| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Mellanox BlueField I2C bus driver |
| * |
| * Copyright (C) 2020 Mellanox Technologies, Ltd. |
| */ |
| |
| #include <linux/acpi.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/i2c.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/string.h> |
| |
| /* Defines what functionality is present. */ |
| #define MLXBF_I2C_FUNC_SMBUS_BLOCK \ |
| (I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL) |
| |
| #define MLXBF_I2C_FUNC_SMBUS_DEFAULT \ |
| (I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA | \ |
| I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK | \ |
| I2C_FUNC_SMBUS_PROC_CALL) |
| |
| #define MLXBF_I2C_FUNC_ALL \ |
| (MLXBF_I2C_FUNC_SMBUS_DEFAULT | MLXBF_I2C_FUNC_SMBUS_BLOCK | \ |
| I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SLAVE) |
| |
| #define MLXBF_I2C_SMBUS_MAX 3 |
| |
| /* Shared resources info in BlueField platforms. */ |
| |
| #define MLXBF_I2C_COALESCE_TYU_ADDR 0x02801300 |
| #define MLXBF_I2C_COALESCE_TYU_SIZE 0x010 |
| |
| #define MLXBF_I2C_GPIO_TYU_ADDR 0x02802000 |
| #define MLXBF_I2C_GPIO_TYU_SIZE 0x100 |
| |
| #define MLXBF_I2C_COREPLL_TYU_ADDR 0x02800358 |
| #define MLXBF_I2C_COREPLL_TYU_SIZE 0x008 |
| |
| #define MLXBF_I2C_COREPLL_YU_ADDR 0x02800c30 |
| #define MLXBF_I2C_COREPLL_YU_SIZE 0x00c |
| |
| #define MLXBF_I2C_SHARED_RES_MAX 3 |
| |
| /* |
| * Note that the following SMBus, CAUSE, GPIO and PLL register addresses |
| * refer to their respective offsets relative to the corresponding |
| * memory-mapped region whose addresses are specified in either the DT or |
| * the ACPI tables or above. |
| */ |
| |
| /* |
| * SMBus Master core clock frequency. Timing configurations are |
| * strongly dependent on the core clock frequency of the SMBus |
| * Master. Default value is set to 400MHz. |
| */ |
| #define MLXBF_I2C_TYU_PLL_OUT_FREQ (400 * 1000 * 1000) |
| /* Reference clock for Bluefield 1 - 156 MHz. */ |
| #define MLXBF_I2C_TYU_PLL_IN_FREQ (156 * 1000 * 1000) |
| /* Reference clock for BlueField 2 - 200 MHz. */ |
| #define MLXBF_I2C_YU_PLL_IN_FREQ (200 * 1000 * 1000) |
| |
| /* Constant used to determine the PLL frequency. */ |
| #define MLNXBF_I2C_COREPLL_CONST 16384 |
| |
| /* PLL registers. */ |
| #define MLXBF_I2C_CORE_PLL_REG0 0x0 |
| #define MLXBF_I2C_CORE_PLL_REG1 0x4 |
| #define MLXBF_I2C_CORE_PLL_REG2 0x8 |
| |
| /* OR cause register. */ |
| #define MLXBF_I2C_CAUSE_OR_EVTEN0 0x14 |
| #define MLXBF_I2C_CAUSE_OR_CLEAR 0x18 |
| |
| /* Arbiter Cause Register. */ |
| #define MLXBF_I2C_CAUSE_ARBITER 0x1c |
| |
| /* |
| * Cause Status flags. Note that those bits might be considered |
| * as interrupt enabled bits. |
| */ |
| |
| /* Transaction ended with STOP. */ |
| #define MLXBF_I2C_CAUSE_TRANSACTION_ENDED BIT(0) |
| /* Master arbitration lost. */ |
| #define MLXBF_I2C_CAUSE_M_ARBITRATION_LOST BIT(1) |
| /* Unexpected start detected. */ |
| #define MLXBF_I2C_CAUSE_UNEXPECTED_START BIT(2) |
| /* Unexpected stop detected. */ |
| #define MLXBF_I2C_CAUSE_UNEXPECTED_STOP BIT(3) |
| /* Wait for transfer continuation. */ |
| #define MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA BIT(4) |
| /* Failed to generate STOP. */ |
| #define MLXBF_I2C_CAUSE_PUT_STOP_FAILED BIT(5) |
| /* Failed to generate START. */ |
| #define MLXBF_I2C_CAUSE_PUT_START_FAILED BIT(6) |
| /* Clock toggle completed. */ |
| #define MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE BIT(7) |
| /* Transfer timeout occurred. */ |
| #define MLXBF_I2C_CAUSE_M_FW_TIMEOUT BIT(8) |
| /* Master busy bit reset. */ |
| #define MLXBF_I2C_CAUSE_M_GW_BUSY_FALL BIT(9) |
| |
| #define MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK GENMASK(9, 0) |
| |
| #define MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR \ |
| (MLXBF_I2C_CAUSE_M_ARBITRATION_LOST | \ |
| MLXBF_I2C_CAUSE_UNEXPECTED_START | \ |
| MLXBF_I2C_CAUSE_UNEXPECTED_STOP | \ |
| MLXBF_I2C_CAUSE_PUT_STOP_FAILED | \ |
| MLXBF_I2C_CAUSE_PUT_START_FAILED | \ |
| MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE | \ |
| MLXBF_I2C_CAUSE_M_FW_TIMEOUT) |
| |
| /* |
| * Slave cause status flags. Note that those bits might be considered |
| * as interrupt enabled bits. |
| */ |
| |
| /* Write transaction received successfully. */ |
| #define MLXBF_I2C_CAUSE_WRITE_SUCCESS BIT(0) |
| /* Read transaction received, waiting for response. */ |
| #define MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE BIT(13) |
| /* Slave busy bit reset. */ |
| #define MLXBF_I2C_CAUSE_S_GW_BUSY_FALL BIT(18) |
| |
| #define MLXBF_I2C_CAUSE_SLAVE_ARBITER_BITS_MASK GENMASK(20, 0) |
| |
| /* Cause coalesce registers. */ |
| #define MLXBF_I2C_CAUSE_COALESCE_0 0x00 |
| #define MLXBF_I2C_CAUSE_COALESCE_1 0x04 |
| #define MLXBF_I2C_CAUSE_COALESCE_2 0x08 |
| |
