| /* SPDX-License-Identifier: GPL-2.0-or-later */ |
| /* |
| * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. |
| */ |
| #ifndef LINUX_DMAENGINE_H |
| #define LINUX_DMAENGINE_H |
| |
| #include <linux/device.h> |
| #include <linux/err.h> |
| #include <linux/uio.h> |
| #include <linux/bug.h> |
| #include <linux/scatterlist.h> |
| #include <linux/bitmap.h> |
| #include <linux/types.h> |
| #include <asm/page.h> |
| |
| /** |
| * typedef dma_cookie_t - an opaque DMA cookie |
| * |
| * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code |
| */ |
| typedef s32 dma_cookie_t; |
| #define DMA_MIN_COOKIE 1 |
| |
| static inline int dma_submit_error(dma_cookie_t cookie) |
| { |
| return cookie < 0 ? cookie : 0; |
| } |
| |
| /** |
| * enum dma_status - DMA transaction status |
| * @DMA_COMPLETE: transaction completed |
| * @DMA_IN_PROGRESS: transaction not yet processed |
| * @DMA_PAUSED: transaction is paused |
| * @DMA_ERROR: transaction failed |
| */ |
| enum dma_status { |
| DMA_COMPLETE, |
| DMA_IN_PROGRESS, |
| DMA_PAUSED, |
| DMA_ERROR, |
| }; |
| |
| /** |
| * enum dma_transaction_type - DMA transaction types/indexes |
| * |
| * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is |
| * automatically set as dma devices are registered. |
| */ |
| enum dma_transaction_type { |
| DMA_MEMCPY, |
| DMA_XOR, |
| DMA_PQ, |
| DMA_XOR_VAL, |
| DMA_PQ_VAL, |
| DMA_MEMSET, |
| DMA_MEMSET_SG, |
| DMA_INTERRUPT, |
| DMA_PRIVATE, |
| DMA_ASYNC_TX, |
| DMA_SLAVE, |
| DMA_CYCLIC, |
| DMA_INTERLEAVE, |
| /* last transaction type for creation of the capabilities mask */ |
| DMA_TX_TYPE_END, |
| }; |
| |
| /** |
| * enum dma_transfer_direction - dma transfer mode and direction indicator |
| * @DMA_MEM_TO_MEM: Async/Memcpy mode |
| * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device |
| * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory |
| * @DMA_DEV_TO_DEV: Slave mode & From Device to Device |
| */ |
| enum dma_transfer_direction { |
| DMA_MEM_TO_MEM, |
| DMA_MEM_TO_DEV, |
| DMA_DEV_TO_MEM, |
| DMA_DEV_TO_DEV, |
| DMA_TRANS_NONE, |
| }; |
| |
| /** |
| * Interleaved Transfer Request |
| * ---------------------------- |
| * A chunk is collection of contiguous bytes to be transfered. |
| * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). |
| * ICGs may or maynot change between chunks. |
| * A FRAME is the smallest series of contiguous {chunk,icg} pairs, |
| * that when repeated an integral number of times, specifies the transfer. |
| * A transfer template is specification of a Frame, the number of times |
| * it is to be repeated and other per-transfer attributes. |
| * |
| * Practically, a client driver would have ready a template for each |
| * type of transfer it is going to need during its lifetime and |
| * set only 'src_start' and 'dst_start' before submitting the requests. |
| * |
| * |
| * | Frame-1 | Frame-2 | ~ | Frame-'numf' | |
| * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| |
| * |
| * == Chunk size |
| * ... ICG |
| */ |
| |
| /** |
| * struct data_chunk - Element of scatter-gather list that makes a frame. |
| * @size: Number of bytes to read from source. |
| * size_dst := fn(op, size_src), so doesn't mean much for destination. |
| * @icg: Number of bytes to jump after last src/dst address of this |
| * chunk and before first src/dst address for next chunk. |
| * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. |
| * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. |
| * @dst_icg: Number of bytes to jump after last dst address of this |
| * chunk and before the first dst address for next chunk. |
| * Ignored if dst_inc is true and dst_sgl is false. |
| * @src_icg: Number of bytes to jump after last src address of this |
| * chunk and before the first src address for next chunk. |
| * Ignored if src_inc is true and src_sgl is false. |
| */ |
| struct data_chunk { |
| size_t size; |
| size_t icg; |
| size_t dst_icg; |
| size_t src_icg; |
| }; |
| |
| /** |
| * struct dma_interleaved_template - Template to convey DMAC the transfer pattern |
| * and attributes. |
| * @src_start: Bus address of source for the first chunk. |
| * @dst_start: Bus address of destination for the first chunk. |
| * @dir: Specifies the type of Source and Destination. |
| * @src_inc: If the source address increments after reading from it. |
| * @dst_inc: If the destination address increments after writing to it. |
| * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). |
| * Otherwise, source is read contiguously (icg ignored). |
| * Ignored if src_inc is false. |
| * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). |
| * Otherwise, destination is filled contiguously (icg ignored). |
| * Ignored if dst_inc is false. |
| * @numf: Number of frames in this template. |
| * @frame_size: Number of chunks in a frame i.e, size of sgl[]. |
| * @sgl: Array of {chunk,icg} pairs that make up a frame. |
| */ |
| struct dma_interleaved_template { |
| dma_addr_t src_start; |
| dma_addr_t dst_start; |
| enum dma_transfer_direction dir; |
| bool src_inc; |
| bool dst_inc; |
| bool src_sgl; |
| bool dst_sgl; |
| size_t numf; |
| size_t frame_size; |
| struct data_chunk sgl[0]; |
| }; |
| |
| /** |
| * enum dma_ctrl_flags - DMA flags to augment operation preparation, |
| * control completion, and communicate status. |
| * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of |
| * this transaction |
| * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client |
| * acknowledges receipt, i.e. has has a chance to establish any dependency |
| * chains |
| * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q |
| * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P |
| * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as |
| * sources that were the result of a previous operation, in the case of a PQ |
| * operation it continues the calculation with new sources |
| * @DMA_PREP_FENCE - tell the driver that subsequent operations depend |
| * on the result of this operation |
| * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till |
| * cleared or freed |
| * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command |
| * data and the descriptor should be in different format from normal |
