| /* |
| * linux/drivers/video/sa1100fb.c |
| * |
| * Copyright (C) 1999 Eric A. Thomas |
| * Based on acornfb.c Copyright (C) Russell King. |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file COPYING in the main directory of this archive for |
| * more details. |
| * |
| * StrongARM 1100 LCD Controller Frame Buffer Driver |
| * |
| * Please direct your questions and comments on this driver to the following |
| * email address: |
| * |
| * linux-arm-kernel@lists.arm.linux.org.uk |
| * |
| * Clean patches should be sent to the ARM Linux Patch System. Please see the |
| * following web page for more information: |
| * |
| * http://www.arm.linux.org.uk/developer/patches/info.shtml |
| * |
| * Thank you. |
| * |
| * Known problems: |
| * - With the Neponset plugged into an Assabet, LCD powerdown |
| * doesn't work (LCD stays powered up). Therefore we shouldn't |
| * blank the screen. |
| * - We don't limit the CPU clock rate nor the mode selection |
| * according to the available SDRAM bandwidth. |
| * |
| * Other notes: |
| * - Linear grayscale palettes and the kernel. |
| * Such code does not belong in the kernel. The kernel frame buffer |
| * drivers do not expect a linear colourmap, but a colourmap based on |
| * the VT100 standard mapping. |
| * |
| * If your _userspace_ requires a linear colourmap, then the setup of |
| * such a colourmap belongs _in userspace_, not in the kernel. Code |
| * to set the colourmap correctly from user space has been sent to |
| * David Neuer. It's around 8 lines of C code, plus another 4 to |
| * detect if we are using grayscale. |
| * |
| * - The following must never be specified in a panel definition: |
| * LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL |
| * |
| * - The following should be specified: |
| * either LCCR0_Color or LCCR0_Mono |
| * either LCCR0_Sngl or LCCR0_Dual |
| * either LCCR0_Act or LCCR0_Pas |
| * either LCCR3_OutEnH or LCCD3_OutEnL |
| * either LCCR3_PixRsEdg or LCCR3_PixFlEdg |
| * either LCCR3_ACBsDiv or LCCR3_ACBsCntOff |
| * |
| * Code Status: |
| * 1999/04/01: |
| * - Driver appears to be working for Brutus 320x200x8bpp mode. Other |
| * resolutions are working, but only the 8bpp mode is supported. |
| * Changes need to be made to the palette encode and decode routines |
| * to support 4 and 16 bpp modes. |
| * Driver is not designed to be a module. The FrameBuffer is statically |
| * allocated since dynamic allocation of a 300k buffer cannot be |
| * guaranteed. |
| * |
| * 1999/06/17: |
| * - FrameBuffer memory is now allocated at run-time when the |
| * driver is initialized. |
| * |
| * 2000/04/10: Nicolas Pitre <nico@fluxnic.net> |
| * - Big cleanup for dynamic selection of machine type at run time. |
| * |
| * 2000/07/19: Jamey Hicks <jamey@crl.dec.com> |
| * - Support for Bitsy aka Compaq iPAQ H3600 added. |
| * |
| * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com> |
| * Jeff Sutherland <jsutherland@accelent.com> |
| * - Resolved an issue caused by a change made to the Assabet's PLD |
| * earlier this year which broke the framebuffer driver for newer |
| * Phase 4 Assabets. Some other parameters were changed to optimize |
| * for the Sharp display. |
| * |
| * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp> |
| * - XP860 support added |
| * |
| * 2000/08/19: Mark Huang <mhuang@livetoy.com> |
| * - Allows standard options to be passed on the kernel command line |
| * for most common passive displays. |
| * |
| * 2000/08/29: |
| * - s/save_flags_cli/local_irq_save/ |
| * - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller |
| * |
| * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl> |
| * - Updated LART stuff. Fixed some minor bugs. |
| * |
| * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw> |
| * - Pangolin support added |
| * |
| * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de> |
| * - Huw Webpanel support added |
| * |
| * 2000/11/23: Eric Peng <ericpeng@coventive.com> |
| * - Freebird add |
| * |
| * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com> |
| * Cliff Brake <cbrake@accelent.com> |
| * - Added PM callback |
| * |
| * 2001/05/26: <rmk@arm.linux.org.uk> |
| * - Fix 16bpp so that (a) we use the right colours rather than some |
| * totally random colour depending on what was in page 0, and (b) |
| * we don't de-reference a NULL pointer. |
| * - remove duplicated implementation of consistent_alloc() |
| * - convert dma address types to dma_addr_t |
| * - remove unused 'montype' stuff |
| * - remove redundant zero inits of init_var after the initial |
| * memset. |
| * - remove allow_modeset (acornfb idea does not belong here) |
| * |
| * 2001/05/28: <rmk@arm.linux.org.uk> |
| * - massive cleanup - move machine dependent data into structures |
| * - I've left various #warnings in - if you see one, and know |
| * the hardware concerned, please get in contact with me. |
| * |
| * 2001/05/31: <rmk@arm.linux.org.uk> |
| * - Fix LCCR1 HSW value, fix all machine type specifications to |