| #define MLXBF_I2C_CAUSE_TYU_SLAVE_BIT MLXBF_I2C_SMBUS_MAX |
| #define MLXBF_I2C_CAUSE_YU_SLAVE_BIT 1 |
| |
| /* Functional enable register. */ |
| #define MLXBF_I2C_GPIO_0_FUNC_EN_0 0x28 |
| /* Force OE enable register. */ |
| #define MLXBF_I2C_GPIO_0_FORCE_OE_EN 0x30 |
| /* |
| * Note that Smbus GWs are on GPIOs 30:25. Two pins are used to control |
| * SDA/SCL lines: |
| * |
| * SMBUS GW0 -> bits[26:25] |
| * SMBUS GW1 -> bits[28:27] |
| * SMBUS GW2 -> bits[30:29] |
| */ |
| #define MLXBF_I2C_GPIO_SMBUS_GW_PINS(num) (25 + ((num) << 1)) |
| |
| /* Note that gw_id can be 0,1 or 2. */ |
| #define MLXBF_I2C_GPIO_SMBUS_GW_MASK(num) \ |
| (0xffffffff & (~(0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num)))) |
| |
| #define MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(num, val) \ |
| ((val) & MLXBF_I2C_GPIO_SMBUS_GW_MASK(num)) |
| |
| #define MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(num, val) \ |
| ((val) | (0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num))) |
| |
| /* SMBus timing parameters. */ |
| #define MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH 0x00 |
| #define MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE 0x04 |
| #define MLXBF_I2C_SMBUS_TIMER_THOLD 0x08 |
| #define MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP 0x0c |
| #define MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA 0x10 |
| #define MLXBF_I2C_SMBUS_THIGH_MAX_TBUF 0x14 |
| #define MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT 0x18 |
| |
| enum { |
| MLXBF_I2C_TIMING_100KHZ = 100000, |
| MLXBF_I2C_TIMING_400KHZ = 400000, |
| MLXBF_I2C_TIMING_1000KHZ = 1000000, |
| }; |
| |
| /* |
| * Defines SMBus operating frequency and core clock frequency. |
| * According to ADB files, default values are compliant to 100KHz SMBus |
| * @ 400MHz core clock. The driver should be able to calculate core |
| * frequency based on PLL parameters. |
| */ |
| #define MLXBF_I2C_COREPLL_FREQ MLXBF_I2C_TYU_PLL_OUT_FREQ |
| |
| /* Core PLL TYU configuration. */ |
| #define MLXBF_I2C_COREPLL_CORE_F_TYU_MASK GENMASK(12, 0) |
| #define MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK GENMASK(3, 0) |
| #define MLXBF_I2C_COREPLL_CORE_R_TYU_MASK GENMASK(5, 0) |
| |
| #define MLXBF_I2C_COREPLL_CORE_F_TYU_SHIFT 3 |
| #define MLXBF_I2C_COREPLL_CORE_OD_TYU_SHIFT 16 |
| #define MLXBF_I2C_COREPLL_CORE_R_TYU_SHIFT 20 |
| |
| /* Core PLL YU configuration. */ |
| #define MLXBF_I2C_COREPLL_CORE_F_YU_MASK GENMASK(25, 0) |
| #define MLXBF_I2C_COREPLL_CORE_OD_YU_MASK GENMASK(3, 0) |
| #define MLXBF_I2C_COREPLL_CORE_R_YU_MASK GENMASK(5, 0) |
| |
| #define MLXBF_I2C_COREPLL_CORE_F_YU_SHIFT 0 |
| #define MLXBF_I2C_COREPLL_CORE_OD_YU_SHIFT 1 |
| #define MLXBF_I2C_COREPLL_CORE_R_YU_SHIFT 26 |
| |
| /* Core PLL frequency. */ |
| static u64 mlxbf_i2c_corepll_frequency; |
| |
| /* SMBus Master GW. */ |
| #define MLXBF_I2C_SMBUS_MASTER_GW 0x200 |
| /* Number of bytes received and sent. */ |
| #define MLXBF_I2C_SMBUS_RS_BYTES 0x300 |
| /* Packet error check (PEC) value. */ |
| #define MLXBF_I2C_SMBUS_MASTER_PEC 0x304 |
| /* Status bits (ACK/NACK/FW Timeout). */ |
| #define MLXBF_I2C_SMBUS_MASTER_STATUS 0x308 |
| /* SMbus Master Finite State Machine. */ |
| #define MLXBF_I2C_SMBUS_MASTER_FSM 0x310 |
| |
| /* |
| * When enabled, the master will issue a stop condition in case of |
| * timeout while waiting for FW response. |
| */ |
| #define MLXBF_I2C_SMBUS_EN_FW_TIMEOUT 0x31c |
| |
| /* SMBus master GW control bits offset in MLXBF_I2C_SMBUS_MASTER_GW[31:3]. */ |
| #define MLXBF_I2C_MASTER_LOCK_BIT BIT(31) /* Lock bit. */ |
| #define MLXBF_I2C_MASTER_BUSY_BIT BIT(30) /* Busy bit. */ |
| #define MLXBF_I2C_MASTER_START_BIT BIT(29) /* Control start. */ |
| #define MLXBF_I2C_MASTER_CTL_WRITE_BIT BIT(28) /* Control write phase. */ |
| #define MLXBF_I2C_MASTER_CTL_READ_BIT BIT(19) /* Control read phase. */ |
| #define MLXBF_I2C_MASTER_STOP_BIT BIT(3) /* Control stop. */ |
| |
| #define MLXBF_I2C_MASTER_ENABLE \ |
| (MLXBF_I2C_MASTER_LOCK_BIT | MLXBF_I2C_MASTER_BUSY_BIT | \ |
| MLXBF_I2C_MASTER_START_BIT | MLXBF_I2C_MASTER_STOP_BIT) |
| |
| #define MLXBF_I2C_MASTER_ENABLE_WRITE \ |
| (MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_WRITE_BIT) |
| |
| #define MLXBF_I2C_MASTER_ENABLE_READ \ |
| (MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_READ_BIT) |
| |
| #define MLXBF_I2C_MASTER_SLV_ADDR_SHIFT 12 /* Slave address shift. */ |
| #define MLXBF_I2C_MASTER_WRITE_SHIFT 21 /* Control write bytes shift. */ |
| #define MLXBF_I2C_MASTER_SEND_PEC_SHIFT 20 /* Send PEC byte shift. */ |
| #define MLXBF_I2C_MASTER_PARSE_EXP_SHIFT 11 /* Parse expected bytes shift. */ |
| #define MLXBF_I2C_MASTER_READ_SHIFT 4 /* Control read bytes shift. */ |
| |
| /* SMBus master GW Data descriptor. */ |
| #define MLXBF_I2C_MASTER_DATA_DESC_ADDR 0x280 |