| * data descriptors. |
| */ |
| enum dma_ctrl_flags { |
| DMA_PREP_INTERRUPT = (1 << 0), |
| DMA_CTRL_ACK = (1 << 1), |
| DMA_PREP_PQ_DISABLE_P = (1 << 2), |
| DMA_PREP_PQ_DISABLE_Q = (1 << 3), |
| DMA_PREP_CONTINUE = (1 << 4), |
| DMA_PREP_FENCE = (1 << 5), |
| DMA_CTRL_REUSE = (1 << 6), |
| DMA_PREP_CMD = (1 << 7), |
| }; |
| |
| /** |
| * enum sum_check_bits - bit position of pq_check_flags |
| */ |
| enum sum_check_bits { |
| SUM_CHECK_P = 0, |
| SUM_CHECK_Q = 1, |
| }; |
| |
| /** |
| * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations |
| * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise |
| * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise |
| */ |
| enum sum_check_flags { |
| SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), |
| SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), |
| }; |
| |
| |
| /** |
| * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. |
| * See linux/cpumask.h |
| */ |
| typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; |
| |
| /** |
| * struct dma_chan_percpu - the per-CPU part of struct dma_chan |
| * @memcpy_count: transaction counter |
| * @bytes_transferred: byte counter |
| */ |
| |
| struct dma_chan_percpu { |
| /* stats */ |
| unsigned long memcpy_count; |
| unsigned long bytes_transferred; |
| }; |
| |
| /** |
| * struct dma_router - DMA router structure |
| * @dev: pointer to the DMA router device |
| * @route_free: function to be called when the route can be disconnected |
| */ |
| struct dma_router { |
| struct device *dev; |
| void (*route_free)(struct device *dev, void *route_data); |
| }; |
| |
| /** |
| * struct dma_chan - devices supply DMA channels, clients use them |
| * @device: ptr to the dma device who supplies this channel, always !%NULL |
| * @cookie: last cookie value returned to client |
| * @completed_cookie: last completed cookie for this channel |
| * @chan_id: channel ID for sysfs |
| * @dev: class device for sysfs |
| * @device_node: used to add this to the device chan list |
| * @local: per-cpu pointer to a struct dma_chan_percpu |
| * @client_count: how many clients are using this channel |
| * @table_count: number of appearances in the mem-to-mem allocation table |
| * @router: pointer to the DMA router structure |
| * @route_data: channel specific data for the router |
| * @private: private data for certain client-channel associations |
| */ |
| struct dma_chan { |
| struct dma_device *device; |
| dma_cookie_t cookie; |
| dma_cookie_t completed_cookie; |
| |
| /* sysfs */ |
| int chan_id; |
| struct dma_chan_dev *dev; |
| |
| struct list_head device_node; |
| struct dma_chan_percpu __percpu *local; |
| int client_count; |
| int table_count; |
| |
| /* DMA router */ |
| struct dma_router *router; |
| void *route_data; |
| |
| void *private; |
| }; |
| |
| /** |
| * struct dma_chan_dev - relate sysfs device node to backing channel device |
| * @chan: driver channel device |
| * @device: sysfs device |
| * @dev_id: parent dma_device dev_id |
| * @idr_ref: reference count to gate release of dma_device dev_id |
| */ |
| struct dma_chan_dev { |
| struct dma_chan *chan; |
| struct device device; |
| int dev_id; |
| atomic_t *idr_ref; |
| }; |
| |
| /** |
| * enum dma_slave_buswidth - defines bus width of the DMA slave |
| * device, source or target buses |
| */ |
| enum dma_slave_buswidth { |
| DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, |
| DMA_SLAVE_BUSWIDTH_1_BYTE = 1, |
| DMA_SLAVE_BUSWIDTH_2_BYTES = 2, |
| DMA_SLAVE_BUSWIDTH_3_BYTES = 3, |
| DMA_SLAVE_BUSWIDTH_4_BYTES = 4, |
| DMA_SLAVE_BUSWIDTH_8_BYTES = 8, |
| DMA_SLAVE_BUSWIDTH_16_BYTES = 16, |
| DMA_SLAVE_BUSWIDTH_32_BYTES = 32, |
| DMA_SLAVE_BUSWIDTH_64_BYTES = 64, |
| }; |
| |
| /** |
| * struct dma_slave_config - dma slave channel runtime config |
| * @direction: whether the data shall go in or out on this slave |
| * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are |
| * legal values. DEPRECATED, drivers should use the direction argument |
| * to the device_prep_slave_sg and device_prep_dma_cyclic functions or |
| * the dir field in the dma_interleaved_template structure. |
| * @src_addr: this is the physical address where DMA slave data |
| * should be read (RX), if the source is memory this argument is |
| * ignored. |
| * @dst_addr: this is the physical address where DMA slave data |
| * should be written (TX), if the source is memory this argument |
| * is ignored. |
| * @src_addr_width: this is the width in bytes of the source (RX) |
| * register where DMA data shall be read. If the source |
| * is memory this may be ignored depending on architecture. |
| * Legal values: 1, 2, 3, 4, 8, 16, 32, 64. |
| * @dst_addr_width: same as src_addr_width but for destination |
| * target (TX) mutatis mutandis. |
| * @src_maxburst: the maximum number of words (note: words, as in |
| * units of the src_addr_width member, not bytes) that can be sent |
| * in one burst to the device. Typically something like half the |
| * FIFO depth on I/O peripherals so you don't overflow it. This |
| * may or may not be applicable on memory sources. |
| * @dst_maxburst: same as src_maxburst but for destination target |
| * mutatis mutandis. |
| * @src_port_window_size: The length of the register area in words the data need |
| * to be accessed on the device side. It is only used for devices which is using |
| * an area instead of a single register to receive the data. Typically the DMA |
| * loops in this area in order to transfer the data. |
| * @dst_port_window_size: same as src_port_window_size but for the destination |
| * port. |
| * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill |
| * with 'true' if peripheral should be flow controller. Direction will be |
| * selected at Runtime. |
| * @slave_id: Slave requester id. Only valid for slave channels. The dma |
| * slave peripheral will have unique id as dma requester which need to be |
| * pass as slave config. |
| * |
| * This struct is passed in as configuration data to a DMA engine |
| * in order to set up a certain channel for DMA transport at runtime. |
| * The DMA device/engine has to provide support for an additional |
