPPLANE_GAMMA_ENABLE;
if (pipe == 0)
dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
else
dspcntr |= DISPPLANE_SEL_PIPE_B;
if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
/* Enable pixel doubling when the dot clock is > 90% of the (display)
* core speed.
*
* XXX: No double-wide on 915GM pipe B. Is that the only reason for the
* pipe == 0 check?
*/
if (mode->clock >
dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
pipeconf |= PIPECONF_DOUBLE_WIDE;
else
pipeconf &= ~PIPECONF_DOUBLE_WIDE;
}
/* default to 8bpc */
pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
if (is_dp) {
if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
pipeconf |= PIPECONF_BPP_6 |
PIPECONF_DITHER_EN |
PIPECONF_DITHER_TYPE_SP;
}
}
DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
drm_mode_debug_printmodeline(mode);
if (HAS_PIPE_CXSR(dev)) {
if (intel_crtc->lowfreq_avail) {
DRM_DEBUG_KMS("enabling CxSR downclocking\n");
pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
} else {
DRM_DEBUG_KMS("disabling CxSR downclocking\n");
pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
}
}
pipeconf &= ~PIPECONF_INTERLACE_MASK;
if (!IS_GEN2(dev) &&
adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
/* the chip adds 2 halflines automatically */
adjusted_mode->crtc_vtotal -= 1;
adjusted_mode->crtc_vblank_end -= 1;
vsyncshift = adjusted_mode->crtc_hsync_start
- adjusted_mode->crtc_htotal/2;
} else {
pipeconf |= PIPECONF_PROGRESSIVE;
vsyncshift = 0;
}
if (!IS_GEN3(dev))
I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
I915_WRITE(HTOTAL(pipe),
(adjusted_mode->crtc_hdisplay - 1) |
((adjusted_mode->crtc_htotal - 1) << 16));
I915_WRITE(HBLANK(pipe),
(adjusted_mode->crtc_hblank_start - 1) |
((adjusted_mode->crtc_hblank_end - 1) << 16));
I915_WRITE(HSYNC(pipe),
(adjusted_mode->crtc_hsync_start - 1) |
((adjusted_mode->crtc_hsync_end - 1) << 16));
I915_WRITE(VTOTAL(pipe),
(adjusted_mode->crtc_vdisplay - 1) |
((adjusted_mode->crtc_vtotal - 1) << 16));
I915_WRITE(VBLANK(pipe),
(adjusted_mode->crtc_vblank_start - 1) |
((adjusted_mode->crtc_vblank_end - 1) << 16));
I915_WRITE(VSYNC(pipe),
(adjusted_mode->crtc_vsync_start - 1) |
((adjusted_mode->crtc_vsync_end - 1) << 16));
/* pipesrc and dspsize control the size that is scaled from,
* which should always be the user's requested size.
*/
I915_WRITE(DSPSIZE(plane),
((mode->vdisplay - 1) << 16) |
(mode->hdisplay - 1));
I915_WRITE(DSPPOS(plane), 0);
I915_WRITE(PIPESRC(pipe),
((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
I915_WRITE(PIPECONF(pipe), pipeconf);
POSTING_READ(PIPECONF(pipe));
intel_enable_pipe(dev_priv, pipe, false);
intel_wait_for_vblank(dev, pipe);
I915_WRITE(DSPCNTR(plane), dspcntr);
POSTING_READ(DSPCNTR(plane));
ret = intel_pipe_set_base(crtc, x, y, old_fb);
intel_update_watermarks(dev);
return ret;
}
/*
* Initialize reference clocks when the driver loads
*/
void ironlake_init_pch_refclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_encoder *encoder;
u32 temp;
bool has_lvds = false;
bool has_cpu_edp = false;
bool has_pch_edp = false;
bool has_panel = false;
bool has_ck505 = false;
bool can_ssc = false;
/* We need to take the global config into account */
list_for_each_entry(encoder, &mode_config->encoder_list,
base.head) {
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
has_panel = true;
has_lvds = true;
break;
case INTEL_OUTPUT_EDP:
has_panel = true;
if (intel_encoder_is_pch_edp(&encoder->base))
has_pch_edp = true;
else
has_cpu_edp = true;
break;
}
}
if (HAS_PCH_IBX(dev)) {
has_ck505 = dev_priv->display_clock_mode;
can_ssc = has_ck505;
} else {
has_ck505 = false;
can_ssc = true;
}
DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
has_panel, has_lvds, has_pch_edp, has_cpu_edp,
has_ck505);
/* Ironlake: try to setup display ref clock before DPLL
* enabling. This is only under driver's control after
* PCH B stepping, previous chipset stepping should be
* ignoring this setting.
*/
temp = I915_READ(PCH_DREF_CONTROL);
/* Always enable nonspread source */
temp &= ~DREF_NONSPREAD_SOURCE_MASK;
if (has_ck505)
temp |= DREF_NONSPREAD_CK505_ENABLE;
else
temp |= DREF_NONSPREAD_SOURCE_ENABLE;
if (has_panel) {
temp &= ~DREF_SSC_SOURCE_MASK;
temp |= DREF_SSC_SOURCE_ENABLE;
/* SSC must be turned on before enabling the CPU output */
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
DRM_DEBUG_KMS("Using SSC on panel\n");
temp |= DREF_SSC1_ENABLE;
} else
temp &= ~DREF_SSC1_ENABLE;
/* Get SSC going before enabling the outputs */
I915_WRITE(PCH_DREF_CONTROL, temp);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
/* Enable CPU source on CPU attached eDP */
if (has_cpu_edp) {
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
DRM_DEBUG_KMS("Using SSC on eDP\n");
temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
}
else
temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
} else
temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
I915_WRITE(PCH_DREF_CONTROL, temp);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
} else {
DRM_DEBUG_KMS("Disabling SSC entirely\n");
temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
/* Turn off CPU output */
temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
I915_WRITE(PCH_DREF_CONTROL, temp);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
/* Turn off the SSC source */
temp &= ~DREF_SSC_SOURCE_MASK;
temp |= DREF_SSC_SOURCE_DISABLE;
/* Turn off SSC1 */
temp &= ~ DREF_SSC1_ENABLE;
I915_WRITE(PCH_DREF_CONTROL, temp);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
}
}
static int ironlake_get_refclk(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *encoder;
struct intel_encoder *edp_encoder = NULL;
int num_connectors = 0;
bool is_lvds = false;
for_each_encoder_on_crtc(dev, crtc, encoder) {
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_EDP:
edp_encoder = encoder;
break;
}
num_connectors++;
}
if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
dev_priv->lvds_ssc_freq);
return dev_priv->lvds_ssc_freq * 1000;
}
return 120000;
}
static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
int refclk, num_connectors = 0;
intel_clock_t clock, reduced_clock;
u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
bool ok, has_reduced_clock = false, is_sdvo = false;
bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
struct intel_encoder *encoder, *edp_encoder = NULL;
const intel_limit_t *limit;
int ret;
struct fdi_m_n m_n = {0};
u32 temp;
int target_clock, pixel_multiplier, lane, link_bw, factor;
unsigned int pipe_bpp;
bool dither;
bool is_cpu_edp = false, is_pch_edp = false;
for_each_encoder_on_crtc(dev, crtc, encoder) {
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_SDVO:
case INTEL_OUTPUT_HDMI:
is_sdvo = true;
if (encoder->needs_tv_clock)
is_tv = true;
break;
case INTEL_OUTPUT_TVOUT:
is_tv = true;
break;
case INTEL_OUTPUT_ANALOG:
is_crt = true;
break;
case INTEL_OUTPUT_DISPLAYPORT:
is_dp = true;
break;
case INTEL_OUTPUT_EDP:
is_dp = true;
if (intel_encoder_is_pch_edp(&encoder->base))
is_pch_edp = true;
else
is_cpu_edp = true;
edp_encoder = encoder;
break;
}
num_connectors++;
}
refclk = ironlake_get_refclk(crtc);
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
limit = intel_limit(crtc, refclk);
ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
&clock);
if (!ok) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
/* Ensure that the cursor is valid for the new mode before changing... */
intel_crtc_update_cursor(crtc, true);
if (is_lvds && dev_priv->lvds_downclock_avail) {
/*
* Ensure we match the reduced clock's P to the target clock.
* If the clocks don't match, we can't switch the display clock
* by using the FP0/FP1. In such case we will disable the LVDS
* downclock feature.
*/
has_reduced_clock = limit->find_pll(limit, crtc,
dev_priv->lvds_downclock,
refclk,
&clock,
&reduced_clock);
}
if (is_sdvo && is_tv)
i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
/* FDI link */
pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
lane = 0;
/* CPU eDP doesn't require FDI link, so just set DP M/N
according to current link config */
if (is_cpu_edp) {
intel_edp_link_config(edp_encoder, &lane, &link_bw);
} else {
/* FDI is a binary signal running at ~2.7GHz, encoding
* each output octet as 10 bits. The actual frequency
* is stored as a divider into a 100MHz clock, and the
* mode pixel clock is stored in units of 1KHz.