| * keep values in line. (Please check your machine type specs) |
| * |
| * 2001/06/10: <rmk@arm.linux.org.uk> |
| * - Fiddle with the LCD controller from task context only; mainly |
| * so that we can run with interrupts on, and sleep. |
| * - Convert #warnings into #errors. No pain, no gain. ;) |
| * |
| * 2001/06/14: <rmk@arm.linux.org.uk> |
| * - Make the palette BPS value for 12bpp come out correctly. |
| * - Take notice of "greyscale" on any colour depth. |
| * - Make truecolor visuals use the RGB channel encoding information. |
| * |
| * 2001/07/02: <rmk@arm.linux.org.uk> |
| * - Fix colourmap problems. |
| * |
| * 2001/07/13: <abraham@2d3d.co.za> |
| * - Added support for the ICP LCD-Kit01 on LART. This LCD is |
| * manufactured by Prime View, model no V16C6448AB |
| * |
| * 2001/07/23: <rmk@arm.linux.org.uk> |
| * - Hand merge version from handhelds.org CVS tree. See patch |
| * notes for 595/1 for more information. |
| * - Drop 12bpp (it's 16bpp with different colour register mappings). |
| * - This hardware can not do direct colour. Therefore we don't |
| * support it. |
| * |
| * 2001/07/27: <rmk@arm.linux.org.uk> |
| * - Halve YRES on dual scan LCDs. |
| * |
| * 2001/08/22: <rmk@arm.linux.org.uk> |
| * - Add b/w iPAQ pixclock value. |
| * |
| * 2001/10/12: <rmk@arm.linux.org.uk> |
| * - Add patch 681/1 and clean up stork definitions. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/interrupt.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/fb.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/ioport.h> |
| #include <linux/cpufreq.h> |
| #include <linux/gpio.h> |
| #include <linux/platform_device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/mutex.h> |
| #include <linux/io.h> |
| #include <linux/clk.h> |
| |
| #include <video/sa1100fb.h> |
| |
| #include <mach/hardware.h> |
| #include <asm/mach-types.h> |
| #include <mach/shannon.h> |
| |
| /* |
| * Complain if VAR is out of range. |
| */ |
| #define DEBUG_VAR 1 |
| |
| #include "sa1100fb.h" |
| |
| static const struct sa1100fb_rgb rgb_4 = { |
| .red = { .offset = 0, .length = 4, }, |
| .green = { .offset = 0, .length = 4, }, |
| .blue = { .offset = 0, .length = 4, }, |
| .transp = { .offset = 0, .length = 0, }, |
| }; |
| |
| static const struct sa1100fb_rgb rgb_8 = { |
| .red = { .offset = 0, .length = 8, }, |
| .green = { .offset = 0, .length = 8, }, |
| .blue = { .offset = 0, .length = 8, }, |
| .transp = { .offset = 0, .length = 0, }, |
| }; |
| |
| static const struct sa1100fb_rgb def_rgb_16 = { |
| .red = { .offset = 11, .length = 5, }, |
| .green = { .offset = 5, .length = 6, }, |
| .blue = { .offset = 0, .length = 5, }, |
| .transp = { .offset = 0, .length = 0, }, |
| }; |
| |
| |
| |
| static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *); |
| static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state); |
| |
| static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| /* |
| * We need to handle two requests being made at the same time. |
| * There are two important cases: |
| * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE) |
| * We must perform the unblanking, which will do our REENABLE for us. |
| * 2. When we are blanking, but immediately unblank before we have |
| * blanked. We do the "REENABLE" thing here as well, just to be sure. |
| */ |
| if (fbi->task_state == C_ENABLE && state == C_REENABLE) |
| state = (u_int) -1; |
| if (fbi->task_state == C_DISABLE && state == C_ENABLE) |
| state = C_REENABLE; |
| |
| if (state != (u_int)-1) { |
| fbi->task_state = state; |
| schedule_work(&fbi->task); |
| } |
| local_irq_restore(flags); |
| } |
| |
| static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf) |
| { |
| chan &= 0xffff; |
| chan >>= 16 - bf->length; |
| return chan << bf->offset; |
| } |
| |
| /* |
| * Convert bits-per-pixel to a hardware palette PBS value. |
| */ |
| static inline u_int palette_pbs(struct fb_var_screeninfo *var) |
| { |
| int ret = 0; |
| switch (var->bits_per_pixel) { |
| case 4: ret = 0 << 12; break; |
| case 8: ret = 1 << 12; break; |
| case 16: ret = 2 << 12; break; |
| } |
| return ret; |
| } |
| |
| static int |
| sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue, |
| u_int trans, struct fb_info *info) |
| { |
| struct sa1100fb_info *fbi = |
| container_of(info, struct sa1100fb_info, fb); |
| u_int val, ret = 1; |
| |
| if (regno < fbi->palette_size) { |
| val = ((red >> 4) & 0xf00); |
| val |= ((green >> 8) & 0x0f0); |
| val |= ((blue >> 12) & 0x00f); |
| |
| if (regno == 0) |
| val |= palette_pbs(&fbi->fb.var); |
| |
| fbi->palette_cpu[regno] = val; |
| ret = 0; |
| } |
| return ret; |
| } |
| |
| static int |
| sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, |
| u_int trans, struct fb_info *info) |
| { |
| struct sa1100fb_info *fbi = |
| container_of(info, struct sa1100fb_info, fb); |
| unsigned int val; |
| int ret = 1; |
| |
| /* |
| * If inverse mode was selected, invert all the colours |
| * rather than the register number. The register number |