| #define MLXBF_I2C_MASTER_DATA_DESC_SIZE 0x80 /* Size in bytes. */ |
| |
| /* Maximum bytes to read/write per SMBus transaction. */ |
| #define MLXBF_I2C_MASTER_DATA_R_LENGTH MLXBF_I2C_MASTER_DATA_DESC_SIZE |
| #define MLXBF_I2C_MASTER_DATA_W_LENGTH (MLXBF_I2C_MASTER_DATA_DESC_SIZE - 1) |
| |
| /* All bytes were transmitted. */ |
| #define MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE BIT(0) |
| /* NACK received. */ |
| #define MLXBF_I2C_SMBUS_STATUS_NACK_RCV BIT(1) |
| /* Slave's byte count >128 bytes. */ |
| #define MLXBF_I2C_SMBUS_STATUS_READ_ERR BIT(2) |
| /* Timeout occurred. */ |
| #define MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT BIT(3) |
| |
| #define MLXBF_I2C_SMBUS_MASTER_STATUS_MASK GENMASK(3, 0) |
| |
| #define MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR \ |
| (MLXBF_I2C_SMBUS_STATUS_NACK_RCV | \ |
| MLXBF_I2C_SMBUS_STATUS_READ_ERR | \ |
| MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT) |
| |
| #define MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK BIT(31) |
| #define MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK BIT(15) |
| |
| /* SMBus slave GW. */ |
| #define MLXBF_I2C_SMBUS_SLAVE_GW 0x400 |
| /* Number of bytes received and sent from/to master. */ |
| #define MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES 0x500 |
| /* Packet error check (PEC) value. */ |
| #define MLXBF_I2C_SMBUS_SLAVE_PEC 0x504 |
| /* SMBus slave Finite State Machine (FSM). */ |
| #define MLXBF_I2C_SMBUS_SLAVE_FSM 0x510 |
| /* |
| * Should be set when all raised causes handled, and cleared by HW on |
| * every new cause. |
| */ |
| #define MLXBF_I2C_SMBUS_SLAVE_READY 0x52c |
| |
| /* SMBus slave GW control bits offset in MLXBF_I2C_SMBUS_SLAVE_GW[31:19]. */ |
| #define MLXBF_I2C_SLAVE_BUSY_BIT BIT(30) /* Busy bit. */ |
| #define MLXBF_I2C_SLAVE_WRITE_BIT BIT(29) /* Control write enable. */ |
| |
| #define MLXBF_I2C_SLAVE_ENABLE \ |
| (MLXBF_I2C_SLAVE_BUSY_BIT | MLXBF_I2C_SLAVE_WRITE_BIT) |
| |
| #define MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT 22 /* Number of bytes to write. */ |
| #define MLXBF_I2C_SLAVE_SEND_PEC_SHIFT 21 /* Send PEC byte shift. */ |
| |
| /* SMBus slave GW Data descriptor. */ |
| #define MLXBF_I2C_SLAVE_DATA_DESC_ADDR 0x480 |
| #define MLXBF_I2C_SLAVE_DATA_DESC_SIZE 0x80 /* Size in bytes. */ |
| |
| /* SMbus slave configuration registers. */ |
| #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG 0x514 |
| #define MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT 16 |
| #define MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT 7 |
| #define MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK GENMASK(6, 0) |
| |
| #define MLXBF_I2C_SLAVE_ADDR_ENABLED(addr) \ |
| ((addr) & (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT)) |
| |
| /* |
| * Timeout is given in microsends. Note also that timeout handling is not |
| * exact. |
| */ |
| #define MLXBF_I2C_SMBUS_TIMEOUT (300 * 1000) /* 300ms */ |
| |
| /* Encapsulates timing parameters. */ |
| struct mlxbf_i2c_timings { |
| u16 scl_high; /* Clock high period. */ |
| u16 scl_low; /* Clock low period. */ |
| u8 sda_rise; /* Data rise time. */ |
| u8 sda_fall; /* Data fall time. */ |
| u8 scl_rise; /* Clock rise time. */ |
| u8 scl_fall; /* Clock fall time. */ |
| u16 hold_start; /* Hold time after (REPEATED) START. */ |
| u16 hold_data; /* Data hold time. */ |
| u16 setup_start; /* REPEATED START condition setup time. */ |
| u16 setup_stop; /* STOP condition setup time. */ |
| u16 setup_data; /* Data setup time. */ |
| u16 pad; /* Padding. */ |
| u16 buf; /* Bus free time between STOP and START. */ |
| u16 thigh_max; /* Thigh max. */ |
| u32 timeout; /* Detect clock low timeout. */ |
| }; |
| |
| enum { |
| MLXBF_I2C_F_READ = BIT(0), |
| MLXBF_I2C_F_WRITE = BIT(1), |
| MLXBF_I2C_F_NORESTART = BIT(3), |
| MLXBF_I2C_F_SMBUS_OPERATION = BIT(4), |
| MLXBF_I2C_F_SMBUS_BLOCK = BIT(5), |
| MLXBF_I2C_F_SMBUS_PEC = BIT(6), |
| MLXBF_I2C_F_SMBUS_PROCESS_CALL = BIT(7), |
| }; |
| |
| struct mlxbf_i2c_smbus_operation { |
| u32 flags; |
| u32 length; /* Buffer length in bytes. */ |
| u8 *buffer; |
| }; |
| |
| #define MLXBF_I2C_SMBUS_OP_CNT_1 1 |
| #define MLXBF_I2C_SMBUS_OP_CNT_2 2 |
| #define MLXBF_I2C_SMBUS_OP_CNT_3 3 |
| #define MLXBF_I2C_SMBUS_MAX_OP_CNT MLXBF_I2C_SMBUS_OP_CNT_3 |
| |
| struct mlxbf_i2c_smbus_request { |
| u8 slave; |
| u8 operation_cnt; |
| struct mlxbf_i2c_smbus_operation operation[MLXBF_I2C_SMBUS_MAX_OP_CNT]; |
| }; |
| |
| struct mlxbf_i2c_resource { |
| void __iomem *io; |
| struct resource *params; |
| struct mutex *lock; /* Mutex to protect mlxbf_i2c_resource. */ |
| u8 type; |
| }; |
| |
| /* List of chip resources that are being accessed by the driver. */ |
| enum { |
| MLXBF_I2C_SMBUS_RES, |