* Hence the bw of each lane in terms of the mode signal
* is:
*/
link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
}
/* [e]DP over FDI requires target mode clock instead of link clock. */
if (edp_encoder)
target_clock = intel_edp_target_clock(edp_encoder, mode);
else if (is_dp)
target_clock = mode->clock;
else
target_clock = adjusted_mode->clock;
/* determine panel color depth */
temp = I915_READ(PIPECONF(pipe));
temp &= ~PIPE_BPC_MASK;
dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
switch (pipe_bpp) {
case 18:
temp |= PIPE_6BPC;
break;
case 24:
temp |= PIPE_8BPC;
break;
case 30:
temp |= PIPE_10BPC;
break;
case 36:
temp |= PIPE_12BPC;
break;
default:
WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
pipe_bpp);
temp |= PIPE_8BPC;
pipe_bpp = 24;
break;
}
intel_crtc->bpp = pipe_bpp;
I915_WRITE(PIPECONF(pipe), temp);
if (!lane) {
/*
* Account for spread spectrum to avoid
* oversubscribing the link. Max center spread
* is 2.5%; use 5% for safety's sake.
*/
u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
lane = bps / (link_bw * 8) + 1;
}
intel_crtc->fdi_lanes = lane;
if (pixel_multiplier > 1)
link_bw *= pixel_multiplier;
ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
&m_n);
fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
if (has_reduced_clock)
fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
reduced_clock.m2;
/* Enable autotuning of the PLL clock (if permissible) */
factor = 21;
if (is_lvds) {
if ((intel_panel_use_ssc(dev_priv) &&
dev_priv->lvds_ssc_freq == 100) ||
(I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
factor = 25;
} else if (is_sdvo && is_tv)
factor = 20;
if (clock.m < factor * clock.n)
fp |= FP_CB_TUNE;
dpll = 0;
if (is_lvds)
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
if (is_sdvo) {
int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
if (pixel_multiplier > 1) {
dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
}
dpll |= DPLL_DVO_HIGH_SPEED;
}
if (is_dp && !is_cpu_edp)
dpll |= DPLL_DVO_HIGH_SPEED;
/* compute bitmask from p1 value */
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
/* also FPA1 */
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
switch (clock.p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
if (is_sdvo && is_tv)
dpll |= PLL_REF_INPUT_TVCLKINBC;
else if (is_tv)
/* XXX: just matching BIOS for now */
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
dpll |= 3;
else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
/* setup pipeconf */
pipeconf = I915_READ(PIPECONF(pipe));
/* Set up the display plane register */
dspcntr = DISPPLANE_GAMMA_ENABLE;
DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
drm_mode_debug_printmodeline(mode);
/* CPU eDP is the only output that doesn't need a PCH PLL of its own on
* pre-Haswell/LPT generation */
if (HAS_PCH_LPT(dev)) {
DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
pipe);
} else if (!is_cpu_edp) {
struct intel_pch_pll *pll;
pll = intel_get_pch_pll(intel_crtc, dpll, fp);
if (pll == NULL) {
DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
pipe);
return -EINVAL;
}
} else
intel_put_pch_pll(intel_crtc);
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
* This is an exception to the general rule that mode_set doesn't turn
* things on.
*/
if (is_lvds) {
temp = I915_READ(PCH_LVDS);
temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
if (HAS_PCH_CPT(dev)) {
temp &= ~PORT_TRANS_SEL_MASK;
temp |= PORT_TRANS_SEL_CPT(pipe);
} else {
if (pipe == 1)
temp |= LVDS_PIPEB_SELECT;
else
temp &= ~LVDS_PIPEB_SELECT;
}
/* set the corresponsding LVDS_BORDER bit */
temp |= dev_priv->lvds_border_bits;
/* Set the B0-B3 data pairs corresponding to whether we're going to
* set the DPLLs for dual-channel mode or not.
*/
if (clock.p2 == 7)
temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
else
temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
* appropriately here, but we need to look more thoroughly into how
* panels behave in the two modes.
*/
temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
temp |= LVDS_HSYNC_POLARITY;
if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
temp |= LVDS_VSYNC_POLARITY;
I915_WRITE(PCH_LVDS, temp);
}
pipeconf &= ~PIPECONF_DITHER_EN;
pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
if ((is_lvds && dev_priv->lvds_dither) || dither) {
pipeconf |= PIPECONF_DITHER_EN;
pipeconf |= PIPECONF_DITHER_TYPE_SP;
}
if (is_dp && !is_cpu_edp) {
intel_dp_set_m_n(crtc, mode, adjusted_mode);
} else {
/* For non-DP output, clear any trans DP clock recovery setting.*/
I915_WRITE(TRANSDATA_M1(pipe), 0);
I915_WRITE(TRANSDATA_N1(pipe), 0);
I915_WRITE(TRANSDPLINK_M1(pipe), 0);
I915_WRITE(TRANSDPLINK_N1(pipe), 0);
}
if (intel_crtc->pch_pll) {
I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
/* Wait for the clocks to stabilize. */
POSTING_READ(intel_crtc->pch_pll->pll_reg);
udelay(150);
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
}
intel_crtc->lowfreq_avail = false;
if (intel_crtc->pch_pll) {
if (is_lvds && has_reduced_clock && i915_powersave) {
I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
intel_crtc->lowfreq_avail = true;
} else {
I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
}
}
pipeconf &= ~PIPECONF_INTERLACE_MASK;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
pipeconf |= PIPECONF_INTERLACED_ILK;
/* the chip adds 2 halflines automatically */
adjusted_mode->crtc_vtotal -= 1;
adjusted_mode->crtc_vblank_end -= 1;
I915_WRITE(VSYNCSHIFT(pipe),
adjusted_mode->crtc_hsync_start
- adjusted_mode->crtc_htotal/2);
} else {
pipeconf |= PIPECONF_PROGRESSIVE;
I915_WRITE(VSYNCSHIFT(pipe), 0);
}
I915_WRITE(HTOTAL(pipe),
(adjusted_mode->crtc_hdisplay - 1) |
((adjusted_mode->crtc_htotal - 1) << 16));
I915_WRITE(HBLANK(pipe),
(adjusted_mode->crtc_hblank_start - 1) |
((adjusted_mode->crtc_hblank_end - 1) << 16));
I915_WRITE(HSYNC(pipe),
(adjusted_mode->crtc_hsync_start - 1) |
((adjusted_mode->crtc_hsync_end - 1) << 16));
I915_WRITE(VTOTAL(pipe),
(adjusted_mode->crtc_vdisplay - 1) |
((adjusted_mode->crtc_vtotal - 1) << 16));
I915_WRITE(VBLANK(pipe),
(adjusted_mode->crtc_vblank_start - 1) |
((adjusted_mode->crtc_vblank_end - 1) << 16));
I915_WRITE(VSYNC(pipe),
(adjusted_mode->crtc_vsync_start - 1) |
((adjusted_mode->crtc_vsync_end - 1) << 16));
/* pipesrc controls the size that is scaled from, which should
* always be the user's requested size.