| * is what you poke into the framebuffer to produce the |
| * colour you requested. |
| */ |
| if (fbi->inf->cmap_inverse) { |
| red = 0xffff - red; |
| green = 0xffff - green; |
| blue = 0xffff - blue; |
| } |
| |
| /* |
| * If greyscale is true, then we convert the RGB value |
| * to greyscale no mater what visual we are using. |
| */ |
| if (fbi->fb.var.grayscale) |
| red = green = blue = (19595 * red + 38470 * green + |
| 7471 * blue) >> 16; |
| |
| switch (fbi->fb.fix.visual) { |
| case FB_VISUAL_TRUECOLOR: |
| /* |
| * 12 or 16-bit True Colour. We encode the RGB value |
| * according to the RGB bitfield information. |
| */ |
| if (regno < 16) { |
| val = chan_to_field(red, &fbi->fb.var.red); |
| val |= chan_to_field(green, &fbi->fb.var.green); |
| val |= chan_to_field(blue, &fbi->fb.var.blue); |
| |
| fbi->pseudo_palette[regno] = val; |
| ret = 0; |
| } |
| break; |
| |
| case FB_VISUAL_STATIC_PSEUDOCOLOR: |
| case FB_VISUAL_PSEUDOCOLOR: |
| ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| /* |
| * sa1100fb_display_dma_period() |
| * Calculate the minimum period (in picoseconds) between two DMA |
| * requests for the LCD controller. If we hit this, it means we're |
| * doing nothing but LCD DMA. |
| */ |
| static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var) |
| { |
| /* |
| * Period = pixclock * bits_per_byte * bytes_per_transfer |
| * / memory_bits_per_pixel; |
| */ |
| return var->pixclock * 8 * 16 / var->bits_per_pixel; |
| } |
| #endif |
| |
| /* |
| * sa1100fb_check_var(): |
| * Round up in the following order: bits_per_pixel, xres, |
| * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale, |
| * bitfields, horizontal timing, vertical timing. |
| */ |
| static int |
| sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) |
| { |
| struct sa1100fb_info *fbi = |
| container_of(info, struct sa1100fb_info, fb); |
| int rgbidx; |
| |
| if (var->xres < MIN_XRES) |
| var->xres = MIN_XRES; |
| if (var->yres < MIN_YRES) |
| var->yres = MIN_YRES; |
| if (var->xres > fbi->inf->xres) |
| var->xres = fbi->inf->xres; |
| if (var->yres > fbi->inf->yres) |
| var->yres = fbi->inf->yres; |
| var->xres_virtual = max(var->xres_virtual, var->xres); |
| var->yres_virtual = max(var->yres_virtual, var->yres); |
| |
| dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel); |
| switch (var->bits_per_pixel) { |
| case 4: |
| rgbidx = RGB_4; |
| break; |
| case 8: |
| rgbidx = RGB_8; |
| break; |
| case 16: |
| rgbidx = RGB_16; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* |
| * Copy the RGB parameters for this display |
| * from the machine specific parameters. |
| */ |
| var->red = fbi->rgb[rgbidx]->red; |
| var->green = fbi->rgb[rgbidx]->green; |
| var->blue = fbi->rgb[rgbidx]->blue; |
| var->transp = fbi->rgb[rgbidx]->transp; |
| |
| dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n", |
| var->red.length, var->green.length, var->blue.length, |
| var->transp.length); |
| |
| dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n", |
| var->red.offset, var->green.offset, var->blue.offset, |
| var->transp.offset); |
| |
| #ifdef CONFIG_CPU_FREQ |
| dev_dbg(fbi->dev, "dma period = %d ps, clock = %ld kHz\n", |
| sa1100fb_display_dma_period(var), |
| clk_get_rate(fbi->clk) / 1000); |
| #endif |
| |
| return 0; |
| } |
| |
| static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual) |
| { |
| if (fbi->inf->set_visual) |
| fbi->inf->set_visual(visual); |
| } |
| |
| /* |
| * sa1100fb_set_par(): |
| * Set the user defined part of the display for the specified console |
| */ |
| static int sa1100fb_set_par(struct fb_info *info) |
| { |
| struct sa1100fb_info *fbi = |
| container_of(info, struct sa1100fb_info, fb); |
| struct fb_var_screeninfo *var = &info->var; |
| unsigned long palette_mem_size; |
| |
| dev_dbg(fbi->dev, "set_par\n"); |
| |
| if (var->bits_per_pixel == 16) |
| fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR; |
| else if (!fbi->inf->cmap_static) |
| fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; |
| else { |
| /* |
| * Some people have weird ideas about wanting static |
| * pseudocolor maps. I suspect their user space |
| * applications are broken. |
| */ |
| fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR; |
| } |
| |
| fbi->fb.fix.line_length = var->xres_virtual * |
| var->bits_per_pixel / 8; |
| fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16; |
| |
| palette_mem_size = fbi->palette_size * sizeof(u16); |
| |
| dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size); |
| |
| fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size); |
| fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size; |
| |
| /* |
| * Set (any) board control register to handle new color depth |
| */ |
| sa1100fb_set_visual(fbi, fbi->fb.fix.visual); |
| sa1100fb_activate_var(var, fbi); |
| |
| return 0; |
| } |
| |
| #if 0 |
| static int |
| sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con, |
| struct fb_info *info) |
| { |