| MLXBF_I2C_MST_CAUSE_RES, |
| MLXBF_I2C_SLV_CAUSE_RES, |
| MLXBF_I2C_COALESCE_RES, |
| MLXBF_I2C_COREPLL_RES, |
| MLXBF_I2C_GPIO_RES, |
| MLXBF_I2C_END_RES, |
| }; |
| |
| /* Helper macro to define an I2C resource parameters. */ |
| #define MLXBF_I2C_RES_PARAMS(addr, size, str) \ |
| { \ |
| .start = (addr), \ |
| .end = (addr) + (size) - 1, \ |
| .name = (str) \ |
| } |
| |
| static struct resource mlxbf_i2c_coalesce_tyu_params = |
| MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COALESCE_TYU_ADDR, |
| MLXBF_I2C_COALESCE_TYU_SIZE, |
| "COALESCE_MEM"); |
| static struct resource mlxbf_i2c_corepll_tyu_params = |
| MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_TYU_ADDR, |
| MLXBF_I2C_COREPLL_TYU_SIZE, |
| "COREPLL_MEM"); |
| static struct resource mlxbf_i2c_corepll_yu_params = |
| MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_YU_ADDR, |
| MLXBF_I2C_COREPLL_YU_SIZE, |
| "COREPLL_MEM"); |
| static struct resource mlxbf_i2c_gpio_tyu_params = |
| MLXBF_I2C_RES_PARAMS(MLXBF_I2C_GPIO_TYU_ADDR, |
| MLXBF_I2C_GPIO_TYU_SIZE, |
| "GPIO_MEM"); |
| |
| static struct mutex mlxbf_i2c_coalesce_lock; |
| static struct mutex mlxbf_i2c_corepll_lock; |
| static struct mutex mlxbf_i2c_gpio_lock; |
| |
| /* Mellanox BlueField chip type. */ |
| enum mlxbf_i2c_chip_type { |
| MLXBF_I2C_CHIP_TYPE_1, /* Mellanox BlueField-1 chip. */ |
| MLXBF_I2C_CHIP_TYPE_2, /* Mallanox BlueField-2 chip. */ |
| }; |
| |
| struct mlxbf_i2c_chip_info { |
| enum mlxbf_i2c_chip_type type; |
| /* Chip shared resources that are being used by the I2C controller. */ |
| struct mlxbf_i2c_resource *shared_res[MLXBF_I2C_SHARED_RES_MAX]; |
| |
| /* Callback to calculate the core PLL frequency. */ |
| u64 (*calculate_freq)(struct mlxbf_i2c_resource *corepll_res); |
| }; |
| |
| struct mlxbf_i2c_priv { |
| const struct mlxbf_i2c_chip_info *chip; |
| struct i2c_adapter adap; |
| struct mlxbf_i2c_resource *smbus; |
| struct mlxbf_i2c_resource *mst_cause; |
| struct mlxbf_i2c_resource *slv_cause; |
| struct mlxbf_i2c_resource *coalesce; |
| u64 frequency; /* Core frequency in Hz. */ |
| int bus; /* Physical bus identifier. */ |
| int irq; |
| struct i2c_client *slave; |
| }; |
| |
| static struct mlxbf_i2c_resource mlxbf_i2c_coalesce_res[] = { |
| [MLXBF_I2C_CHIP_TYPE_1] = { |
| .params = &mlxbf_i2c_coalesce_tyu_params, |
| .lock = &mlxbf_i2c_coalesce_lock, |
| .type = MLXBF_I2C_COALESCE_RES |
| }, |
| {} |
| }; |
| |
| static struct mlxbf_i2c_resource mlxbf_i2c_corepll_res[] = { |
| [MLXBF_I2C_CHIP_TYPE_1] = { |
| .params = &mlxbf_i2c_corepll_tyu_params, |
| .lock = &mlxbf_i2c_corepll_lock, |
| .type = MLXBF_I2C_COREPLL_RES |
| }, |
| [MLXBF_I2C_CHIP_TYPE_2] = { |
| .params = &mlxbf_i2c_corepll_yu_params, |
| .lock = &mlxbf_i2c_corepll_lock, |
| .type = MLXBF_I2C_COREPLL_RES, |
| } |
| }; |
| |
| static struct mlxbf_i2c_resource mlxbf_i2c_gpio_res[] = { |
| [MLXBF_I2C_CHIP_TYPE_1] = { |
| .params = &mlxbf_i2c_gpio_tyu_params, |
| .lock = &mlxbf_i2c_gpio_lock, |
| .type = MLXBF_I2C_GPIO_RES |
| }, |
| {} |
| }; |
| |
| static u8 mlxbf_i2c_bus_count; |
| |
| static struct mutex mlxbf_i2c_bus_lock; |
| |
| /* Polling frequency in microseconds. */ |
| #define MLXBF_I2C_POLL_FREQ_IN_USEC 200 |
| |
| #define MLXBF_I2C_SHIFT_0 0 |
| #define MLXBF_I2C_SHIFT_8 8 |
| #define MLXBF_I2C_SHIFT_16 16 |
| #define MLXBF_I2C_SHIFT_24 24 |
| |
| #define MLXBF_I2C_MASK_8 GENMASK(7, 0) |
| #define MLXBF_I2C_MASK_16 GENMASK(15, 0) |
| |
| #define MLXBF_I2C_FREQUENCY_1GHZ 1000000000 |
| |
| static void mlxbf_i2c_write(void __iomem *io, int reg, u32 val) |
| { |
| writel(val, io + reg); |
| } |
| |
| static u32 mlxbf_i2c_read(void __iomem *io, int reg) |
| { |
| return readl(io + reg); |
| } |
| |
| /* |
| * This function is used to read data from Master GW Data Descriptor. |
| * Data bytes in the Master GW Data Descriptor are shifted left so the |
| * data starts at the MSB of the descriptor registers as set by the |
| * underlying hardware. TYU_READ_DATA enables byte swapping while |
| * reading data bytes, and MUST be called by the SMBus read routines |
| * to copy data from the 32 * 32-bit HW Data registers a.k.a Master GW |
| * Data Descriptor. |
| */ |
| static u32 mlxbf_i2c_read_data(void __iomem *io, int reg) |
| { |
| return (u32)be32_to_cpu(mlxbf_i2c_read(io, reg)); |
| } |
| |
| /* |
| * This function is used to write data to the Master GW Data Descriptor. |
| * Data copied to the Master GW Data Descriptor MUST be shifted left so |
| * the data starts at the MSB of the descriptor registers as required by |
| * the underlying hardware. TYU_WRITE_DATA enables byte swapping when |
| * writing data bytes, and MUST be called by the SMBus write routines to |
| * copy data to the 32 * 32-bit HW Data registers a.k.a Master GW Data |
| * Descriptor. |
| */ |