*/
I915_WRITE(PIPESRC(pipe),
((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
if (is_cpu_edp)
ironlake_set_pll_edp(crtc, adjusted_mode->clock);
I915_WRITE(PIPECONF(pipe), pipeconf);
POSTING_READ(PIPECONF(pipe));
intel_wait_for_vblank(dev, pipe);
I915_WRITE(DSPCNTR(plane), dspcntr);
POSTING_READ(DSPCNTR(plane));
ret = intel_pipe_set_base(crtc, x, y, old_fb);
intel_update_watermarks(dev);
intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
return ret;
}
static int intel_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int ret;
drm_vblank_pre_modeset(dev, pipe);
ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
x, y, old_fb);
drm_vblank_post_modeset(dev, pipe);
if (ret)
intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
else
intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
return ret;
}
static bool intel_eld_uptodate(struct drm_connector *connector,
int reg_eldv, uint32_t bits_eldv,
int reg_elda, uint32_t bits_elda,
int reg_edid)
{
struct drm_i915_private *dev_priv = connector->dev->dev_private;
uint8_t *eld = connector->eld;
uint32_t i;
i = I915_READ(reg_eldv);
i &= bits_eldv;
if (!eld[0])
return !i;
if (!i)
return false;
i = I915_READ(reg_elda);
i &= ~bits_elda;
I915_WRITE(reg_elda, i);
for (i = 0; i < eld[2]; i++)
if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
return false;
return true;
}
static void g4x_write_eld(struct drm_connector *connector,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = connector->dev->dev_private;
uint8_t *eld = connector->eld;
uint32_t eldv;
uint32_t len;
uint32_t i;
i = I915_READ(G4X_AUD_VID_DID);
if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
eldv = G4X_ELDV_DEVCL_DEVBLC;
else
eldv = G4X_ELDV_DEVCTG;
if (intel_eld_uptodate(connector,
G4X_AUD_CNTL_ST, eldv,
G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
G4X_HDMIW_HDMIEDID))
return;
i = I915_READ(G4X_AUD_CNTL_ST);
i &= ~(eldv | G4X_ELD_ADDR);
len = (i >> 9) & 0x1f; /* ELD buffer size */
I915_WRITE(G4X_AUD_CNTL_ST, i);
if (!eld[0])
return;
len = min_t(uint8_t, eld[2], len);
DRM_DEBUG_DRIVER("ELD size %d\n", len);
for (i = 0; i < len; i++)
I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
i = I915_READ(G4X_AUD_CNTL_ST);
i |= eldv;
I915_WRITE(G4X_AUD_CNTL_ST, i);
}
static void ironlake_write_eld(struct drm_connector *connector,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = connector->dev->dev_private;
uint8_t *eld = connector->eld;
uint32_t eldv;
uint32_t i;
int len;
int hdmiw_hdmiedid;
int aud_config;
int aud_cntl_st;
int aud_cntrl_st2;
if (HAS_PCH_IBX(connector->dev)) {
hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
aud_config = IBX_AUD_CONFIG_A;
aud_cntl_st = IBX_AUD_CNTL_ST_A;
aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
} else {
hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
aud_config = CPT_AUD_CONFIG_A;
aud_cntl_st = CPT_AUD_CNTL_ST_A;
aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
}
i = to_intel_crtc(crtc)->pipe;
hdmiw_hdmiedid += i * 0x100;
aud_cntl_st += i * 0x100;
aud_config += i * 0x100;
DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
i = I915_READ(aud_cntl_st);
i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
if (!i) {
DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
/* operate blindly on all ports */
eldv = IBX_ELD_VALIDB;
eldv |= IBX_ELD_VALIDB << 4;
eldv |= IBX_ELD_VALIDB << 8;
} else {
DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
}
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
} else
I915_WRITE(aud_config, 0);
if (intel_eld_uptodate(connector,
aud_cntrl_st2, eldv,
aud_cntl_st, IBX_ELD_ADDRESS,
hdmiw_hdmiedid))
return;
i = I915_READ(aud_cntrl_st2);
i &= ~eldv;
I915_WRITE(aud_cntrl_st2, i);
if (!eld[0])
return;
i = I915_READ(aud_cntl_st);
i &= ~IBX_ELD_ADDRESS;
I915_WRITE(aud_cntl_st, i);
len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
DRM_DEBUG_DRIVER("ELD size %d\n", len);
for (i = 0; i < len; i++)
I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
i = I915_READ(aud_cntrl_st2);
i |= eldv;
I915_WRITE(aud_cntrl_st2, i);
}
void intel_write_eld(struct drm_encoder *encoder,
struct drm_display_mode *mode)
{
struct drm_crtc *crtc = encoder->crtc;
struct drm_connector *connector;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
connector = drm_select_eld(encoder, mode);
if (!connector)
return;
DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id,
drm_get_connector_name(connector),
connector->encoder->base.id,
drm_get_encoder_name(connector->encoder));
connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
if (dev_priv->display.write_eld)
dev_priv->display.write_eld(connector, crtc);
}
/** Loads the palette/gamma unit for the CRTC with the prepared values */
void intel_crtc_load_lut(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int palreg = PALETTE(intel_crtc->pipe);
int i;
/* The clocks have to be on to load the palette. */
if (!crtc->enabled || !intel_crtc->active)
return;
/* use legacy palette for Ironlake */
if (HAS_PCH_SPLIT(dev))
palreg = LGC_PALETTE(intel_crtc->pipe);
for (i = 0; i < 256; i++) {
I915_WRITE(palreg + 4 * i,
(intel_crtc->lut_r[i] << 16) |
(intel_crtc->lut_g[i] << 8) |
intel_crtc->lut_b[i]);
}
}
static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
bool visible = base != 0;
u32 cntl;
if (intel_crtc->cursor_visible == visible)
return;
cntl = I915_READ(_CURACNTR);
if (visible) {
/* On these chipsets we can only modify the base whilst
* the cursor is disabled.
*/
I915_WRITE(_CURABASE, base);
cntl &= ~(CURSOR_FORMAT_MASK);
/* XXX width must be 64, stride 256 => 0x00 << 28 */
cntl |= CURSOR_ENABLE |
CURSOR_GAMMA_ENABLE |
CURSOR_FORMAT_ARGB;
} else
cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
I915_WRITE(_CURACNTR, cntl);
intel_crtc->cursor_visible = visible;
}
static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
bool visible = base != 0;
if (intel_crtc->cursor_visible != visible) {
uint32_t cntl = I915_READ(CURCNTR(pipe));
if (base) {
cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
cntl |= pipe << 28; /* Connect to correct pipe */
} else {
cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
cntl |= CURSOR_MODE_DISABLE;
}
I915_WRITE(CURCNTR(pipe), cntl);
intel_crtc->cursor_visible = visible;
}
/* and commit changes on next vblank */
I915_WRITE(CURBASE(pipe), base);
}
static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
bool visible = base != 0;
if (intel_crtc->cursor_visible != visible) {
uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
if (base) {
cntl &= ~CURSOR_MODE;
cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
} else {
cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
cntl |= CURSOR_MODE_DISABLE;
}
I915_WRITE(CURCNTR_IVB(pipe), cntl);
intel_crtc->cursor_visible = visible;
}
/* and commit changes on next vblank */
I915_WRITE(CURBASE_IVB(pipe), base);
}
/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
static void intel_crtc_update_cursor(struct drm_crtc *crtc,
bool on)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int x = intel_crtc->cursor_x;
int y = intel_crtc->cursor_y;
u32 base, pos;
bool visible;
pos = 0;
if (on && crtc->enabled && crtc->fb) {
base = intel_crtc->cursor_addr;
if (x > (int) crtc->fb->width)
base = 0;
if (y > (int) crtc->fb->height)
base = 0;
} else
base = 0;
if (x < 0) {
if (x + intel_crtc->cursor_width < 0)
base = 0;
pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
x = -x;
}
pos |= x << CURSOR_X_SHIFT;
if (y < 0) {
if (y + intel_crtc->cursor_height < 0)
base = 0;
pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
y = -y;
}
pos |= y << CURSOR_Y_SHIFT;
visible = base != 0;
if (!visible && !intel_crtc->cursor_visible)
return;
if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
I915_WRITE(CURPOS_IVB(pipe), pos);
ivb_update_cursor(crtc, base);
} else {
I915_WRITE(CURPOS(pipe), pos);
if (IS_845G(dev) || IS_I865G(dev))
i845_update_cursor(crtc, base);
else
i9xx_update_cursor(crtc, base);
}
}
static int intel_crtc_cursor_set(struct drm_crtc *crtc,
struct drm_file *file,
uint32_t handle,
uint32_t width, uint32_t height)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_i915_gem_object *obj;
uint32_t addr;
int ret;
DRM_DEBUG_KMS("\n");
/* if we want to turn off the cursor ignore width and height */
if (!handle) {
DRM_DEBUG_KMS("cursor off\n");
addr = 0;
obj = NULL;
mutex_lock(&dev->struct_mutex);
goto finish;
}
/* Currently we only support 64x64 cursors */
if (width != 64 || height != 64) {
DRM_ERROR("we currently only support 64x64 cursors\n");
return -EINVAL;
}
obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
if (&obj->base == NULL)
return -ENOENT;
if (obj->base.size < width * height * 4) {
DRM_ERROR("buffer is to small\n");
ret = -ENOMEM;
goto fail;
}
/* we only need to pin inside GTT if cursor is non-phy */
mutex_lock(&dev->struct_mutex);
if (!dev_priv->info->cursor_needs_physical) {
if (obj->tiling_mode) {
DRM_ERROR("cursor cannot be tiled\n");
ret = -EINVAL;
goto fail_locked;
}
ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
if (ret) {
DRM_ERROR("failed to move cursor bo into the GTT\n");
goto fail_locked;
}
ret = i915_gem_object_put_fence(obj);
if (ret) {
DRM_ERROR("failed to release fence for cursor");
goto fail_unpin;
}
addr = obj->gtt_offset;
} else {
int align = IS_I830(dev) ? 16 * 1024 : 256;
ret = i915_gem_attach_phys_object(dev, obj,
(intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
align);
if (ret) {
DRM_ERROR("failed to attach phys object\n");
goto fail_locked;
}
addr = obj->phys_obj->handle->busaddr;
}
if (IS_GEN2(dev))
I915_WRITE(CURSIZE, (height << 12) | width);
finish:
if (intel_crtc->cursor_bo) {
if (dev_priv->info->cursor_needs_physical) {
if (intel_crtc->cursor_bo != obj)
i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
} else
i915_gem_object_unpin(intel_crtc->cursor_bo);
drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
}
mutex_unlock(&dev->struct_mutex);
intel_crtc->cursor_addr = addr;
intel_crtc->cursor_bo = obj;
intel_crtc->cursor_width = width;
intel_crtc->cursor_height = height;
intel_crtc_update_cursor(crtc, true);
return 0;
fail_unpin:
i915_gem_object_unpin(obj);
fail_locked:
mutex_unlock(&dev->struct_mutex);
fail:
drm_gem_object_unreference_unlocked(&obj->base);
return ret;
}
static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
intel_crtc->cursor_x = x;
intel_crtc->cursor_y = y;
intel_crtc_update_cursor(crtc, true);
return 0;
}
/** Sets the color ramps on behalf of RandR */
void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
u16 blue, int regno)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
intel_crtc->lut_r[regno] = red >> 8;
intel_crtc->lut_g[regno] = green >> 8;
intel_crtc->lut_b[regno] = blue >> 8;
}
void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, int regno)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
*red = intel_crtc->lut_r[regno] << 8;
*green = intel_crtc->lut_g[regno] << 8;
*blue = intel_crtc->lut_b[regno] << 8;
}
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, uint32_t start, uint32_t size)
{
int end = (start + size > 256) ? 256 : start + size, i;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
for (i = start; i < end; i++) {
intel_crtc->lut_r[i] = red[i] >> 8;
intel_crtc->lut_g[i] = green[i] >> 8;
intel_crtc->lut_b[i] = blue[i] >> 8;
}
intel_crtc_load_lut(crtc);
}
/**
* Get a pipe with a simple mode set on it for doing load-based monitor
* detection.