| struct sa1100fb_info *fbi = (struct sa1100fb_info *)info; |
| |
| /* |
| * Make sure the user isn't doing something stupid. |
| */ |
| if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static)) |
| return -EINVAL; |
| |
| return gen_set_cmap(cmap, kspc, con, info); |
| } |
| #endif |
| |
| /* |
| * Formal definition of the VESA spec: |
| * On |
| * This refers to the state of the display when it is in full operation |
| * Stand-By |
| * This defines an optional operating state of minimal power reduction with |
| * the shortest recovery time |
| * Suspend |
| * This refers to a level of power management in which substantial power |
| * reduction is achieved by the display. The display can have a longer |
| * recovery time from this state than from the Stand-by state |
| * Off |
| * This indicates that the display is consuming the lowest level of power |
| * and is non-operational. Recovery from this state may optionally require |
| * the user to manually power on the monitor |
| * |
| * Now, the fbdev driver adds an additional state, (blank), where they |
| * turn off the video (maybe by colormap tricks), but don't mess with the |
| * video itself: think of it semantically between on and Stand-By. |
| * |
| * So here's what we should do in our fbdev blank routine: |
| * |
| * VESA_NO_BLANKING (mode 0) Video on, front/back light on |
| * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off |
| * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off |
| * VESA_POWERDOWN (mode 3) Video off, front/back light off |
| * |
| * This will match the matrox implementation. |
| */ |
| /* |
| * sa1100fb_blank(): |
| * Blank the display by setting all palette values to zero. Note, the |
| * 12 and 16 bpp modes don't really use the palette, so this will not |
| * blank the display in all modes. |
| */ |
| static int sa1100fb_blank(int blank, struct fb_info *info) |
| { |
| struct sa1100fb_info *fbi = |
| container_of(info, struct sa1100fb_info, fb); |
| int i; |
| |
| dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank); |
| |
| switch (blank) { |
| case FB_BLANK_POWERDOWN: |
| case FB_BLANK_VSYNC_SUSPEND: |
| case FB_BLANK_HSYNC_SUSPEND: |
| case FB_BLANK_NORMAL: |
| if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || |
| fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) |
| for (i = 0; i < fbi->palette_size; i++) |
| sa1100fb_setpalettereg(i, 0, 0, 0, 0, info); |
| sa1100fb_schedule_work(fbi, C_DISABLE); |
| break; |
| |
| case FB_BLANK_UNBLANK: |
| if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || |
| fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) |
| fb_set_cmap(&fbi->fb.cmap, info); |
| sa1100fb_schedule_work(fbi, C_ENABLE); |
| } |
| return 0; |
| } |
| |
| static int sa1100fb_mmap(struct fb_info *info, |
| struct vm_area_struct *vma) |
| { |
| struct sa1100fb_info *fbi = |
| container_of(info, struct sa1100fb_info, fb); |
| unsigned long off = vma->vm_pgoff << PAGE_SHIFT; |
| |
| if (off < info->fix.smem_len) { |
| vma->vm_pgoff += 1; /* skip over the palette */ |
| return dma_mmap_wc(fbi->dev, vma, fbi->map_cpu, fbi->map_dma, |
| fbi->map_size); |
| } |
| |
| vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); |
| |
| return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len); |
| } |
| |
| static struct fb_ops sa1100fb_ops = { |
| .owner = THIS_MODULE, |
| .fb_check_var = sa1100fb_check_var, |
| .fb_set_par = sa1100fb_set_par, |
| // .fb_set_cmap = sa1100fb_set_cmap, |
| .fb_setcolreg = sa1100fb_setcolreg, |
| .fb_fillrect = cfb_fillrect, |
| .fb_copyarea = cfb_copyarea, |
| .fb_imageblit = cfb_imageblit, |
| .fb_blank = sa1100fb_blank, |
| .fb_mmap = sa1100fb_mmap, |
| }; |
| |
| /* |
| * Calculate the PCD value from the clock rate (in picoseconds). |
| * We take account of the PPCR clock setting. |
| */ |
| static inline unsigned int get_pcd(struct sa1100fb_info *fbi, |
| unsigned int pixclock) |
| { |
| unsigned int pcd = clk_get_rate(fbi->clk) / 100 / 1000; |
| |
| pcd *= pixclock; |
| pcd /= 10000000; |
| |
| return pcd + 1; /* make up for integer math truncations */ |
| } |
| |
| /* |
| * sa1100fb_activate_var(): |
| * Configures LCD Controller based on entries in var parameter. Settings are |
| * only written to the controller if changes were made. |
| */ |
| static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi) |
| { |
| struct sa1100fb_lcd_reg new_regs; |
| u_int half_screen_size, yres, pcd; |
| u_long flags; |
| |
| dev_dbg(fbi->dev, "Configuring SA1100 LCD\n"); |
| |
| dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n", |
| var->xres, var->hsync_len, |
| var->left_margin, var->right_margin); |
| dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n", |
| var->yres, var->vsync_len, |
| var->upper_margin, var->lower_margin); |
| |
| #if DEBUG_VAR |
| if (var->xres < 16 || var->xres > 1024) |
| dev_err(fbi->dev, "%s: invalid xres %d\n", |
| fbi->fb.fix.id, var->xres); |
| if (var->hsync_len < 1 || var->hsync_len > 64) |
| dev_err(fbi->dev, "%s: invalid hsync_len %d\n", |