| static void mlxbf_i2c_write_data(void __iomem *io, int reg, u32 val) |
| { |
| mlxbf_i2c_write(io, reg, (u32)cpu_to_be32(val)); |
| } |
| |
| /* |
| * Function to poll a set of bits at a specific address; it checks whether |
| * the bits are equal to zero when eq_zero is set to 'true', and not equal |
| * to zero when eq_zero is set to 'false'. |
| * Note that the timeout is given in microseconds. |
| */ |
| static u32 mlxbf_smbus_poll(void __iomem *io, u32 addr, u32 mask, |
| bool eq_zero, u32 timeout) |
| { |
| u32 bits; |
| |
| timeout = (timeout / MLXBF_I2C_POLL_FREQ_IN_USEC) + 1; |
| |
| do { |
| bits = mlxbf_i2c_read(io, addr) & mask; |
| if (eq_zero ? bits == 0 : bits != 0) |
| return eq_zero ? 1 : bits; |
| udelay(MLXBF_I2C_POLL_FREQ_IN_USEC); |
| } while (timeout-- != 0); |
| |
| return 0; |
| } |
| |
| /* |
| * SW must make sure that the SMBus Master GW is idle before starting |
| * a transaction. Accordingly, this function polls the Master FSM stop |
| * bit; it returns false when the bit is asserted, true if not. |
| */ |
| static bool mlxbf_smbus_master_wait_for_idle(struct mlxbf_i2c_priv *priv) |
| { |
| u32 mask = MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK; |
| u32 addr = MLXBF_I2C_SMBUS_MASTER_FSM; |
| u32 timeout = MLXBF_I2C_SMBUS_TIMEOUT; |
| |
| if (mlxbf_smbus_poll(priv->smbus->io, addr, mask, true, timeout)) |
| return true; |
| |
| return false; |
| } |
| |
| static bool mlxbf_i2c_smbus_transaction_success(u32 master_status, |
| u32 cause_status) |
| { |
| /* |
| * When transaction ended with STOP, all bytes were transmitted, |
| * and no NACK received, then the transaction ended successfully. |
| * On the other hand, when the GW is configured with the stop bit |
| * de-asserted then the SMBus expects the following GW configuration |
| * for transfer continuation. |
| */ |
| if ((cause_status & MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA) || |
| ((cause_status & MLXBF_I2C_CAUSE_TRANSACTION_ENDED) && |
| (master_status & MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE) && |
| !(master_status & MLXBF_I2C_SMBUS_STATUS_NACK_RCV))) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * Poll SMBus master status and return transaction status, |
| * i.e. whether succeeded or failed. I2C and SMBus fault codes |
| * are returned as negative numbers from most calls, with zero |
| * or some positive number indicating a non-fault return. |
| */ |
| static int mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv *priv) |
| { |
| u32 master_status_bits; |
| u32 cause_status_bits; |
| |
| /* |
| * GW busy bit is raised by the driver and cleared by the HW |
| * when the transaction is completed. The busy bit is a good |
| * indicator of transaction status. So poll the busy bit, and |
| * then read the cause and master status bits to determine if |
| * errors occurred during the transaction. |
| */ |
| mlxbf_smbus_poll(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_GW, |
| MLXBF_I2C_MASTER_BUSY_BIT, true, |
| MLXBF_I2C_SMBUS_TIMEOUT); |
| |
| /* Read cause status bits. */ |
| cause_status_bits = mlxbf_i2c_read(priv->mst_cause->io, |
| MLXBF_I2C_CAUSE_ARBITER); |
| cause_status_bits &= MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK; |
| |
| /* |
| * Parse both Cause and Master GW bits, then return transaction status. |
| */ |
| |
| master_status_bits = mlxbf_i2c_read(priv->smbus->io, |
| MLXBF_I2C_SMBUS_MASTER_STATUS); |
| master_status_bits &= MLXBF_I2C_SMBUS_MASTER_STATUS_MASK; |
| |
| if (mlxbf_i2c_smbus_transaction_success(master_status_bits, |
| cause_status_bits)) |
| return 0; |
| |
| /* |
| * In case of timeout on GW busy, the ISR will clear busy bit but |
| * transaction ended bits cause will not be set so the transaction |
| * fails. Then, we must check Master GW status bits. |
| */ |
| if ((master_status_bits & MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR) && |
| (cause_status_bits & (MLXBF_I2C_CAUSE_TRANSACTION_ENDED | |
| MLXBF_I2C_CAUSE_M_GW_BUSY_FALL))) |
| return -EIO; |
| |
| if (cause_status_bits & MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR) |
| return -EAGAIN; |
| |
| return -ETIMEDOUT; |
| } |
| |
| static void mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv *priv, |
| const u8 *data, u8 length, u32 addr) |
| { |
| u8 offset, aligned_length; |
| u32 data32; |
| |
| aligned_length = round_up(length, 4); |
| |
| /* Copy data bytes from 4-byte aligned source buffer. */ |
| for (offset = 0; offset < aligned_length; offset += sizeof(u32)) { |
| data32 = *((u32 *)(data + offset)); |
| mlxbf_i2c_write_data(priv->smbus->io, addr + offset, data32); |
| } |
| } |
| |
| static void mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv *priv, |
| u8 *data, u8 length, u32 addr) |
| { |
| u32 data32, mask; |