*
* It will be up to the load-detect code to adjust the pipe as appropriate for
* its requirements. The pipe will be connected to no other encoders.
*
* Currently this code will only succeed if there is a pipe with no encoders
* configured for it. In the future, it could choose to temporarily disable
* some outputs to free up a pipe for its use.
*
* \return crtc, or NULL if no pipes are available.
*/
/* VESA 640x480x72Hz mode to set on the pipe */
static struct drm_display_mode load_detect_mode = {
DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
};
static struct drm_framebuffer *
intel_framebuffer_create(struct drm_device *dev,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_i915_gem_object *obj)
{
struct intel_framebuffer *intel_fb;
int ret;
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
if (!intel_fb) {
drm_gem_object_unreference_unlocked(&obj->base);
return ERR_PTR(-ENOMEM);
}
ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
if (ret) {
drm_gem_object_unreference_unlocked(&obj->base);
kfree(intel_fb);
return ERR_PTR(ret);
}
return &intel_fb->base;
}
static u32
intel_framebuffer_pitch_for_width(int width, int bpp)
{
u32 pitch = DIV_ROUND_UP(width * bpp, 8);
return ALIGN(pitch, 64);
}
static u32
intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
{
u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
}
static struct drm_framebuffer *
intel_framebuffer_create_for_mode(struct drm_device *dev,
struct drm_display_mode *mode,
int depth, int bpp)
{
struct drm_i915_gem_object *obj;
struct drm_mode_fb_cmd2 mode_cmd;
obj = i915_gem_alloc_object(dev,
intel_framebuffer_size_for_mode(mode, bpp));
if (obj == NULL)
return ERR_PTR(-ENOMEM);
mode_cmd.width = mode->hdisplay;
mode_cmd.height = mode->vdisplay;
mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
bpp);
mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
return intel_framebuffer_create(dev, &mode_cmd, obj);
}
static struct drm_framebuffer *
mode_fits_in_fbdev(struct drm_device *dev,
struct drm_display_mode *mode)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
struct drm_framebuffer *fb;
if (dev_priv->fbdev == NULL)
return NULL;
obj = dev_priv->fbdev->ifb.obj;
if (obj == NULL)
return NULL;
fb = &dev_priv->fbdev->ifb.base;
if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
fb->bits_per_pixel))
return NULL;
if (obj->base.size < mode->vdisplay * fb->pitches[0])
return NULL;
return fb;
}
bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
struct drm_connector *connector,
struct drm_display_mode *mode,
struct intel_load_detect_pipe *old)
{
struct intel_crtc *intel_crtc;
struct drm_crtc *possible_crtc;
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = NULL;
struct drm_device *dev = encoder->dev;
struct drm_framebuffer *old_fb;
int i = -1;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id, drm_get_connector_name(connector),
encoder->base.id, drm_get_encoder_name(encoder));
/*
* Algorithm gets a little messy:
*
* - if the connector already has an assigned crtc, use it (but make
* sure it's on first)
*
* - try to find the first unused crtc that can drive this connector,
* and use that if we find one
*/
/* See if we already have a CRTC for this connector */
if (encoder->crtc) {
crtc = encoder->crtc;
intel_crtc = to_intel_crtc(crtc);
old->dpms_mode = intel_crtc->dpms_mode;
old->load_detect_temp = false;
/* Make sure the crtc and connector are running */
if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
struct drm_encoder_helper_funcs *encoder_funcs;
struct drm_crtc_helper_funcs *crtc_funcs;
crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
encoder_funcs = encoder->helper_private;
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
}
return true;
}
/* Find an unused one (if possible) */
list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
i++;
if (!(encoder->possible_crtcs & (1 << i)))
continue;
if (!possible_crtc->enabled) {
crtc = possible_crtc;
break;
}
}
/*
* If we didn't find an unused CRTC, don't use any.
*/
if (!crtc) {
DRM_DEBUG_KMS("no pipe available for load-detect\n");
return false;
}
encoder->crtc = crtc;
connector->encoder = encoder;
intel_crtc = to_intel_crtc(crtc);
old->dpms_mode = intel_crtc->dpms_mode;
old->load_detect_temp = true;
old->release_fb = NULL;
if (!mode)
mode = &load_detect_mode;
old_fb = crtc->fb;
/* We need a framebuffer large enough to accommodate all accesses
* that the plane may generate whilst we perform load detection.
* We can not rely on the fbcon either being present (we get called
* during its initialisation to detect all boot displays, or it may
* not even exist) or that it is large enough to satisfy the
* requested mode.
*/
crtc->fb = mode_fits_in_fbdev(dev, mode);
if (crtc->fb == NULL) {
DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
old->release_fb = crtc->fb;
} else
DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
if (IS_ERR(crtc->fb)) {
DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
crtc->fb = old_fb;
return false;
}
if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
if (old->release_fb)
old->release_fb->funcs->destroy(old->release_fb);
crtc->fb = old_fb;
return false;
}
/* let the connector get through one full cycle before testing */
intel_wait_for_vblank(dev, intel_crtc->pipe);
return true;
}
void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
struct drm_connector *connector,
struct intel_load_detect_pipe *old)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_device *dev = encoder->dev;
struct drm_crtc *crtc = encoder->crtc;
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id, drm_get_connector_name(connector),
encoder->base.id, drm_get_encoder_name(encoder));
if (old->load_detect_temp) {
connector->encoder = NULL;
drm_helper_disable_unused_functions(dev);
if (old->release_fb)
old->release_fb->funcs->destroy(old->release_fb);
return;
}
/* Switch crtc and encoder back off if necessary */
if (old->dpms_mode != DRM_MODE_DPMS_ON) {
encoder_funcs->dpms(encoder, old->dpms_mode);
crtc_funcs->dpms(crtc, old->dpms_mode);
}
}
/* Returns the clock of the currently programmed mode of the given pipe. */
static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 dpll = I915_READ(DPLL(pipe));
u32 fp;
intel_clock_t clock;
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
fp = I915_READ(FP0(pipe));
else
fp = I915_READ(FP1(pipe));
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
if (IS_PINEVIEW(dev)) {
clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
} else {
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
}
if (!IS_GEN2(dev)) {
if (IS_PINEVIEW(dev))
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
else
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
switch (dpll & DPLL_MODE_MASK) {
case DPLLB_MODE_DAC_SERIAL:
clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5 : 10;
break;
case DPLLB_MODE_LVDS:
clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7 : 14;
break;
default:
DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
"mode\n", (int)(dpll & DPLL_MODE_MASK));
return 0;
}
/* XXX: Handle the 100Mhz refclk */
intel_clock(dev, 96000, &clock);
} else {
bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
if (is_lvds) {
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
clock.p2 = 14;
if ((dpll & PLL_REF_INPUT_MASK) ==
PLLB_REF_INPUT_SPREADSPECTRUMIN) {
/* XXX: might not be 66MHz */
intel_clock(dev, 66000, &clock);
} else
intel_clock(dev, 48000, &clock);
} else {
if (dpll & PLL_P1_DIVIDE_BY_TWO)
clock.p1 = 2;
else {
clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
}
if (dpll & PLL_P2_DIVIDE_BY_4)
clock.p2 = 4;
else
clock.p2 = 2;
intel_clock(dev, 48000, &clock);
}
}
/* XXX: It would be nice to validate the clocks, but we can't reuse
* i830PllIsValid() because it relies on the xf86_config connector
* configuration being accurate, which it isn't necessarily.