| fbi->fb.fix.id, var->hsync_len); |
| if (var->left_margin < 1 || var->left_margin > 255) |
| dev_err(fbi->dev, "%s: invalid left_margin %d\n", |
| fbi->fb.fix.id, var->left_margin); |
| if (var->right_margin < 1 || var->right_margin > 255) |
| dev_err(fbi->dev, "%s: invalid right_margin %d\n", |
| fbi->fb.fix.id, var->right_margin); |
| if (var->yres < 1 || var->yres > 1024) |
| dev_err(fbi->dev, "%s: invalid yres %d\n", |
| fbi->fb.fix.id, var->yres); |
| if (var->vsync_len < 1 || var->vsync_len > 64) |
| dev_err(fbi->dev, "%s: invalid vsync_len %d\n", |
| fbi->fb.fix.id, var->vsync_len); |
| if (var->upper_margin < 0 || var->upper_margin > 255) |
| dev_err(fbi->dev, "%s: invalid upper_margin %d\n", |
| fbi->fb.fix.id, var->upper_margin); |
| if (var->lower_margin < 0 || var->lower_margin > 255) |
| dev_err(fbi->dev, "%s: invalid lower_margin %d\n", |
| fbi->fb.fix.id, var->lower_margin); |
| #endif |
| |
| new_regs.lccr0 = fbi->inf->lccr0 | |
| LCCR0_LEN | LCCR0_LDM | LCCR0_BAM | |
| LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0); |
| |
| new_regs.lccr1 = |
| LCCR1_DisWdth(var->xres) + |
| LCCR1_HorSnchWdth(var->hsync_len) + |
| LCCR1_BegLnDel(var->left_margin) + |
| LCCR1_EndLnDel(var->right_margin); |
| |
| /* |
| * If we have a dual scan LCD, then we need to halve |
| * the YRES parameter. |
| */ |
| yres = var->yres; |
| if (fbi->inf->lccr0 & LCCR0_Dual) |
| yres /= 2; |
| |
| new_regs.lccr2 = |
| LCCR2_DisHght(yres) + |
| LCCR2_VrtSnchWdth(var->vsync_len) + |
| LCCR2_BegFrmDel(var->upper_margin) + |
| LCCR2_EndFrmDel(var->lower_margin); |
| |
| pcd = get_pcd(fbi, var->pixclock); |
| new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 | |
| (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) | |
| (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL); |
| |
| dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0); |
| dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1); |
| dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2); |
| dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3); |
| |
| half_screen_size = var->bits_per_pixel; |
| half_screen_size = half_screen_size * var->xres * var->yres / 16; |
| |
| /* Update shadow copy atomically */ |
| local_irq_save(flags); |
| fbi->dbar1 = fbi->palette_dma; |
| fbi->dbar2 = fbi->screen_dma + half_screen_size; |
| |
| fbi->reg_lccr0 = new_regs.lccr0; |
| fbi->reg_lccr1 = new_regs.lccr1; |
| fbi->reg_lccr2 = new_regs.lccr2; |
| fbi->reg_lccr3 = new_regs.lccr3; |
| local_irq_restore(flags); |
| |
| /* |
| * Only update the registers if the controller is enabled |
| * and something has changed. |
| */ |
| if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 || |
| readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 || |
| readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 || |
| readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 || |
| readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 || |
| readl_relaxed(fbi->base + DBAR2) != fbi->dbar2) |
| sa1100fb_schedule_work(fbi, C_REENABLE); |
| |
| return 0; |
| } |
| |
| /* |
| * NOTE! The following functions are purely helpers for set_ctrlr_state. |
| * Do not call them directly; set_ctrlr_state does the correct serialisation |
| * to ensure that things happen in the right way 100% of time time. |
| * -- rmk |
| */ |
| static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on) |
| { |
| dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff"); |
| |
| if (fbi->inf->backlight_power) |
| fbi->inf->backlight_power(on); |
| } |
| |
| static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on) |
| { |
| dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff"); |
| |
| if (fbi->inf->lcd_power) |
| fbi->inf->lcd_power(on); |
| } |
| |
| static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi) |
| { |
| u_int mask = 0; |
| |
| /* |
| * Enable GPIO<9:2> for LCD use if: |
| * 1. Active display, or |
| * 2. Color Dual Passive display |
| * |
| * see table 11.8 on page 11-27 in the SA1100 manual |
| * -- Erik. |
| * |
| * SA1110 spec update nr. 25 says we can and should |
| * clear LDD15 to 12 for 4 or 8bpp modes with active |
| * panels. |
| */ |
| if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color && |
| (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) { |
| mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9 | GPIO_LDD8; |
| |
| if (fbi->fb.var.bits_per_pixel > 8 || |
| (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual) |
| mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12; |
| |
| } |
| |
| if (mask) { |
| unsigned long flags; |
| |
| /* |
| * SA-1100 requires the GPIO direction register set |
| * appropriately for the alternate function. Hence |
| * we set it here via bitmask rather than excessive |
| * fiddling via the GPIO subsystem - and even then |
| * we'll still have to deal with GAFR. |
| */ |
| local_irq_save(flags); |
| GPDR |= mask; |
| GAFR |= mask; |
| local_irq_restore(flags); |
| } |
| } |
| |