| * callback in the dma_device structure, device_config and this struct |
| * will then be passed in as an argument to the function. |
| * |
| * The rationale for adding configuration information to this struct is as |
| * follows: if it is likely that more than one DMA slave controllers in |
| * the world will support the configuration option, then make it generic. |
| * If not: if it is fixed so that it be sent in static from the platform |
| * data, then prefer to do that. |
| */ |
| struct dma_slave_config { |
| enum dma_transfer_direction direction; |
| phys_addr_t src_addr; |
| phys_addr_t dst_addr; |
| enum dma_slave_buswidth src_addr_width; |
| enum dma_slave_buswidth dst_addr_width; |
| u32 src_maxburst; |
| u32 dst_maxburst; |
| u32 src_port_window_size; |
| u32 dst_port_window_size; |
| bool device_fc; |
| unsigned int slave_id; |
| }; |
| |
| /** |
| * enum dma_residue_granularity - Granularity of the reported transfer residue |
| * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The |
| * DMA channel is only able to tell whether a descriptor has been completed or |
| * not, which means residue reporting is not supported by this channel. The |
| * residue field of the dma_tx_state field will always be 0. |
| * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully |
| * completed segment of the transfer (For cyclic transfers this is after each |
| * period). This is typically implemented by having the hardware generate an |
| * interrupt after each transferred segment and then the drivers updates the |
| * outstanding residue by the size of the segment. Another possibility is if |
| * the hardware supports scatter-gather and the segment descriptor has a field |
| * which gets set after the segment has been completed. The driver then counts |
| * the number of segments without the flag set to compute the residue. |
| * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred |
| * burst. This is typically only supported if the hardware has a progress |
| * register of some sort (E.g. a register with the current read/write address |
| * or a register with the amount of bursts/beats/bytes that have been |
| * transferred or still need to be transferred). |
| */ |
| enum dma_residue_granularity { |
| DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, |
| DMA_RESIDUE_GRANULARITY_SEGMENT = 1, |
| DMA_RESIDUE_GRANULARITY_BURST = 2, |
| }; |
| |
| /** |
| * struct dma_slave_caps - expose capabilities of a slave channel only |
| * @src_addr_widths: bit mask of src addr widths the channel supports. |
| * Width is specified in bytes, e.g. for a channel supporting |
| * a width of 4 the mask should have BIT(4) set. |
| * @dst_addr_widths: bit mask of dst addr widths the channel supports |
| * @directions: bit mask of slave directions the channel supports. |
| * Since the enum dma_transfer_direction is not defined as bit flag for |
| * each type, the dma controller should set BIT(<TYPE>) and same |
| * should be checked by controller as well |
| * @max_burst: max burst capability per-transfer |
| * @cmd_pause: true, if pause is supported (i.e. for reading residue or |
| * for resume later) |
| * @cmd_resume: true, if resume is supported |
| * @cmd_terminate: true, if terminate cmd is supported |
| * @residue_granularity: granularity of the reported transfer residue |
| * @descriptor_reuse: if a descriptor can be reused by client and |
| * resubmitted multiple times |
| */ |
| struct dma_slave_caps { |
| u32 src_addr_widths; |
| u32 dst_addr_widths; |
| u32 directions; |
| u32 max_burst; |
| bool cmd_pause; |
| bool cmd_resume; |
| bool cmd_terminate; |
| enum dma_residue_granularity residue_granularity; |
| bool descriptor_reuse; |
| }; |
| |
| static inline const char *dma_chan_name(struct dma_chan *chan) |
| { |
| return dev_name(&chan->dev->device); |
| } |
| |
| void dma_chan_cleanup(struct kref *kref); |
| |
| /** |
| * typedef dma_filter_fn - callback filter for dma_request_channel |
| * @chan: channel to be reviewed |
| * @filter_param: opaque parameter passed through dma_request_channel |
| * |
| * When this optional parameter is specified in a call to dma_request_channel a |
| * suitable channel is passed to this routine for further dispositioning before |
| * being returned. Where 'suitable' indicates a non-busy channel that |
| * satisfies the given capability mask. It returns 'true' to indicate that the |
| * channel is suitable. |
| */ |
| typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); |
| |
| typedef void (*dma_async_tx_callback)(void *dma_async_param); |
| |
| enum dmaengine_tx_result { |
| DMA_TRANS_NOERROR = 0, /* SUCCESS */ |
| DMA_TRANS_READ_FAILED, /* Source DMA read failed */ |
| DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */ |
| DMA_TRANS_ABORTED, /* Op never submitted / aborted */ |
| }; |
| |
| struct dmaengine_result { |
| enum dmaengine_tx_result result; |
| u32 residue; |
| }; |
| |
| typedef void (*dma_async_tx_callback_result)(void *dma_async_param, |
| const struct dmaengine_result *result); |
| |
| struct dmaengine_unmap_data { |
| #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) |
| u16 map_cnt; |
| #else |
| u8 map_cnt; |
| #endif |
| u8 to_cnt; |
| u8 from_cnt; |
| u8 bidi_cnt; |
| struct device *dev; |
| struct kref kref; |
| size_t len; |
| dma_addr_t addr[0]; |
| }; |
| |
| /** |
| * struct dma_async_tx_descriptor - async transaction descriptor |
| * ---dma generic offload fields--- |
| * @cookie: tracking cookie for this transaction, set to -EBUSY if |
| * this tx is sitting on a dependency list |
| * @flags: flags to augment operation preparation, control completion, and |
| * communicate status |
| * @phys: physical address of the descriptor |
| * @chan: target channel for this operation |
| * @tx_submit: accept the descriptor, assign ordered cookie and mark the |
| * descriptor pending. To be pushed on .issue_pending() call |
| * @callback: routine to call after this operation is complete |
| * @callback_param: general parameter to pass to the callback routine |
| * ---async_tx api specific fields--- |
| * @next: at completion submit this descriptor |