*/
return clock.dot;
}
/** Returns the currently programmed mode of the given pipe. */
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
struct drm_display_mode *mode;
int htot = I915_READ(HTOTAL(pipe));
int hsync = I915_READ(HSYNC(pipe));
int vtot = I915_READ(VTOTAL(pipe));
int vsync = I915_READ(VSYNC(pipe));
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
if (!mode)
return NULL;
mode->clock = intel_crtc_clock_get(dev, crtc);
mode->hdisplay = (htot & 0xffff) + 1;
mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
mode->hsync_start = (hsync & 0xffff) + 1;
mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
mode->vdisplay = (vtot & 0xffff) + 1;
mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
mode->vsync_start = (vsync & 0xffff) + 1;
mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
drm_mode_set_name(mode);
return mode;
}
static void intel_increase_pllclock(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int dpll_reg = DPLL(pipe);
int dpll;
if (HAS_PCH_SPLIT(dev))
return;
if (!dev_priv->lvds_downclock_avail)
return;
dpll = I915_READ(dpll_reg);
if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
DRM_DEBUG_DRIVER("upclocking LVDS\n");
assert_panel_unlocked(dev_priv, pipe);
dpll &= ~DISPLAY_RATE_SELECT_FPA1;
I915_WRITE(dpll_reg, dpll);
intel_wait_for_vblank(dev, pipe);
dpll = I915_READ(dpll_reg);
if (dpll & DISPLAY_RATE_SELECT_FPA1)
DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
}
}
static void intel_decrease_pllclock(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
if (HAS_PCH_SPLIT(dev))
return;
if (!dev_priv->lvds_downclock_avail)
return;
/*
* Since this is called by a timer, we should never get here in
* the manual case.
*/
if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
int pipe = intel_crtc->pipe;
int dpll_reg = DPLL(pipe);
int dpll;
DRM_DEBUG_DRIVER("downclocking LVDS\n");
assert_panel_unlocked(dev_priv, pipe);
dpll = I915_READ(dpll_reg);
dpll |= DISPLAY_RATE_SELECT_FPA1;
I915_WRITE(dpll_reg, dpll);
intel_wait_for_vblank(dev, pipe);
dpll = I915_READ(dpll_reg);
if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
}
}
void intel_mark_busy(struct drm_device *dev)
{
intel_sanitize_pm(dev);
i915_update_gfx_val(dev->dev_private);
}
void intel_mark_idle(struct drm_device *dev)
{
intel_sanitize_pm(dev);
}
void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_crtc *crtc;
if (!i915_powersave)
return;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (!crtc->fb)
continue;
if (to_intel_framebuffer(crtc->fb)->obj == obj)
intel_increase_pllclock(crtc);
}
}
void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_crtc *crtc;
if (!i915_powersave)
return;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (!crtc->fb)
continue;
if (to_intel_framebuffer(crtc->fb)->obj == obj)
intel_decrease_pllclock(crtc);
}
}
static void intel_crtc_destroy(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct intel_unpin_work *work;
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
work = intel_crtc->unpin_work;
intel_crtc->unpin_work = NULL;
spin_unlock_irqrestore(&dev->event_lock, flags);
if (work) {
cancel_work_sync(&work->work);
kfree(work);
}
drm_crtc_cleanup(crtc);
kfree(intel_crtc);
}
static void intel_unpin_work_fn(struct work_struct *__work)
{
struct intel_unpin_work *work =
container_of(__work, struct intel_unpin_work, work);
mutex_lock(&work->dev->struct_mutex);
intel_unpin_fb_obj(work->old_fb_obj);
drm_gem_object_unreference(&work->pending_flip_obj->base);
drm_gem_object_unreference(&work->old_fb_obj->base);
intel_update_fbc(work->dev);
mutex_unlock(&work->dev->struct_mutex);
kfree(work);
}
static void do_intel_finish_page_flip(struct drm_device *dev,
struct drm_crtc *crtc)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_unpin_work *work;
struct drm_i915_gem_object *obj;
struct drm_pending_vblank_event *e;
struct timeval tnow, tvbl;
unsigned long flags;
/* Ignore early vblank irqs */
if (intel_crtc == NULL)
return;
do_gettimeofday(&tnow);
spin_lock_irqsave(&dev->event_lock, flags);
work = intel_crtc->unpin_work;
if (work == NULL || !work->pending) {
spin_unlock_irqrestore(&dev->event_lock, flags);
return;
}
intel_crtc->unpin_work = NULL;
if (work->event) {
e = work->event;
e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
/* Called before vblank count and timestamps have
* been updated for the vblank interval of flip
* completion? Need to increment vblank count and
* add one videorefresh duration to returned timestamp
* to account for this. We assume this happened if we
* get called over 0.9 frame durations after the last
* timestamped vblank.
*
* This calculation can not be used with vrefresh rates
* below 5Hz (10Hz to be on the safe side) without
* promoting to 64 integers.
*/
if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
9 * crtc->framedur_ns) {
e->event.sequence++;
tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
crtc->framedur_ns);
}
e->event.tv_sec = tvbl.tv_sec;
e->event.tv_usec = tvbl.tv_usec;
list_add_tail(&e->base.link,
&e->base.file_priv->event_list);
wake_up_interruptible(&e->base.file_priv->event_wait);
}
drm_vblank_put(dev, intel_crtc->pipe);
spin_unlock_irqrestore(&dev->event_lock, flags);
obj = work->old_fb_obj;
atomic_clear_mask(1 << intel_crtc->plane,
&obj->pending_flip.counter);
if (atomic_read(&obj->pending_flip) == 0)
wake_up(&dev_priv->pending_flip_queue);
schedule_work(&work->work);
trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
}
void intel_finish_page_flip(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
do_intel_finish_page_flip(dev, crtc);
}
void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
do_intel_finish_page_flip(dev, crtc);
}
void intel_prepare_page_flip(struct drm_device *dev, int plane)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc =
to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
if (intel_crtc->unpin_work) {
if ((++intel_crtc->unpin_work->pending) > 1)
DRM_ERROR("Prepared flip multiple times\n");
} else {
DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
}
spin_unlock_irqrestore(&dev->event_lock, flags);
}
static int intel_gen2_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 flip_mask;
struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
int ret;
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
if (ret)
goto err;
ret = intel_ring_begin(ring, 6);
if (ret)
goto err_unpin;
/* Can't queue multiple flips, so wait for the previous
* one to finish before executing the next.
*/
if (intel_crtc->plane)
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
else
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0]);
intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
intel_ring_emit(ring, 0); /* aux display base address, unused */
intel_ring_advance(ring);
return 0;
err_unpin:
intel_unpin_fb_obj(obj);
err:
return ret;
}
static int intel_gen3_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 flip_mask;
struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
int ret;
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
if (ret)
goto err;
ret = intel_ring_begin(ring, 6);
if (ret)
goto err_unpin;
if (intel_crtc->plane)
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
else
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0]);
intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
err_unpin:
intel_unpin_fb_obj(obj);
err:
return ret;
}
static int intel_gen4_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t pf, pipesrc;
struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
int ret;
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
if (ret)
goto err;
ret = intel_ring_begin(ring, 4);
if (ret)
goto err_unpin;
/* i965+ uses the linear or tiled offsets from the
* Display Registers (which do not change across a page-flip)
* so we need only reprogram the base address.
*/
intel_ring_emit(ring, MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0]);
intel_ring_emit(ring,
(obj->gtt_offset + intel_crtc->dspaddr_offset) |
obj->tiling_mode);
/* XXX Enabling the panel-fitter across page-flip is so far
* untested on non-native modes, so ignore it for now.
* pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
*/
pf = 0;
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
intel_ring_emit(ring, pf | pipesrc);
intel_ring_advance(ring);
return 0;
err_unpin:
intel_unpin_fb_obj(obj);
err:
return ret;
}
static int intel_gen6_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
uint32_t pf, pipesrc;
int ret;
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
if (ret)
goto err;
ret = intel_ring_begin(ring, 4);
if (ret)
goto err_unpin;
intel_ring_emit(ring, MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
/* Contrary to the suggestions in the documentation,
* "Enable Panel Fitter" does not seem to be required when page
* flipping with a non-native mode, and worse causes a normal
* modeset to fail.
* pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
*/
pf = 0;
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
intel_ring_emit(ring, pf | pipesrc);
intel_ring_advance(ring);
return 0;
err_unpin:
intel_unpin_fb_obj(obj);
err:
return ret;
}
/*
* On gen7 we currently use the blit ring because (in early silicon at least)
* the render ring doesn't give us interrpts for page flip completion, which
* means clients will hang after the first flip is queued. Fortunately the
* blit ring generates interrupts properly, so use it instead.
*/
static int intel_gen7_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
uint32_t plane_bit = 0;
int ret;
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
if (ret)
goto err;
switch(intel_crtc->plane) {
case PLANE_A:
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
break;
case PLANE_B:
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
break;
case PLANE_C:
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
break;
default:
WARN_ONCE(1, "unknown plane in flip command\n");
ret = -ENODEV;
goto err;
}
ret = intel_ring_begin(ring, 4);
if (ret)
goto err_unpin;
intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
intel_ring_emit(ring, (MI_NOOP));
intel_ring_advance(ring);
return 0;
err_unpin:
intel_unpin_fb_obj(obj);
err:
return ret;
}
static int intel_default_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
return -ENODEV;
}
static int intel_crtc_page_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_unpin_work *work;
unsigned long flags;
int ret;
/* Can't change pixel format via MI display flips. */
if (fb->pixel_format != crtc->fb->pixel_format)
return -EINVAL;
/*
* TILEOFF/LINOFF registers can't be changed via MI display flips.
* Note that pitch changes could also affect these register.
*/
if (INTEL_INFO(dev)->gen > 3 &&
(fb->offsets[0] != crtc->fb->offsets[0] ||
fb->pitches[0] != crtc->fb->pitches[0]))
return -EINVAL;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (work == NULL)
return -ENOMEM;
work->event = event;
work->dev = crtc->dev;
intel_fb = to_intel_framebuffer(crtc->fb);
work->old_fb_obj = intel_fb->obj;
INIT_WORK(&work->work, intel_unpin_work_fn);
ret = drm_vblank_get(dev, intel_crtc->pipe);
if (ret)
goto free_work;
/* We borrow the event spin lock for protecting unpin_work */
spin_lock_irqsave(&dev->event_lock, flags);
if (intel_crtc->unpin_work) {
spin_unlock_irqrestore(&dev->event_lock, flags);
kfree(work);
drm_vblank_put(dev, intel_crtc->pipe);
DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
return -EBUSY;
}
intel_crtc->unpin_work = work;
spin_unlock_irqrestore(&dev->event_lock, flags);
intel_fb = to_intel_framebuffer(fb);
obj = intel_fb->obj;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto cleanup;
/* Reference the objects for the scheduled work. */
drm_gem_object_reference(&work->old_fb_obj->base);
drm_gem_object_reference(&obj->base);
crtc->fb = fb;
work->pending_flip_obj = obj;
work->enable_stall_check = true;
/* Block clients from rendering to the new back buffer until
* the flip occurs and the object is no longer visible.
*/
atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
if (ret)
goto cleanup_pending;
intel_disable_fbc(dev);
intel_mark_fb_busy(obj);
mutex_unlock(&dev->struct_mutex);
trace_i915_flip_request(intel_crtc->plane, obj);
return 0;
cleanup_pending:
atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
drm_gem_object_unreference(&work->old_fb_obj->base);
drm_gem_object_unreference(&obj->base);
mutex_unlock(&dev->struct_mutex);
cleanup:
spin_lock_irqsave(&dev->event_lock, flags);
intel_crtc->unpin_work = NULL;
spin_unlock_irqrestore(&dev->event_lock, flags);
drm_vblank_put(dev, intel_crtc->pipe);
free_work:
kfree(work);
return ret;
}
static void intel_sanitize_modesetting(struct drm_device *dev,
int pipe, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg, val;
int i;
/* Clear any frame start delays used for debugging left by the BIOS */
for_each_pipe(i) {
reg = PIPECONF(i);
I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
}
if (HAS_PCH_SPLIT(dev))
return;
/* Who knows what state these registers were left in by the BIOS or
* grub?
*
* If we leave the registers in a conflicting state (e.g. with the
* display plane reading from the other pipe than the one we intend
* to use) then when we attempt to teardown the active mode, we will
* not disable the pipes and planes in the correct order -- leaving
* a plane reading from a disabled pipe and possibly leading to
* undefined behaviour.
*/
reg = DSPCNTR(plane);
val = I915_READ(reg);
if ((val & DISPLAY_PLANE_ENABLE) == 0)
return;
if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
return;
/* This display plane is active and attached to the other CPU pipe. */
pipe = !pipe;
/* Disable the plane and wait for it to stop reading from the pipe. */
intel_disable_plane(dev_priv, plane, pipe);
intel_disable_pipe(dev_priv, pipe);
}
static void intel_crtc_reset(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
/* Reset flags back to the 'unknown' status so that they
* will be correctly set on the initial modeset.
*/
intel_crtc->dpms_mode = -1;
/* We need to fix up any BIOS configuration that conflicts with
* our expectations.
*/
intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
}
static struct drm_crtc_helper_funcs intel_helper_funcs = {
.dpms = intel_crtc_dpms,
.mode_fixup = intel_crtc_mode_fixup,
.mode_set = intel_crtc_mode_set,
.mode_set_base = intel_pipe_set_base,
.mode_set_base_atomic = intel_pipe_set_base_atomic,
.load_lut = intel_crtc_load_lut,
.disable = intel_crtc_disable,
};
static const struct drm_crtc_funcs intel_crtc_funcs = {
.reset = intel_crtc_reset,
.cursor_set = intel_crtc_cursor_set,
.cursor_move = intel_crtc_cursor_move,
.gamma_set = intel_crtc_gamma_set,
.set_config = drm_crtc_helper_set_config,
.destroy = intel_crtc_destroy,
.page_flip = intel_crtc_page_flip,
};
static void intel_pch_pll_init(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int i;
if (dev_priv->num_pch_pll == 0) {
DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
return;
}
for (i = 0; i < dev_priv->num_pch_pll; i++) {
dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
}
}
static void intel_crtc_init(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc;
int i;
intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
if (intel_crtc == NULL)
return;
drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
for (i = 0; i < 256; i++) {
intel_crtc->lut_r[i] = i;
intel_crtc->lut_g[i] = i;
intel_crtc->lut_b[i] = i;
}
/* Swap pipes & planes for FBC on pre-965 */
intel_crtc->pipe = pipe;
intel_crtc->plane = pipe;
if (IS_MOBILE(dev) && IS_GEN3(dev)) {
DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
intel_crtc->plane = !pipe;
}
BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
intel_crtc_reset(&intel_crtc->base);
intel_crtc->active = true; /* force the pipe off on setup_init_config */
intel_crtc->bpp = 24; /* default for pre-Ironlake */
if (HAS_PCH_SPLIT(dev)) {
intel_helper_funcs.prepare = ironlake_crtc_prepare;
intel_helper_funcs.commit = ironlake_crtc_commit;
} else {
intel_helper_funcs.prepare = i9xx_crtc_prepare;
intel_helper_funcs.commit = i9xx_crtc_commit;
}
drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
}
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
struct drm_mode_object *drmmode_obj;
struct intel_crtc *crtc;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -ENODEV;
drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
DRM_MODE_OBJECT_CRTC);
if (!drmmode_obj) {
DRM_ERROR("no such CRTC id\n");
return -EINVAL;
}
crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
pipe_from_crtc_id->pipe = crtc->pipe;
return 0;
}
static int intel_encoder_clones(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct intel_encoder *source_encoder;
int index_mask = 0;
int entry = 0;
list_for_each_entry(source_encoder,
&dev->mode_config.encoder_list, base.head) {
if (encoder == source_encoder)
index_mask |= (1 << entry);
/* Intel hw has only one MUX where enocoders could be cloned. */
if (encoder->cloneable && source_encoder->cloneable)
index_mask |= (1 << entry);
entry++;
}
return index_mask;
}
static bool has_edp_a(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (!IS_MOBILE(dev))
return false;
if ((I915_READ(DP_A) & DP_DETECTED) == 0)
return false;
if (IS_GEN5(dev) &&
(I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
return false;
return true;
}
static void intel_setup_outputs(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *encoder;