| static void sa1100fb_enable_controller(struct sa1100fb_info *fbi) |
| { |
| dev_dbg(fbi->dev, "Enabling LCD controller\n"); |
| |
| /* |
| * Make sure the mode bits are present in the first palette entry |
| */ |
| fbi->palette_cpu[0] &= 0xcfff; |
| fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var); |
| |
| /* enable LCD controller clock */ |
| clk_prepare_enable(fbi->clk); |
| |
| /* Sequence from 11.7.10 */ |
| writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3); |
| writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2); |
| writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1); |
| writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0); |
| writel_relaxed(fbi->dbar1, fbi->base + DBAR1); |
| writel_relaxed(fbi->dbar2, fbi->base + DBAR2); |
| writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0); |
| |
| if (machine_is_shannon()) |
| gpio_set_value(SHANNON_GPIO_DISP_EN, 1); |
| |
| dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1)); |
| dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2)); |
| dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0)); |
| dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1)); |
| dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2)); |
| dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3)); |
| } |
| |
| static void sa1100fb_disable_controller(struct sa1100fb_info *fbi) |
| { |
| DECLARE_WAITQUEUE(wait, current); |
| u32 lccr0; |
| |
| dev_dbg(fbi->dev, "Disabling LCD controller\n"); |
| |
| if (machine_is_shannon()) |
| gpio_set_value(SHANNON_GPIO_DISP_EN, 0); |
| |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| add_wait_queue(&fbi->ctrlr_wait, &wait); |
| |
| /* Clear LCD Status Register */ |
| writel_relaxed(~0, fbi->base + LCSR); |
| |
| lccr0 = readl_relaxed(fbi->base + LCCR0); |
| lccr0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */ |
| writel_relaxed(lccr0, fbi->base + LCCR0); |
| lccr0 &= ~LCCR0_LEN; /* Disable LCD Controller */ |
| writel_relaxed(lccr0, fbi->base + LCCR0); |
| |
| schedule_timeout(20 * HZ / 1000); |
| remove_wait_queue(&fbi->ctrlr_wait, &wait); |
| |
| /* disable LCD controller clock */ |
| clk_disable_unprepare(fbi->clk); |
| } |
| |
| /* |
| * sa1100fb_handle_irq: Handle 'LCD DONE' interrupts. |
| */ |
| static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id) |
| { |
| struct sa1100fb_info *fbi = dev_id; |
| unsigned int lcsr = readl_relaxed(fbi->base + LCSR); |
| |
| if (lcsr & LCSR_LDD) { |
| u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM; |
| writel_relaxed(lccr0, fbi->base + LCCR0); |
| wake_up(&fbi->ctrlr_wait); |
| } |
| |
| writel_relaxed(lcsr, fbi->base + LCSR); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * This function must be called from task context only, since it will |
| * sleep when disabling the LCD controller, or if we get two contending |
| * processes trying to alter state. |
| */ |
| static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state) |
| { |
| u_int old_state; |
| |
| mutex_lock(&fbi->ctrlr_lock); |
| |
| old_state = fbi->state; |
| |
| /* |
| * Hack around fbcon initialisation. |
| */ |
| if (old_state == C_STARTUP && state == C_REENABLE) |
| state = C_ENABLE; |
| |
| switch (state) { |
| case C_DISABLE_CLKCHANGE: |
| /* |
| * Disable controller for clock change. If the |
| * controller is already disabled, then do nothing. |
| */ |
| if (old_state != C_DISABLE && old_state != C_DISABLE_PM) { |
| fbi->state = state; |
| sa1100fb_disable_controller(fbi); |
| } |
| break; |
| |
| case C_DISABLE_PM: |
| case C_DISABLE: |
| /* |
| * Disable controller |
| */ |
| if (old_state != C_DISABLE) { |
| fbi->state = state; |
| |
| __sa1100fb_backlight_power(fbi, 0); |
| if (old_state != C_DISABLE_CLKCHANGE) |
| sa1100fb_disable_controller(fbi); |
| __sa1100fb_lcd_power(fbi, 0); |
| } |
| break; |
| |
| case C_ENABLE_CLKCHANGE: |
| /* |
| * Enable the controller after clock change. Only |
| * do this if we were disabled for the clock change. |
| */ |
| if (old_state == C_DISABLE_CLKCHANGE) { |
| fbi->state = C_ENABLE; |
| sa1100fb_enable_controller(fbi); |
| } |
| break; |
| |
| case C_REENABLE: |
| /* |
| * Re-enable the controller only if it was already |
| * enabled. This is so we reprogram the control |
| * registers. |
| */ |
| if (old_state == C_ENABLE) { |
| sa1100fb_disable_controller(fbi); |
| sa1100fb_setup_gpio(fbi); |
| sa1100fb_enable_controller(fbi); |
| } |
| break; |
| |
| case C_ENABLE_PM: |
| /* |
| * Re-enable the controller after PM. This is not |
| * perfect - think about the case where we were doing |
| * a clock change, and we suspended half-way through. |
| */ |
| if (old_state != C_DISABLE_PM) |
| break; |
| /* fall through */ |
| |
| case C_ENABLE: |
| /* |
| * Power up the LCD screen, enable controller, and |
| * turn on the backlight. |
| */ |
| if (old_state != C_ENABLE) { |
| fbi->state = C_ENABLE; |
| sa1100fb_setup_gpio(fbi); |
| __sa1100fb_lcd_power(fbi, 1); |
| sa1100fb_enable_controller(fbi); |