| * @parent: pointer to the next level up in the dependency chain |
| * @lock: protect the parent and next pointers |
| */ |
| struct dma_async_tx_descriptor { |
| dma_cookie_t cookie; |
| enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ |
| dma_addr_t phys; |
| struct dma_chan *chan; |
| dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); |
| int (*desc_free)(struct dma_async_tx_descriptor *tx); |
| dma_async_tx_callback callback; |
| dma_async_tx_callback_result callback_result; |
| void *callback_param; |
| struct dmaengine_unmap_data *unmap; |
| #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH |
| struct dma_async_tx_descriptor *next; |
| struct dma_async_tx_descriptor *parent; |
| spinlock_t lock; |
| #endif |
| }; |
| |
| #ifdef CONFIG_DMA_ENGINE |
| static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, |
| struct dmaengine_unmap_data *unmap) |
| { |
| kref_get(&unmap->kref); |
| tx->unmap = unmap; |
| } |
| |
| struct dmaengine_unmap_data * |
| dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); |
| void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); |
| #else |
| static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, |
| struct dmaengine_unmap_data *unmap) |
| { |
| } |
| static inline struct dmaengine_unmap_data * |
| dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) |
| { |
| return NULL; |
| } |
| static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) |
| { |
| } |
| #endif |
| |
| static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) |
| { |
| if (tx->unmap) { |
| dmaengine_unmap_put(tx->unmap); |
| tx->unmap = NULL; |
| } |
| } |
| |
| #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH |
| static inline void txd_lock(struct dma_async_tx_descriptor *txd) |
| { |
| } |
| static inline void txd_unlock(struct dma_async_tx_descriptor *txd) |
| { |
| } |
| static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) |
| { |
| BUG(); |
| } |
| static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) |
| { |
| } |
| static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) |
| { |
| } |
| static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) |
| { |
| return NULL; |
| } |
| static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) |
| { |
| return NULL; |
| } |
| |
| #else |
| static inline void txd_lock(struct dma_async_tx_descriptor *txd) |
| { |
| spin_lock_bh(&txd->lock); |
| } |
| static inline void txd_unlock(struct dma_async_tx_descriptor *txd) |
| { |
| spin_unlock_bh(&txd->lock); |
| } |
| static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) |
| { |
| txd->next = next; |
| next->parent = txd; |
| } |
| static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) |
| { |
| txd->parent = NULL; |
| } |
| static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) |
| { |
| txd->next = NULL; |
| } |
| static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) |
| { |
| return txd->parent; |
| } |
| static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) |
| { |
| return txd->next; |
| } |
| #endif |
| |
| /** |
| * struct dma_tx_state - filled in to report the status of |
| * a transfer. |
| * @last: last completed DMA cookie |
| * @used: last issued DMA cookie (i.e. the one in progress) |
| * @residue: the remaining number of bytes left to transmit |
| * on the selected transfer for states DMA_IN_PROGRESS and |
| * DMA_PAUSED if this is implemented in the driver, else 0 |
| */ |
| struct dma_tx_state { |
| dma_cookie_t last; |
| dma_cookie_t used; |
| u32 residue; |
| }; |
| |
| /** |
| * enum dmaengine_alignment - defines alignment of the DMA async tx |
| * buffers |
| */ |
| enum dmaengine_alignment { |
| DMAENGINE_ALIGN_1_BYTE = 0, |
| DMAENGINE_ALIGN_2_BYTES = 1, |
| DMAENGINE_ALIGN_4_BYTES = 2, |
| DMAENGINE_ALIGN_8_BYTES = 3, |
| DMAENGINE_ALIGN_16_BYTES = 4, |
| DMAENGINE_ALIGN_32_BYTES = 5, |
| DMAENGINE_ALIGN_64_BYTES = 6, |
| }; |
| |
| /** |
| * struct dma_slave_map - associates slave device and it's slave channel with |
| * parameter to be used by a filter function |
| * @devname: name of the device |
| * @slave: slave channel name |
| * @param: opaque parameter to pass to struct dma_filter.fn |
| */ |
| struct dma_slave_map { |
| const char *devname; |
| const char *slave; |
| void *param; |
| }; |
| |
| /** |
| * struct dma_filter - information for slave device/channel to filter_fn/param |
| * mapping |
| * @fn: filter function callback |
| * @mapcnt: number of slave device/channel in the map |
| * @map: array of channel to filter mapping data |
| */ |
| struct dma_filter { |
| dma_filter_fn fn; |
| int mapcnt; |
| const struct dma_slave_map *map; |
| }; |
| |
| /** |
| * struct dma_device - info on the entity supplying DMA services |
| * @chancnt: how many DMA channels are supported |
| * @privatecnt: how many DMA channels are requested by dma_request_channel |
| * @channels: the list of struct dma_chan |
| * @global_node: list_head for global dma_device_list |
| * @filter: information for device/slave to filter function/param mapping |
| * @cap_mask: one or more dma_capability flags |
| * @max_xor: maximum number of xor sources, 0 if no capability |
| * @max_pq: maximum number of PQ sources and PQ-continue capability |
| * @copy_align: alignment shift for memcpy operations |
| * @xor_align: alignment shift for xor operations |
| * @pq_align: alignment shift for pq operations |
| * @fill_align: alignment shift for memset operations |
| * @dev_id: unique device ID |
| * @dev: struct device reference for dma mapping api |
| * @src_addr_widths: bit mask of src addr widths the device supports |
| * Width is specified in bytes, e.g. for a device supporting |
| * a width of 4 the mask should have BIT(4) set. |
| * @dst_addr_widths: bit mask of dst addr widths the device supports |
| * @directions: bit mask of slave directions the device supports. |
| * Since the enum dma_transfer_direction is not defined as bit flag for |
| * each type, the dma controller should set BIT(<TYPE>) and same |
| * should be checked by controller as well |
| * @max_burst: max burst capability per-transfer |
| * @residue_granularity: granularity of the transfer residue reported |
| * by tx_status |