bool dpd_is_edp = false;
bool has_lvds;
has_lvds = intel_lvds_init(dev);
if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
/* disable the panel fitter on everything but LVDS */
I915_WRITE(PFIT_CONTROL, 0);
}
if (HAS_PCH_SPLIT(dev)) {
dpd_is_edp = intel_dpd_is_edp(dev);
if (has_edp_a(dev))
intel_dp_init(dev, DP_A, PORT_A);
if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
intel_dp_init(dev, PCH_DP_D, PORT_D);
}
intel_crt_init(dev);
if (IS_HASWELL(dev)) {
int found;
/* Haswell uses DDI functions to detect digital outputs */
found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
/* DDI A only supports eDP */
if (found)
intel_ddi_init(dev, PORT_A);
/* DDI B, C and D detection is indicated by the SFUSE_STRAP
* register */
found = I915_READ(SFUSE_STRAP);
if (found & SFUSE_STRAP_DDIB_DETECTED)
intel_ddi_init(dev, PORT_B);
if (found & SFUSE_STRAP_DDIC_DETECTED)
intel_ddi_init(dev, PORT_C);
if (found & SFUSE_STRAP_DDID_DETECTED)
intel_ddi_init(dev, PORT_D);
} else if (HAS_PCH_SPLIT(dev)) {
int found;
if (I915_READ(HDMIB) & PORT_DETECTED) {
/* PCH SDVOB multiplex with HDMIB */
found = intel_sdvo_init(dev, PCH_SDVOB, true);
if (!found)
intel_hdmi_init(dev, HDMIB, PORT_B);
if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
intel_dp_init(dev, PCH_DP_B, PORT_B);
}
if (I915_READ(HDMIC) & PORT_DETECTED)
intel_hdmi_init(dev, HDMIC, PORT_C);
if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
intel_hdmi_init(dev, HDMID, PORT_D);
if (I915_READ(PCH_DP_C) & DP_DETECTED)
intel_dp_init(dev, PCH_DP_C, PORT_C);
if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
intel_dp_init(dev, PCH_DP_D, PORT_D);
} else if (IS_VALLEYVIEW(dev)) {
int found;
if (I915_READ(SDVOB) & PORT_DETECTED) {
/* SDVOB multiplex with HDMIB */
found = intel_sdvo_init(dev, SDVOB, true);
if (!found)
intel_hdmi_init(dev, SDVOB, PORT_B);
if (!found && (I915_READ(DP_B) & DP_DETECTED))
intel_dp_init(dev, DP_B, PORT_B);
}
if (I915_READ(SDVOC) & PORT_DETECTED)
intel_hdmi_init(dev, SDVOC, PORT_C);
/* Shares lanes with HDMI on SDVOC */
if (I915_READ(DP_C) & DP_DETECTED)
intel_dp_init(dev, DP_C, PORT_C);
} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
bool found = false;
if (I915_READ(SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOB\n");
found = intel_sdvo_init(dev, SDVOB, true);
if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
intel_hdmi_init(dev, SDVOB, PORT_B);
}
if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
DRM_DEBUG_KMS("probing DP_B\n");
intel_dp_init(dev, DP_B, PORT_B);
}
}
/* Before G4X SDVOC doesn't have its own detect register */
if (I915_READ(SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOC\n");
found = intel_sdvo_init(dev, SDVOC, false);
}
if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
if (SUPPORTS_INTEGRATED_HDMI(dev)) {
DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
intel_hdmi_init(dev, SDVOC, PORT_C);
}
if (SUPPORTS_INTEGRATED_DP(dev)) {
DRM_DEBUG_KMS("probing DP_C\n");
intel_dp_init(dev, DP_C, PORT_C);
}
}
if (SUPPORTS_INTEGRATED_DP(dev) &&
(I915_READ(DP_D) & DP_DETECTED)) {
DRM_DEBUG_KMS("probing DP_D\n");
intel_dp_init(dev, DP_D, PORT_D);
}
} else if (IS_GEN2(dev))
intel_dvo_init(dev);
if (SUPPORTS_TV(dev))
intel_tv_init(dev);
list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
encoder->base.possible_crtcs = encoder->crtc_mask;
encoder->base.possible_clones =
intel_encoder_clones(encoder);
}
/* disable all the possible outputs/crtcs before entering KMS mode */
drm_helper_disable_unused_functions(dev);
if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
ironlake_init_pch_refclk(dev);
}
static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
{
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
drm_framebuffer_cleanup(fb);
drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
kfree(intel_fb);
}
static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
struct drm_file *file,
unsigned int *handle)
{
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
return drm_gem_handle_create(file, &obj->base, handle);
}
static const struct drm_framebuffer_funcs intel_fb_funcs = {
.destroy = intel_user_framebuffer_destroy,
.create_handle = intel_user_framebuffer_create_handle,
};
int intel_framebuffer_init(struct drm_device *dev,
struct intel_framebuffer *intel_fb,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_i915_gem_object *obj)
{
int ret;
if (obj->tiling_mode == I915_TILING_Y)
return -EINVAL;
if (mode_cmd->pitches[0] & 63)
return -EINVAL;
switch (mode_cmd->pixel_format) {
case DRM_FORMAT_RGB332:
case DRM_FORMAT_RGB565:
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_ARGB2101010:
/* RGB formats are common across chipsets */
break;
case DRM_FORMAT_YUYV:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_YVYU:
case DRM_FORMAT_VYUY:
break;
default:
DRM_DEBUG_KMS("unsupported pixel format %u\n",
mode_cmd->pixel_format);
return -EINVAL;
}
ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
if (ret) {
DRM_ERROR("framebuffer init failed %d\n", ret);
return ret;
}
drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
intel_fb->obj = obj;
return 0;
}
static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device *dev,
struct drm_file *filp,
struct drm_mode_fb_cmd2 *mode_cmd)
{
struct drm_i915_gem_object *obj;
obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
mode_cmd->handles[0]));
if (&obj->base == NULL)
return ERR_PTR(-ENOENT);
return intel_framebuffer_create(dev, mode_cmd, obj);
}
static const struct drm_mode_config_funcs intel_mode_funcs = {
.fb_create = intel_user_framebuffer_create,
.output_poll_changed = intel_fb_output_poll_changed,
};
/* Set up chip specific display functions */
static void intel_init_display(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* We always want a DPMS function */
if (HAS_PCH_SPLIT(dev)) {
dev_priv->display.dpms = ironlake_crtc_dpms;
dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
dev_priv->display.off = ironlake_crtc_off;
dev_priv->display.update_plane = ironlake_update_plane;
} else {
dev_priv->display.dpms = i9xx_crtc_dpms;
dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
dev_priv->display.off = i9xx_crtc_off;
dev_priv->display.update_plane = i9xx_update_plane;
}
/* Returns the core display clock speed */
if (IS_VALLEYVIEW(dev))
dev_priv->display.get_display_clock_speed =
valleyview_get_display_clock_speed;
else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
dev_priv->display.get_display_clock_speed =
i945_get_display_clock_speed;
else if (IS_I915G(dev))
dev_priv->display.get_display_clock_speed =
i915_get_display_clock_speed;
else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
dev_priv->display.get_display_clock_speed =
i9xx_misc_get_display_clock_speed;
else if (IS_I915GM(dev))
dev_priv->display.get_display_clock_speed =
i915gm_get_display_clock_speed;
else if (IS_I865G(dev))
dev_priv->display.get_display_clock_speed =
i865_get_display_clock_speed;
else if (IS_I85X(dev))
dev_priv->display.get_display_clock_speed =
i855_get_display_clock_speed;
else /* 852, 830 */
dev_priv->display.get_display_clock_speed =
i830_get_display_clock_speed;
if (HAS_PCH_SPLIT(dev)) {
if (IS_GEN5(dev)) {
dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
dev_priv->display.write_eld = ironlake_write_eld;
} else if (IS_GEN6(dev)) {
dev_priv->display.fdi_link_train = gen6_fdi_link_train;
dev_priv->display.write_eld = ironlake_write_eld;
} else if (IS_IVYBRIDGE(dev)) {
/* FIXME: detect B0+ stepping and use auto training */
dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
dev_priv->display.write_eld = ironlake_write_eld;
} else if (IS_HASWELL(dev)) {
dev_priv->display.fdi_link_train = hsw_fdi_link_train;
dev_priv->display.write_eld = ironlake_write_eld;
} else
dev_priv->display.update_wm = NULL;
} else if (IS_G4X(dev)) {
dev_priv->display.write_eld = g4x_write_eld;
}
/* Default just returns -ENODEV to indicate unsupported */
dev_priv->display.queue_flip = intel_default_queue_flip;
switch (INTEL_INFO(dev)->gen) {
case 2:
dev_priv->display.queue_flip = intel_gen2_queue_flip;
break;
case 3:
dev_priv->display.queue_flip = intel_gen3_queue_flip;
break;
case 4:
case 5:
dev_priv->display.queue_flip = intel_gen4_queue_flip;
break;
case 6:
dev_priv->display.queue_flip = intel_gen6_queue_flip;
break;
case 7:
dev_priv->display.queue_flip = intel_gen7_queue_flip;
break;
}
}
/*
* Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
* resume, or other times. This quirk makes sure that's the case for
* affected systems.