| u8 byte, offset; |
| |
| mask = sizeof(u32) - 1; |
| |
| for (offset = 0; offset < (length & ~mask); offset += sizeof(u32)) { |
| data32 = mlxbf_i2c_read_data(priv->smbus->io, addr + offset); |
| *((u32 *)(data + offset)) = data32; |
| } |
| |
| if (!(length & mask)) |
| return; |
| |
| data32 = mlxbf_i2c_read_data(priv->smbus->io, addr + offset); |
| |
| for (byte = 0; byte < (length & mask); byte++) { |
| data[offset + byte] = data32 & GENMASK(7, 0); |
| data32 = ror32(data32, MLXBF_I2C_SHIFT_8); |
| } |
| } |
| |
| static int mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv *priv, u8 slave, |
| u8 len, u8 block_en, u8 pec_en, bool read) |
| { |
| u32 command; |
| |
| /* Set Master GW control word. */ |
| if (read) { |
| command = MLXBF_I2C_MASTER_ENABLE_READ; |
| command |= rol32(len, MLXBF_I2C_MASTER_READ_SHIFT); |
| } else { |
| command = MLXBF_I2C_MASTER_ENABLE_WRITE; |
| command |= rol32(len, MLXBF_I2C_MASTER_WRITE_SHIFT); |
| } |
| command |= rol32(slave, MLXBF_I2C_MASTER_SLV_ADDR_SHIFT); |
| command |= rol32(block_en, MLXBF_I2C_MASTER_PARSE_EXP_SHIFT); |
| command |= rol32(pec_en, MLXBF_I2C_MASTER_SEND_PEC_SHIFT); |
| |
| /* Clear status bits. */ |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_STATUS, 0x0); |
| /* Set the cause data. */ |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_CAUSE_OR_CLEAR, ~0x0); |
| /* Zero PEC byte. */ |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_PEC, 0x0); |
| /* Zero byte count. */ |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_RS_BYTES, 0x0); |
| |
| /* GW activation. */ |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_GW, command); |
| |
| /* |
| * Poll master status and check status bits. An ACK is sent when |
| * completing writing data to the bus (Master 'byte_count_done' bit |
| * is set to 1). |
| */ |
| return mlxbf_i2c_smbus_check_status(priv); |
| } |
| |
| static int |
| mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv *priv, |
| struct mlxbf_i2c_smbus_request *request) |
| { |
| u8 data_desc[MLXBF_I2C_MASTER_DATA_DESC_SIZE] = { 0 }; |
| u8 op_idx, data_idx, data_len, write_len, read_len; |
| struct mlxbf_i2c_smbus_operation *operation; |
| u8 read_en, write_en, block_en, pec_en; |
| u8 slave, flags, addr; |
| u8 *read_buf; |
| int ret = 0; |
| |
| if (request->operation_cnt > MLXBF_I2C_SMBUS_MAX_OP_CNT) |
| return -EINVAL; |
| |
| read_buf = NULL; |
| data_idx = 0; |
| read_en = 0; |
| write_en = 0; |
| write_len = 0; |
| read_len = 0; |
| block_en = 0; |
| pec_en = 0; |
| slave = request->slave & GENMASK(6, 0); |
| addr = slave << 1; |
| |
| /* First of all, check whether the HW is idle. */ |
| if (WARN_ON(!mlxbf_smbus_master_wait_for_idle(priv))) |
| return -EBUSY; |
| |
| /* Set first byte. */ |
| data_desc[data_idx++] = addr; |
| |
| for (op_idx = 0; op_idx < request->operation_cnt; op_idx++) { |
| operation = &request->operation[op_idx]; |
| flags = operation->flags; |
| |
| /* |
| * Note that read and write operations might be handled by a |
| * single command. If the MLXBF_I2C_F_SMBUS_OPERATION is set |
| * then write command byte and set the optional SMBus specific |
| * bits such as block_en and pec_en. These bits MUST be |
| * submitted by the first operation only. |
| */ |
| if (op_idx == 0 && flags & MLXBF_I2C_F_SMBUS_OPERATION) { |
| block_en = flags & MLXBF_I2C_F_SMBUS_BLOCK; |
| pec_en = flags & MLXBF_I2C_F_SMBUS_PEC; |
| } |
| |
| if (flags & MLXBF_I2C_F_WRITE) { |
| write_en = 1; |
| write_len += operation->length; |
| memcpy(data_desc + data_idx, |
| operation->buffer, operation->length); |
| data_idx += operation->length; |
| } |
| /* |
| * We assume that read operations are performed only once per |
| * SMBus transaction. *TBD* protect this statement so it won't |
| * be executed twice? or return an error if we try to read more |
| * than once? |
| */ |
| if (flags & MLXBF_I2C_F_READ) { |
| read_en = 1; |
| /* Subtract 1 as required by HW. */ |
| read_len = operation->length - 1; |
| read_buf = operation->buffer; |
| } |
| } |
| |
| /* Set Master GW data descriptor. */ |
| data_len = write_len + 1; /* Add one byte of the slave address. */ |
| /* |
| * Note that data_len cannot be 0. Indeed, the slave address byte |
| * must be written to the data registers. |
| */ |
| mlxbf_i2c_smbus_write_data(priv, (const u8 *)data_desc, data_len, |
| MLXBF_I2C_MASTER_DATA_DESC_ADDR); |
| |
| if (write_en) { |
| ret = mlxbf_i2c_smbus_enable(priv, slave, write_len, block_en, |
| pec_en, 0); |
| if (ret) |
| return ret; |
| } |
| |
| if (read_en) { |
| /* Write slave address to Master GW data descriptor. */ |
| mlxbf_i2c_smbus_write_data(priv, (const u8 *)&addr, 1, |
| MLXBF_I2C_MASTER_DATA_DESC_ADDR); |
| ret = mlxbf_i2c_smbus_enable(priv, slave, read_len, block_en, |
| pec_en, 1); |