| * @device_alloc_chan_resources: allocate resources and return the |
| * number of allocated descriptors |
| * @device_free_chan_resources: release DMA channel's resources |
| * @device_prep_dma_memcpy: prepares a memcpy operation |
| * @device_prep_dma_xor: prepares a xor operation |
| * @device_prep_dma_xor_val: prepares a xor validation operation |
| * @device_prep_dma_pq: prepares a pq operation |
| * @device_prep_dma_pq_val: prepares a pqzero_sum operation |
| * @device_prep_dma_memset: prepares a memset operation |
| * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list |
| * @device_prep_dma_interrupt: prepares an end of chain interrupt operation |
| * @device_prep_slave_sg: prepares a slave dma operation |
| * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. |
| * The function takes a buffer of size buf_len. The callback function will |
| * be called after period_len bytes have been transferred. |
| * @device_prep_interleaved_dma: Transfer expression in a generic way. |
| * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address |
| * @device_config: Pushes a new configuration to a channel, return 0 or an error |
| * code |
| * @device_pause: Pauses any transfer happening on a channel. Returns |
| * 0 or an error code |
| * @device_resume: Resumes any transfer on a channel previously |
| * paused. Returns 0 or an error code |
| * @device_terminate_all: Aborts all transfers on a channel. Returns 0 |
| * or an error code |
| * @device_synchronize: Synchronizes the termination of a transfers to the |
| * current context. |
| * @device_tx_status: poll for transaction completion, the optional |
| * txstate parameter can be supplied with a pointer to get a |
| * struct with auxiliary transfer status information, otherwise the call |
| * will just return a simple status code |
| * @device_issue_pending: push pending transactions to hardware |
| * @descriptor_reuse: a submitted transfer can be resubmitted after completion |
| */ |
| struct dma_device { |
| |
| unsigned int chancnt; |
| unsigned int privatecnt; |
| struct list_head channels; |
| struct list_head global_node; |
| struct dma_filter filter; |
| dma_cap_mask_t cap_mask; |
| unsigned short max_xor; |
| unsigned short max_pq; |
| enum dmaengine_alignment copy_align; |
| enum dmaengine_alignment xor_align; |
| enum dmaengine_alignment pq_align; |
| enum dmaengine_alignment fill_align; |
| #define DMA_HAS_PQ_CONTINUE (1 << 15) |
| |
| int dev_id; |
| struct device *dev; |
| |
| u32 src_addr_widths; |
| u32 dst_addr_widths; |
| u32 directions; |
| u32 max_burst; |
| bool descriptor_reuse; |
| enum dma_residue_granularity residue_granularity; |
| |
| int (*device_alloc_chan_resources)(struct dma_chan *chan); |
| void (*device_free_chan_resources)(struct dma_chan *chan); |
| |
| struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( |
| struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, |
| size_t len, unsigned long flags); |
| struct dma_async_tx_descriptor *(*device_prep_dma_xor)( |
| struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, |
| unsigned int src_cnt, size_t len, unsigned long flags); |
| struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( |
| struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, |
| size_t len, enum sum_check_flags *result, unsigned long flags); |
| struct dma_async_tx_descriptor *(*device_prep_dma_pq)( |
| struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, |
| unsigned int src_cnt, const unsigned char *scf, |
| size_t len, unsigned long flags); |
| struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( |
| struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, |
| unsigned int src_cnt, const unsigned char *scf, size_t len, |
| enum sum_check_flags *pqres, unsigned long flags); |
| struct dma_async_tx_descriptor *(*device_prep_dma_memset)( |
| struct dma_chan *chan, dma_addr_t dest, int value, size_t len, |
| unsigned long flags); |
| struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)( |
| struct dma_chan *chan, struct scatterlist *sg, |
| unsigned int nents, int value, unsigned long flags); |
| struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( |
| struct dma_chan *chan, unsigned long flags); |
| |
| struct dma_async_tx_descriptor *(*device_prep_slave_sg)( |
| struct dma_chan *chan, struct scatterlist *sgl, |
| unsigned int sg_len, enum dma_transfer_direction direction, |
| unsigned long flags, void *context); |
| struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( |
| struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, |
| size_t period_len, enum dma_transfer_direction direction, |
| unsigned long flags); |
| struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( |
| struct dma_chan *chan, struct dma_interleaved_template *xt, |
| unsigned long flags); |
| struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)( |
| struct dma_chan *chan, dma_addr_t dst, u64 data, |
| unsigned long flags); |
| |
| int (*device_config)(struct dma_chan *chan, |
| struct dma_slave_config *config); |
| int (*device_pause)(struct dma_chan *chan); |
| int (*device_resume)(struct dma_chan *chan); |
| int (*device_terminate_all)(struct dma_chan *chan); |
| void (*device_synchronize)(struct dma_chan *chan); |
| |
| enum dma_status (*device_tx_status)(struct dma_chan *chan, |
| dma_cookie_t cookie, |
| struct dma_tx_state *txstate); |
| void (*device_issue_pending)(struct dma_chan *chan); |
| }; |
| |
| static inline int dmaengine_slave_config(struct dma_chan *chan, |
| struct dma_slave_config *config) |
| { |
| if (chan->device->device_config) |
| return chan->device->device_config(chan, config); |
| |
| return -ENOSYS; |
| } |
| |
| static inline bool is_slave_direction(enum dma_transfer_direction direction) |
| { |
| return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); |
| } |
| |
| static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( |
| struct dma_chan *chan, dma_addr_t buf, size_t len, |
| enum dma_transfer_direction dir, unsigned long flags) |
| { |
| struct scatterlist sg; |
| sg_init_table(&sg, 1); |
| sg_dma_address(&sg) = buf; |
| sg_dma_len(&sg) = len; |
| |