| __sa1100fb_backlight_power(fbi, 1); |
| } |
| break; |
| } |
| mutex_unlock(&fbi->ctrlr_lock); |
| } |
| |
| /* |
| * Our LCD controller task (which is called when we blank or unblank) |
| * via keventd. |
| */ |
| static void sa1100fb_task(struct work_struct *w) |
| { |
| struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task); |
| u_int state = xchg(&fbi->task_state, -1); |
| |
| set_ctrlr_state(fbi, state); |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| /* |
| * Calculate the minimum DMA period over all displays that we own. |
| * This, together with the SDRAM bandwidth defines the slowest CPU |
| * frequency that can be selected. |
| */ |
| static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi) |
| { |
| /* |
| * FIXME: we need to verify _all_ consoles. |
| */ |
| return sa1100fb_display_dma_period(&fbi->fb.var); |
| } |
| |
| /* |
| * CPU clock speed change handler. We need to adjust the LCD timing |
| * parameters when the CPU clock is adjusted by the power management |
| * subsystem. |
| */ |
| static int |
| sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct sa1100fb_info *fbi = TO_INF(nb, freq_transition); |
| u_int pcd; |
| |
| switch (val) { |
| case CPUFREQ_PRECHANGE: |
| set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE); |
| break; |
| |
| case CPUFREQ_POSTCHANGE: |
| pcd = get_pcd(fbi, fbi->fb.var.pixclock); |
| fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd); |
| set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE); |
| break; |
| } |
| return 0; |
| } |
| |
| static int |
| sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct sa1100fb_info *fbi = TO_INF(nb, freq_policy); |
| struct cpufreq_policy *policy = data; |
| |
| switch (val) { |
| case CPUFREQ_ADJUST: |
| dev_dbg(fbi->dev, "min dma period: %d ps, " |
| "new clock %d kHz\n", sa1100fb_min_dma_period(fbi), |
| policy->max); |
| /* todo: fill in min/max values */ |
| break; |
| case CPUFREQ_NOTIFY: |
| do {} while(0); |
| /* todo: panic if min/max values aren't fulfilled |
| * [can't really happen unless there's a bug in the |
| * CPU policy verififcation process * |
| */ |
| break; |
| } |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_PM |
| /* |
| * Power management hooks. Note that we won't be called from IRQ context, |
| * unlike the blank functions above, so we may sleep. |
| */ |
| static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state) |
| { |
| struct sa1100fb_info *fbi = platform_get_drvdata(dev); |
| |
| set_ctrlr_state(fbi, C_DISABLE_PM); |
| return 0; |
| } |
| |
| static int sa1100fb_resume(struct platform_device *dev) |
| { |
| struct sa1100fb_info *fbi = platform_get_drvdata(dev); |
| |
| set_ctrlr_state(fbi, C_ENABLE_PM); |
| return 0; |
| } |
| #else |
| #define sa1100fb_suspend NULL |
| #define sa1100fb_resume NULL |
| #endif |
| |
| /* |
| * sa1100fb_map_video_memory(): |
| * Allocates the DRAM memory for the frame buffer. This buffer is |
| * remapped into a non-cached, non-buffered, memory region to |
| * allow palette and pixel writes to occur without flushing the |
| * cache. Once this area is remapped, all virtual memory |
| * access to the video memory should occur at the new region. |
| */ |
| static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi) |
| { |
| /* |
| * We reserve one page for the palette, plus the size |
| * of the framebuffer. |
| */ |
| fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE); |
| fbi->map_cpu = dma_alloc_wc(fbi->dev, fbi->map_size, &fbi->map_dma, |
| GFP_KERNEL); |
| |
| if (fbi->map_cpu) { |
| fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE; |
| fbi->screen_dma = fbi->map_dma + PAGE_SIZE; |
| /* |
| * FIXME: this is actually the wrong thing to place in |
| * smem_start. But fbdev suffers from the problem that |
| * it needs an API which doesn't exist (in this case, |
| * dma_writecombine_mmap) |
| */ |
| fbi->fb.fix.smem_start = fbi->screen_dma; |
| } |
| |
| return fbi->map_cpu ? 0 : -ENOMEM; |
| } |
| |
| /* Fake monspecs to fill in fbinfo structure */ |
| static struct fb_monspecs monspecs = { |
| .hfmin = 30000, |
| .hfmax = 70000, |
| .vfmin = 50, |
| .vfmax = 65, |
| }; |
| |
| |
| static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev) |
| { |
| struct sa1100fb_mach_info *inf = dev_get_platdata(dev); |
| struct sa1100fb_info *fbi; |
| unsigned i; |
| |
| fbi = devm_kzalloc(dev, sizeof(struct sa1100fb_info), GFP_KERNEL); |
| if (!fbi) |
| return NULL; |
| |
| fbi->dev = dev; |
| |
| strcpy(fbi->fb.fix.id, SA1100_NAME); |
| |
| fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS; |
| fbi->fb.fix.type_aux = 0; |
| fbi->fb.fix.xpanstep = 0; |
| fbi->fb.fix.ypanstep = 0; |
| fbi->fb.fix.ywrapstep = 0; |
| fbi->fb.fix.accel = FB_ACCEL_NONE; |
| |
| fbi->fb.var.nonstd = 0; |
| fbi->fb.var.activate = FB_ACTIVATE_NOW; |
| fbi->fb.var.height = -1; |
| fbi->fb.var.width = -1; |
| fbi->fb.var.accel_flags = 0; |
| fbi->fb.var.vmode = FB_VMODE_NONINTERLACED; |
| |
| fbi->fb.fbops = &sa1100fb_ops; |