*/
static void quirk_pipea_force(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_PIPEA_FORCE;
DRM_INFO("applying pipe a force quirk\n");
}
/*
* Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
*/
static void quirk_ssc_force_disable(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
DRM_INFO("applying lvds SSC disable quirk\n");
}
/*
* A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
* brightness value
*/
static void quirk_invert_brightness(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
DRM_INFO("applying inverted panel brightness quirk\n");
}
struct intel_quirk {
int device;
int subsystem_vendor;
int subsystem_device;
void (*hook)(struct drm_device *dev);
};
static struct intel_quirk intel_quirks[] = {
/* HP Mini needs pipe A force quirk (LP: #322104) */
{ 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
/* Thinkpad R31 needs pipe A force quirk */
{ 0x3577, 0x1014, 0x0505, quirk_pipea_force },
/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
/* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
{ 0x3577, 0x1014, 0x0513, quirk_pipea_force },
/* ThinkPad X40 needs pipe A force quirk */
/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
/* 855 & before need to leave pipe A & dpll A up */
{ 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
{ 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
/* Lenovo U160 cannot use SSC on LVDS */
{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
/* Sony Vaio Y cannot use SSC on LVDS */
{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
/* Acer Aspire 5734Z must invert backlight brightness */
{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
};
static void intel_init_quirks(struct drm_device *dev)
{
struct pci_dev *d = dev->pdev;
int i;
for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
struct intel_quirk *q = &intel_quirks[i];
if (d->device == q->device &&
(d->subsystem_vendor == q->subsystem_vendor ||
q->subsystem_vendor == PCI_ANY_ID) &&
(d->subsystem_device == q->subsystem_device ||
q->subsystem_device == PCI_ANY_ID))
q->hook(dev);
}
}
/* Disable the VGA plane that we never use */
static void i915_disable_vga(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u8 sr1;
u32 vga_reg;
if (HAS_PCH_SPLIT(dev))
vga_reg = CPU_VGACNTRL;
else
vga_reg = VGACNTRL;
vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
outb(SR01, VGA_SR_INDEX);
sr1 = inb(VGA_SR_DATA);
outb(sr1 | 1<<5, VGA_SR_DATA);
vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
udelay(300);
I915_WRITE(vga_reg, VGA_DISP_DISABLE);
POSTING_READ(vga_reg);
}
static void ivb_pch_pwm_override(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/*
* IVB has CPU eDP backlight regs too, set things up to let the
* PCH regs control the backlight
*/
I915_WRITE(BLC_PWM_CPU_CTL2, BLM_PWM_ENABLE);
I915_WRITE(BLC_PWM_CPU_CTL, 0);
I915_WRITE(BLC_PWM_PCH_CTL1, BLM_PCH_PWM_ENABLE | BLM_PCH_OVERRIDE_ENABLE);
}
void intel_modeset_init_hw(struct drm_device *dev)
{
/* We attempt to init the necessary power wells early in the initialization
* time, so the subsystems that expect power to be enabled can work.
*/
intel_init_power_wells(dev);
intel_prepare_ddi(dev);
intel_init_clock_gating(dev);
mutex_lock(&dev->struct_mutex);
intel_enable_gt_powersave(dev);
mutex_unlock(&dev->struct_mutex);
if (IS_IVYBRIDGE(dev))
ivb_pch_pwm_override(dev);
}
void intel_modeset_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i, ret;
drm_mode_config_init(dev);
dev->mode_config.min_width = 0;
dev->mode_config.min_height = 0;
dev->mode_config.preferred_depth = 24;
dev->mode_config.prefer_shadow = 1;
dev->mode_config.funcs = &intel_mode_funcs;
intel_init_quirks(dev);
intel_init_pm(dev);
intel_init_display(dev);
if (IS_GEN2(dev)) {
dev->mode_config.max_width = 2048;
dev->mode_config.max_height = 2048;
} else if (IS_GEN3(dev)) {
dev->mode_config.max_width = 4096;
dev->mode_config.max_height = 4096;
} else {
dev->mode_config.max_width = 8192;
dev->mode_config.max_height = 8192;
}
dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
DRM_DEBUG_KMS("%d display pipe%s available.\n",
dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
for (i = 0; i < dev_priv->num_pipe; i++) {
intel_crtc_init(dev, i);
ret = intel_plane_init(dev, i);
if (ret)
DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
}
intel_pch_pll_init(dev);
/* Just disable it once at startup */
i915_disable_vga(dev);
intel_setup_outputs(dev);
}
void intel_modeset_gem_init(struct drm_device *dev)
{
intel_modeset_init_hw(dev);
intel_setup_overlay(dev);
}
void intel_modeset_cleanup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
struct intel_crtc *intel_crtc;
drm_kms_helper_poll_fini(dev);
mutex_lock(&dev->struct_mutex);
intel_unregister_dsm_handler();
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
/* Skip inactive CRTCs */
if (!crtc->fb)
continue;
intel_crtc = to_intel_crtc(crtc);
intel_increase_pllclock(crtc);
}
intel_disable_fbc(dev);
intel_disable_gt_powersave(dev);
ironlake_teardown_rc6(dev);
if (IS_VALLEYVIEW(dev))
vlv_init_dpio(dev);
mutex_unlock(&dev->struct_mutex);
/* Disable the irq before mode object teardown, for the irq might
* enqueue unpin/hotplug work. */
drm_irq_uninstall(dev);
cancel_work_sync(&dev_priv->hotplug_work);
cancel_work_sync(&dev_priv->rps_work);
/* flush any delayed tasks or pending work */
flush_scheduled_work();
drm_mode_config_cleanup(dev);
}
/*
* Return which encoder is currently attached for connector.
*/
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
{
return &intel_attached_encoder(connector)->base;
}
void intel_connector_attach_encoder(struct intel_connector *connector,
struct intel_encoder *encoder)
{
connector->encoder = encoder;
drm_mode_connector_attach_encoder(&connector->base,
&encoder->base);
}
/*
* set vga decode state - true == enable VGA decode
*/
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u16 gmch_ctrl;
pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
if (state)
gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
else
gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
return 0;
}
#ifdef CONFIG_DEBUG_FS
#include <linux/seq_file.h>
struct intel_display_error_state {
struct intel_cursor_error_state {
u32 control;
u32 position;
u32 base;
u32 size;
} cursor[2];
struct intel_pipe_error_state {
u32 conf;
u32 source;
u32 htotal;
u32 hblank;
u32 hsync;
u32 vtotal;
u32 vblank;
u32 vsync;
} pipe[2];
struct intel_plane_error_state {
u32 control;
u32 stride;
u32 size;
u32 pos;
u32 addr;
u32 surface;
u32 tile_offset;
} plane[2];
};
struct intel_display_error_state *
intel_display_capture_error_state(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_display_error_state *error;
int i;
error = kmalloc(sizeof(*error), GFP_ATOMIC);
if (error == NULL)
return NULL;
for (i = 0; i < 2; i++) {
error->cursor[i].control = I915_READ(CURCNTR(i));
error->cursor[i].position = I915_READ(CURPOS(i));
error->cursor[i].base = I915_READ(CURBASE(i));
error->plane[i].control = I915_READ(DSPCNTR(i));
error->plane[i].stride = I915_READ(DSPSTRIDE(i));
error->plane[i].size = I915_READ(DSPSIZE(i));
error->plane[i].pos = I915_READ(DSPPOS(i));
error->plane[i].addr = I915_READ(DSPADDR(i));
if (INTEL_INFO(dev)->gen >= 4) {
error->plane[i].surface = I915_READ(DSPSURF(i));
error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
}
error->pipe[i].conf = I915_READ(PIPECONF(i));
error->pipe[i].source = I915_READ(PIPESRC(i));
error->pipe[i].htotal = I915_READ(HTOTAL(i));
error->pipe[i].hblank = I915_READ(HBLANK(i));
error->pipe[i].hsync = I915_READ(HSYNC(i));
error->pipe[i].vtotal = I915_READ(VTOTAL(i));
error->pipe[i].vblank = I915_READ(VBLANK(i));
error->pipe[i].vsync = I915_READ(VSYNC(i));
}
return error;
}
void
intel_display_print_error_state(struct seq_file *m,
struct drm_device *dev,
struct intel_display_error_state *error)
{
int i;
for (i = 0; i < 2; i++) {
seq_printf(m, "Pipe [%d]:\n", i);
seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
seq_printf(m, "Plane [%d]:\n", i);
seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
seq_printf(m, " POS: %08x\n", error->plane[i].pos);
seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
if (INTEL_INFO(dev)->gen >= 4) {
seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
}
seq_printf(m, "Cursor [%d]:\n", i);
seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
seq_printf(m, " POS: %08x\n", error->cursor[i].position);
seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
}
}
#endif