| if (!chan || !chan->device || !chan->device->device_prep_slave_sg) |
| return NULL; |
| |
| return chan->device->device_prep_slave_sg(chan, &sg, 1, |
| dir, flags, NULL); |
| } |
| |
| static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( |
| struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, |
| enum dma_transfer_direction dir, unsigned long flags) |
| { |
| if (!chan || !chan->device || !chan->device->device_prep_slave_sg) |
| return NULL; |
| |
| return chan->device->device_prep_slave_sg(chan, sgl, sg_len, |
| dir, flags, NULL); |
| } |
| |
| #ifdef CONFIG_RAPIDIO_DMA_ENGINE |
| struct rio_dma_ext; |
| static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( |
| struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, |
| enum dma_transfer_direction dir, unsigned long flags, |
| struct rio_dma_ext *rio_ext) |
| { |
| if (!chan || !chan->device || !chan->device->device_prep_slave_sg) |
| return NULL; |
| |
| return chan->device->device_prep_slave_sg(chan, sgl, sg_len, |
| dir, flags, rio_ext); |
| } |
| #endif |
| |
| static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( |
| struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, |
| size_t period_len, enum dma_transfer_direction dir, |
| unsigned long flags) |
| { |
| if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic) |
| return NULL; |
| |
| return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, |
| period_len, dir, flags); |
| } |
| |
| static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( |
| struct dma_chan *chan, struct dma_interleaved_template *xt, |
| unsigned long flags) |
| { |
| if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma) |
| return NULL; |
| |
| return chan->device->device_prep_interleaved_dma(chan, xt, flags); |
| } |
| |
| static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset( |
| struct dma_chan *chan, dma_addr_t dest, int value, size_t len, |
| unsigned long flags) |
| { |
| if (!chan || !chan->device || !chan->device->device_prep_dma_memset) |
| return NULL; |
| |
| return chan->device->device_prep_dma_memset(chan, dest, value, |
| len, flags); |
| } |
| |
| static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy( |
| struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, |
| size_t len, unsigned long flags) |
| { |
| if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy) |
| return NULL; |
| |
| return chan->device->device_prep_dma_memcpy(chan, dest, src, |
| len, flags); |
| } |
| |
| /** |
| * dmaengine_terminate_all() - Terminate all active DMA transfers |
| * @chan: The channel for which to terminate the transfers |
| * |
| * This function is DEPRECATED use either dmaengine_terminate_sync() or |
| * dmaengine_terminate_async() instead. |
| */ |
| static inline int dmaengine_terminate_all(struct dma_chan *chan) |
| { |
| if (chan->device->device_terminate_all) |
| return chan->device->device_terminate_all(chan); |
| |
| return -ENOSYS; |
| } |
| |
| /** |
| * dmaengine_terminate_async() - Terminate all active DMA transfers |
| * @chan: The channel for which to terminate the transfers |
| * |
| * Calling this function will terminate all active and pending descriptors |
| * that have previously been submitted to the channel. It is not guaranteed |
| * though that the transfer for the active descriptor has stopped when the |
| * function returns. Furthermore it is possible the complete callback of a |
| * submitted transfer is still running when this function returns. |
| * |
| * dmaengine_synchronize() needs to be called before it is safe to free |
| * any memory that is accessed by previously submitted descriptors or before |
| * freeing any resources accessed from within the completion callback of any |
| * perviously submitted descriptors. |
| * |
| * This function can be called from atomic context as well as from within a |
| * complete callback of a descriptor submitted on the same channel. |
| * |
| * If none of the two conditions above apply consider using |
| * dmaengine_terminate_sync() instead. |
| */ |
| static inline int dmaengine_terminate_async(struct dma_chan *chan) |
| { |
| if (chan->device->device_terminate_all) |
| return chan->device->device_terminate_all(chan); |
| |
| return -EINVAL; |
| } |
| |
| /** |
| * dmaengine_synchronize() - Synchronize DMA channel termination |
| * @chan: The channel to synchronize |
| * |
| * Synchronizes to the DMA channel termination to the current context. When this |
| * function returns it is guaranteed that all transfers for previously issued |
| * descriptors have stopped and and it is safe to free the memory assoicated |
| * with them. Furthermore it is guaranteed that all complete callback functions |
| * for a previously submitted descriptor have finished running and it is safe to |
| * free resources accessed from within the complete callbacks. |
| * |
| * The behavior of this function is undefined if dma_async_issue_pending() has |
| * been called between dmaengine_terminate_async() and this function. |
| * |
| * This function must only be called from non-atomic context and must not be |
| * called from within a complete callback of a descriptor submitted on the same |
| * channel. |
| */ |
| static inline void dmaengine_synchronize(struct dma_chan *chan) |
| { |
| might_sleep(); |
| |
| if (chan->device->device_synchronize) |
| chan->device->device_synchronize(chan); |
| } |
| |
| /** |
| * dmaengine_terminate_sync() - Terminate all active DMA transfers |
| * @chan: The channel for which to terminate the transfers |
| * |
| * Calling this function will terminate all active and pending transfers |
| * that have previously been submitted to the channel. It is similar to |
| * dmaengine_terminate_async() but guarantees that the DMA transfer has actually |
| * stopped and that all complete callbacks have finished running when the |
| * function returns. |
| * |
| * This function must only be called from non-atomic context and must not be |
| * called from within a complete callback of a descriptor submitted on the same |
| * channel. |
| */ |
| static inline int dmaengine_terminate_sync(struct dma_chan *chan) |
| { |
| int ret; |
| |
| ret = dmaengine_terminate_async(chan); |
| if (ret) |