| if (!ret) { |
| /* Get Master GW data descriptor. */ |
| mlxbf_i2c_smbus_read_data(priv, data_desc, read_len + 1, |
| MLXBF_I2C_MASTER_DATA_DESC_ADDR); |
| |
| /* Get data from Master GW data descriptor. */ |
| memcpy(read_buf, data_desc, read_len + 1); |
| } |
| |
| /* |
| * After a read operation the SMBus FSM ps (present state) |
| * needs to be 'manually' reset. This should be removed in |
| * next tag integration. |
| */ |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_MASTER_FSM, |
| MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK); |
| } |
| |
| return ret; |
| } |
| |
| /* I2C SMBus protocols. */ |
| |
| static void |
| mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request *request, |
| u8 read) |
| { |
| request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1; |
| |
| request->operation[0].length = 0; |
| request->operation[0].flags = MLXBF_I2C_F_WRITE; |
| request->operation[0].flags |= read ? MLXBF_I2C_F_READ : 0; |
| } |
| |
| static void mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request *request, |
| u8 *data, bool read, bool pec_check) |
| { |
| request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1; |
| |
| request->operation[0].length = 1; |
| request->operation[0].length += pec_check; |
| |
| request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION; |
| request->operation[0].flags |= read ? |
| MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE; |
| request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0; |
| |
| request->operation[0].buffer = data; |
| } |
| |
| static void |
| mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request *request, |
| u8 *command, u8 *data, bool read, bool pec_check) |
| { |
| request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2; |
| |
| request->operation[0].length = 1; |
| request->operation[0].flags = |
| MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE; |
| request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0; |
| request->operation[0].buffer = command; |
| |
| request->operation[1].length = 1; |
| request->operation[1].length += pec_check; |
| request->operation[1].flags = read ? |
| MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE; |
| request->operation[1].buffer = data; |
| } |
| |
| static void |
| mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request *request, |
| u8 *command, u8 *data, bool read, bool pec_check) |
| { |
| request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2; |
| |
| request->operation[0].length = 1; |
| request->operation[0].flags = |
| MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE; |
| request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0; |
| request->operation[0].buffer = command; |
| |
| request->operation[1].length = 2; |
| request->operation[1].length += pec_check; |
| request->operation[1].flags = read ? |
| MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE; |
| request->operation[1].buffer = data; |
| } |
| |
| static void |
| mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request *request, |
| u8 *command, u8 *data, u8 *data_len, bool read, |
| bool pec_check) |
| { |
| request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2; |
| |
| request->operation[0].length = 1; |
| request->operation[0].flags = |
| MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE; |
| request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0; |
| request->operation[0].buffer = command; |
| |
| /* |
| * As specified in the standard, the max number of bytes to read/write |
| * per block operation is 32 bytes. In Golan code, the controller can |
| * read up to 128 bytes and write up to 127 bytes. |
| */ |
| request->operation[1].length = |
| (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ? |
| I2C_SMBUS_BLOCK_MAX : *data_len + pec_check; |
| request->operation[1].flags = read ? |
| MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE; |
| /* |
| * Skip the first data byte, which corresponds to the number of bytes |
| * to read/write. |
| */ |
| request->operation[1].buffer = data + 1; |
| |
| *data_len = request->operation[1].length; |
| |
| /* Set the number of byte to read. This will be used by userspace. */ |
| if (read) |
| data[0] = *data_len; |
| } |
| |
| static void mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request *request, |
| u8 *command, u8 *data, u8 *data_len, |
| bool read, bool pec_check) |
| { |
| request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2; |
| |
| request->operation[0].length = 1; |
| request->operation[0].flags = |
| MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE; |
| request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK; |
| request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0; |