| fbi->fb.flags = FBINFO_DEFAULT; |
| fbi->fb.monspecs = monspecs; |
| fbi->fb.pseudo_palette = fbi->pseudo_palette; |
| |
| fbi->rgb[RGB_4] = &rgb_4; |
| fbi->rgb[RGB_8] = &rgb_8; |
| fbi->rgb[RGB_16] = &def_rgb_16; |
| |
| /* |
| * People just don't seem to get this. We don't support |
| * anything but correct entries now, so panic if someone |
| * does something stupid. |
| */ |
| if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) || |
| inf->pixclock == 0) |
| panic("sa1100fb error: invalid LCCR3 fields set or zero " |
| "pixclock."); |
| |
| fbi->fb.var.xres = inf->xres; |
| fbi->fb.var.xres_virtual = inf->xres; |
| fbi->fb.var.yres = inf->yres; |
| fbi->fb.var.yres_virtual = inf->yres; |
| fbi->fb.var.bits_per_pixel = inf->bpp; |
| fbi->fb.var.pixclock = inf->pixclock; |
| fbi->fb.var.hsync_len = inf->hsync_len; |
| fbi->fb.var.left_margin = inf->left_margin; |
| fbi->fb.var.right_margin = inf->right_margin; |
| fbi->fb.var.vsync_len = inf->vsync_len; |
| fbi->fb.var.upper_margin = inf->upper_margin; |
| fbi->fb.var.lower_margin = inf->lower_margin; |
| fbi->fb.var.sync = inf->sync; |
| fbi->fb.var.grayscale = inf->cmap_greyscale; |
| fbi->state = C_STARTUP; |
| fbi->task_state = (u_char)-1; |
| fbi->fb.fix.smem_len = inf->xres * inf->yres * |
| inf->bpp / 8; |
| fbi->inf = inf; |
| |
| /* Copy the RGB bitfield overrides */ |
| for (i = 0; i < NR_RGB; i++) |
| if (inf->rgb[i]) |
| fbi->rgb[i] = inf->rgb[i]; |
| |
| init_waitqueue_head(&fbi->ctrlr_wait); |
| INIT_WORK(&fbi->task, sa1100fb_task); |
| mutex_init(&fbi->ctrlr_lock); |
| |
| return fbi; |
| } |
| |
| static int sa1100fb_probe(struct platform_device *pdev) |
| { |
| struct sa1100fb_info *fbi; |
| struct resource *res; |
| int ret, irq; |
| |
| if (!dev_get_platdata(&pdev->dev)) { |
| dev_err(&pdev->dev, "no platform LCD data\n"); |
| return -EINVAL; |
| } |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return -EINVAL; |
| |
| fbi = sa1100fb_init_fbinfo(&pdev->dev); |
| if (!fbi) |
| return -ENOMEM; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| fbi->base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(fbi->base)) |
| return PTR_ERR(fbi->base); |
| |
| fbi->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(fbi->clk)) |
| return PTR_ERR(fbi->clk); |
| |
| ret = devm_request_irq(&pdev->dev, irq, sa1100fb_handle_irq, 0, |
| "LCD", fbi); |
| if (ret) { |
| dev_err(&pdev->dev, "request_irq failed: %d\n", ret); |
| return ret; |
| } |
| |
| if (machine_is_shannon()) { |
| ret = devm_gpio_request_one(&pdev->dev, SHANNON_GPIO_DISP_EN, |
| GPIOF_OUT_INIT_LOW, "display enable"); |
| if (ret) |
| return ret; |
| } |
| |
| /* Initialize video memory */ |
| ret = sa1100fb_map_video_memory(fbi); |
| if (ret) |
| return ret; |
| |
| /* |
| * This makes sure that our colour bitfield |
| * descriptors are correctly initialised. |
| */ |
| sa1100fb_check_var(&fbi->fb.var, &fbi->fb); |
| |
| platform_set_drvdata(pdev, fbi); |
| |
| ret = register_framebuffer(&fbi->fb); |
| if (ret < 0) { |
| dma_free_wc(fbi->dev, fbi->map_size, fbi->map_cpu, |
| fbi->map_dma); |
| return ret; |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| fbi->freq_transition.notifier_call = sa1100fb_freq_transition; |
| fbi->freq_policy.notifier_call = sa1100fb_freq_policy; |
| cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); |
| cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER); |
| #endif |
| |
| /* This driver cannot be unloaded at the moment */ |
| return 0; |
| } |
| |
| static struct platform_driver sa1100fb_driver = { |
| .probe = sa1100fb_probe, |
| .suspend = sa1100fb_suspend, |
| .resume = sa1100fb_resume, |
| .driver = { |
| .name = "sa11x0-fb", |
| }, |
| }; |
| |
| int __init sa1100fb_init(void) |
| { |
| if (fb_get_options("sa1100fb", NULL)) |
| return -ENODEV; |
| |
| return platform_driver_register(&sa1100fb_driver); |
| } |
| |
| int __init sa1100fb_setup(char *options) |
| { |
| #if 0 |
| char *this_opt; |
| |
| if (!options || !*options) |
| return 0; |
| |
| while ((this_opt = strsep(&options, ",")) != NULL) { |
| |
| if (!strncmp(this_opt, "bpp:", 4)) |
| current_par.max_bpp = |
| simple_strtoul(this_opt + 4, NULL, 0); |
| |
| if (!strncmp(this_opt, "lccr0:", 6)) |
| lcd_shadow.lccr0 = |
| simple_strtoul(this_opt + 6, NULL, 0); |
| if (!strncmp(this_opt, "lccr1:", 6)) { |
| lcd_shadow.lccr1 = |
| simple_strtoul(this_opt + 6, NULL, 0); |
| current_par.max_xres = |
| (lcd_shadow.lccr1 & 0x3ff) + 16; |
| } |
| if (!strncmp(this_opt, "lccr2:", 6)) { |
| lcd_shadow.lccr2 = |
| simple_strtoul(this_opt + 6, NULL, 0); |
| current_par.max_yres = |
| (lcd_shadow. |
| lccr0 & LCCR0_SDS) ? ((lcd_shadow. |
| lccr2 & 0x3ff) + |
| 1) * |
| 2 : ((lcd_shadow.lccr2 & 0x3ff) + 1); |
| } |
| if (!strncmp(this_opt, "lccr3:", 6)) |
| lcd_shadow.lccr3 = |
| simple_strtoul(this_opt + 6, NULL, 0); |
| } |
| #endif |
| return 0; |
| } |
| |
| module_init(sa1100fb_init); |
| MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver"); |
| MODULE_LICENSE("GPL"); |