| return ret; |
| |
| dmaengine_synchronize(chan); |
| |
| return 0; |
| } |
| |
| static inline int dmaengine_pause(struct dma_chan *chan) |
| { |
| if (chan->device->device_pause) |
| return chan->device->device_pause(chan); |
| |
| return -ENOSYS; |
| } |
| |
| static inline int dmaengine_resume(struct dma_chan *chan) |
| { |
| if (chan->device->device_resume) |
| return chan->device->device_resume(chan); |
| |
| return -ENOSYS; |
| } |
| |
| static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, struct dma_tx_state *state) |
| { |
| return chan->device->device_tx_status(chan, cookie, state); |
| } |
| |
| static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) |
| { |
| return desc->tx_submit(desc); |
| } |
| |
| static inline bool dmaengine_check_align(enum dmaengine_alignment align, |
| size_t off1, size_t off2, size_t len) |
| { |
| size_t mask; |
| |
| if (!align) |
| return true; |
| mask = (1 << align) - 1; |
| if (mask & (off1 | off2 | len)) |
| return false; |
| return true; |
| } |
| |
| static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, |
| size_t off2, size_t len) |
| { |
| return dmaengine_check_align(dev->copy_align, off1, off2, len); |
| } |
| |
| static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, |
| size_t off2, size_t len) |
| { |
| return dmaengine_check_align(dev->xor_align, off1, off2, len); |
| } |
| |
| static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, |
| size_t off2, size_t len) |
| { |
| return dmaengine_check_align(dev->pq_align, off1, off2, len); |
| } |
| |
| static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, |
| size_t off2, size_t len) |
| { |
| return dmaengine_check_align(dev->fill_align, off1, off2, len); |
| } |
| |
| static inline void |
| dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) |
| { |
| dma->max_pq = maxpq; |
| if (has_pq_continue) |
| dma->max_pq |= DMA_HAS_PQ_CONTINUE; |
| } |
| |
| static inline bool dmaf_continue(enum dma_ctrl_flags flags) |
| { |
| return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; |
| } |
| |
| static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) |
| { |
| enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; |
| |
| return (flags & mask) == mask; |
| } |
| |
| static inline bool dma_dev_has_pq_continue(struct dma_device *dma) |
| { |
| return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; |
| } |
| |
| static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) |
| { |
| return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; |
| } |
| |
| /* dma_maxpq - reduce maxpq in the face of continued operations |
| * @dma - dma device with PQ capability |
| * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set |
| * |
| * When an engine does not support native continuation we need 3 extra |
| * source slots to reuse P and Q with the following coefficients: |
| * 1/ {00} * P : remove P from Q', but use it as a source for P' |
| * 2/ {01} * Q : use Q to continue Q' calculation |
| * 3/ {00} * Q : subtract Q from P' to cancel (2) |
| * |
| * In the case where P is disabled we only need 1 extra source: |
| * 1/ {01} * Q : use Q to continue Q' calculation |
| */ |
| static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) |
| { |
| if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) |
| return dma_dev_to_maxpq(dma); |
| else if (dmaf_p_disabled_continue(flags)) |
| return dma_dev_to_maxpq(dma) - 1; |
| else if (dmaf_continue(flags)) |
| return dma_dev_to_maxpq(dma) - 3; |
| BUG(); |
| } |
| |
| static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, |
| size_t dir_icg) |
| { |
| if (inc) { |
| if (dir_icg) |
| return dir_icg; |
| else if (sgl) |
| return icg; |
| } |
| |
| return 0; |
| } |
| |
| static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, |
| struct data_chunk *chunk) |
| { |
| return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl, |
| chunk->icg, chunk->dst_icg); |
| } |
| |
| static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, |
| struct data_chunk *chunk) |
| { |
| return dmaengine_get_icg(xt->src_inc, xt->src_sgl, |
| chunk->icg, chunk->src_icg); |
| } |
| |
| /* --- public DMA engine API --- */ |
| |
| #ifdef CONFIG_DMA_ENGINE |
| void dmaengine_get(void); |
| void dmaengine_put(void); |
| #else |
| static inline void dmaengine_get(void) |
| { |
| } |
| static inline void dmaengine_put(void) |
| { |
| } |
| #endif |
| |
| #ifdef CONFIG_ASYNC_TX_DMA |
| #define async_dmaengine_get() dmaengine_get() |
| #define async_dmaengine_put() dmaengine_put() |
| #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH |
| #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) |
| #else |
| #define async_dma_find_channel(type) dma_find_channel(type) |
| #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ |
| #else |
| static inline void async_dmaengine_get(void) |
| { |
| } |
| static inline void async_dmaengine_put(void) |
| { |
| } |
| static inline struct dma_chan * |
| async_dma_find_channel(enum dma_transaction_type type) |
| { |
| return NULL; |
| } |
| #endif /* CONFIG_ASYNC_TX_DMA */ |
| void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, |
| struct dma_chan *chan); |
| |
| static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) |
| { |
| tx->flags |= DMA_CTRL_ACK; |
| } |
| |
| static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) |
| { |
| tx->flags &= ~DMA_CTRL_ACK; |
| } |
| |
| static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) |
| { |
| return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; |
| } |
| |
| #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) |
| static inline void |
| __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) |
| { |
| set_bit(tx_type, dstp->bits); |
| } |
| |
| #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) |
| static inline void |
| __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) |
| { |
| clear_bit(tx_type, dstp->bits); |
| } |
| |
| #define dma_cap_zero(mask) __dma_cap_zero(&(mask)) |
| static inline void __dma_cap_zero(dma_cap_mask_t *dstp) |
| { |
| bitmap_zero(dstp->bits, DMA_TX_TYPE_END); |
| } |
| |
| #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) |
| static inline int |
| __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) |
| { |
| return test_bit(tx_type, srcp->bits); |
| } |
| |
| #define for_each_dma_cap_mask(cap, mask) \ |
| for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) |
| |
| /** |
| * dma_async_issue_pending - flush pending transactions to HW |
| * @chan: target DMA channel |
| * |
| * This allows drivers to push copies to HW in batches, |
| * reducing MMIO writes where possible. |
| */ |
| static inline void dma_async_issue_pending(struct dma_chan *chan) |
| { |
| chan->device->device_issue_pending(chan); |
| } |
| |
| /** |
| * dma_async_is_tx_complete - poll for transaction completion |
| * @chan: DMA channel |
| * @cookie: transaction identifier to check status of |
| * @last: returns last completed cookie, can be NULL |
| * @used: returns last issued cookie, can be NULL |
| * |
| * If @last and @used are passed in, upon return they reflect the driver |
| * internal state and can be used with dma_async_is_complete() to check |
| * the status of multiple cookies without re-checking hardware state. |
| */ |
| static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, |
| dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) |
| { |
| struct dma_tx_state state; |
| enum dma_status status; |
| |
| status = chan->device->device_tx_status(chan, cookie, &state); |
| if (last) |
| *last = state.last; |
| if (used) |
| *used = state.used; |
| return status; |
| } |
| |
| /** |
| * dma_async_is_complete - test a cookie against chan state |
| * @cookie: transaction identifier to test status of |
| * @last_complete: last know completed transaction |
| * @last_used: last cookie value handed out |
| * |
| * dma_async_is_complete() is used in dma_async_is_tx_complete() |
| * the test logic is separated for lightweight testing of multiple cookies |
| */ |
| static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, |
| dma_cookie_t last_complete, dma_cookie_t last_used) |
| { |
| if (last_complete <= last_used) { |
| if ((cookie <= last_complete) || (cookie > last_used)) |
| return DMA_COMPLETE; |
| } else { |
| if ((cookie <= last_complete) && (cookie > last_used)) |
| return DMA_COMPLETE; |
| } |
| return DMA_IN_PROGRESS; |
| } |
| |
| static inline void |
| dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) |
| { |
| if (st) { |
| st->last = last; |
| st->used = used; |
| st->residue = residue; |
| } |
| } |
| |
| #ifdef CONFIG_DMA_ENGINE |
| struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); |
| enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); |
| enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); |
| void dma_issue_pending_all(void); |
| struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, |
| dma_filter_fn fn, void *fn_param); |
| struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name); |
| |
| struct dma_chan *dma_request_chan(struct device *dev, const char *name); |
| struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask); |
| |
| void dma_release_channel(struct dma_chan *chan); |
| int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); |
| #else |
| static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) |
| { |
| return NULL; |
| } |
| static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) |
| { |
| return DMA_COMPLETE; |
| } |
| static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) |
| { |
| return DMA_COMPLETE; |
| } |
| static inline void dma_issue_pending_all(void) |
| { |
| } |
| static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, |
| dma_filter_fn fn, void *fn_param) |
| { |
| return NULL; |
| } |
| static inline struct dma_chan *dma_request_slave_channel(struct device *dev, |
| const char *name) |
| { |
| return NULL; |
| } |
| static inline struct dma_chan *dma_request_chan(struct device *dev, |
| const char *name) |
| { |
| return ERR_PTR(-ENODEV); |
| } |
| static inline struct dma_chan *dma_request_chan_by_mask( |
| const dma_cap_mask_t *mask) |
| { |
| return ERR_PTR(-ENODEV); |
| } |
| static inline void dma_release_channel(struct dma_chan *chan) |
| { |
| } |
| static inline int dma_get_slave_caps(struct dma_chan *chan, |
| struct dma_slave_caps *caps) |
| { |
| return -ENXIO; |
| } |
| #endif |
| |
| #define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name) |
| |
| static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx) |
| { |
| struct dma_slave_caps caps; |
| |
| dma_get_slave_caps(tx->chan, &caps); |
| |
| if (caps.descriptor_reuse) { |
| tx->flags |= DMA_CTRL_REUSE; |
| return 0; |
| } else { |
| return -EPERM; |
| } |
| } |
| |
| static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx) |
| { |
| tx->flags &= ~DMA_CTRL_REUSE; |
| } |
| |
| static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx) |
| { |
| return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE; |
| } |
| |
| static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc) |
| { |
| /* this is supported for reusable desc, so check that */ |
| if (dmaengine_desc_test_reuse(desc)) |
| return desc->desc_free(desc); |
| else |
| return -EPERM; |
| } |
| |
| /* --- DMA device --- */ |
| |
| int dma_async_device_register(struct dma_device *device); |
| int dmaenginem_async_device_register(struct dma_device *device); |
| void dma_async_device_unregister(struct dma_device *device); |
| void dma_run_dependencies(struct dma_async_tx_descriptor *tx); |
| struct dma_chan *dma_get_slave_channel(struct dma_chan *chan); |
| struct dma_chan *dma_get_any_slave_channel(struct dma_device *device); |
| #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) |
| #define dma_request_slave_channel_compat(mask, x, y, dev, name) \ |
| __dma_request_slave_channel_compat(&(mask), x, y, dev, name) |
| |
| static inline struct dma_chan |
| *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask, |
| dma_filter_fn fn, void *fn_param, |
| struct device *dev, const char *name) |
| { |
| struct dma_chan *chan; |
| |
| chan = dma_request_slave_channel(dev, name); |
| if (chan) |
| return chan; |
| |
| if (!fn || !fn_param) |
| return NULL; |
| |
| return __dma_request_channel(mask, fn, fn_param); |
| } |
| #endif /* DMAENGINE_H */ |