| request->operation[0].buffer = command; |
| |
| request->operation[1].length = |
| (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ? |
| I2C_SMBUS_BLOCK_MAX : *data_len + pec_check; |
| request->operation[1].flags = read ? |
| MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE; |
| request->operation[1].buffer = data + 1; |
| |
| *data_len = request->operation[1].length; |
| |
| /* Set the number of bytes to read. This will be used by userspace. */ |
| if (read) |
| data[0] = *data_len; |
| } |
| |
| static void |
| mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request *request, |
| u8 *command, u8 *data, bool pec_check) |
| { |
| request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3; |
| |
| request->operation[0].length = 1; |
| request->operation[0].flags = |
| MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE; |
| request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK; |
| request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0; |
| request->operation[0].buffer = command; |
| |
| request->operation[1].length = 2; |
| request->operation[1].flags = MLXBF_I2C_F_WRITE; |
| request->operation[1].buffer = data; |
| |
| request->operation[2].length = 3; |
| request->operation[2].flags = MLXBF_I2C_F_READ; |
| request->operation[2].buffer = data; |
| } |
| |
| static void |
| mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request *request, |
| u8 *command, u8 *data, u8 *data_len, |
| bool pec_check) |
| { |
| u32 length; |
| |
| request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3; |
| |
| request->operation[0].length = 1; |
| request->operation[0].flags = |
| MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE; |
| request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK; |
| request->operation[0].flags |= (pec_check) ? MLXBF_I2C_F_SMBUS_PEC : 0; |
| request->operation[0].buffer = command; |
| |
| length = (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ? |
| I2C_SMBUS_BLOCK_MAX : *data_len + pec_check; |
| |
| request->operation[1].length = length - pec_check; |
| request->operation[1].flags = MLXBF_I2C_F_WRITE; |
| request->operation[1].buffer = data; |
| |
| request->operation[2].length = length; |
| request->operation[2].flags = MLXBF_I2C_F_READ; |
| request->operation[2].buffer = data; |
| |
| *data_len = length; /* including PEC byte. */ |
| } |
| |
| /* Initialization functions. */ |
| |
| static bool mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv *priv, u8 type) |
| { |
| return priv->chip->type == type; |
| } |
| |
| static struct mlxbf_i2c_resource * |
| mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv *priv, u8 type) |
| { |
| const struct mlxbf_i2c_chip_info *chip = priv->chip; |
| struct mlxbf_i2c_resource *res; |
| u8 res_idx = 0; |
| |
| for (res_idx = 0; res_idx < MLXBF_I2C_SHARED_RES_MAX; res_idx++) { |
| res = chip->shared_res[res_idx]; |
| if (res && res->type == type) |
| return res; |
| } |
| |
| return NULL; |
| } |
| |
| static int mlxbf_i2c_init_resource(struct platform_device *pdev, |
| struct mlxbf_i2c_resource **res, |
| u8 type) |
| { |
| struct mlxbf_i2c_resource *tmp_res; |
| struct device *dev = &pdev->dev; |
| |
| if (!res || *res || type >= MLXBF_I2C_END_RES) |
| return -EINVAL; |
| |
| tmp_res = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_resource), |
| GFP_KERNEL); |
| if (!tmp_res) |
| return -ENOMEM; |
| |
| tmp_res->params = platform_get_resource(pdev, IORESOURCE_MEM, type); |
| if (!tmp_res->params) { |
| devm_kfree(dev, tmp_res); |
| return -EIO; |
| } |
| |
| tmp_res->io = devm_ioremap_resource(dev, tmp_res->params); |
| if (IS_ERR(tmp_res->io)) { |
| devm_kfree(dev, tmp_res); |
| return PTR_ERR(tmp_res->io); |
| } |
| |
| tmp_res->type = type; |
| |
| *res = tmp_res; |
| |
| return 0; |
| } |
| |
| static u32 mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv *priv, u64 nanoseconds, |
| bool minimum) |
| { |
| u64 frequency; |
| u32 ticks; |
| |
| /* |
| * Compute ticks as follow: |
| * |
| * Ticks |
| * Time = --------- x 10^9 => Ticks = Time x Frequency x 10^-9 |
| * Frequency |
| */ |
| frequency = priv->frequency; |
| ticks = (nanoseconds * frequency) / MLXBF_I2C_FREQUENCY_1GHZ; |
| /* |
| * The number of ticks is rounded down and if minimum is equal to 1 |
| * then add one tick. |
| */ |
| if (minimum) |
| ticks++; |
| |
| return ticks; |
| } |
| |
| static u32 mlxbf_i2c_set_timer(struct mlxbf_i2c_priv *priv, u64 nsec, bool opt, |
| u32 mask, u8 shift) |
| { |
| u32 val = (mlxbf_i2c_get_ticks(priv, nsec, opt) & mask) << shift; |
| |
| return val; |
| } |
| |
| static void mlxbf_i2c_set_timings(struct mlxbf_i2c_priv *priv, |
| const struct mlxbf_i2c_timings *timings) |
| { |
| u32 timer; |
| |
| timer = mlxbf_i2c_set_timer(priv, timings->scl_high, |
| false, MLXBF_I2C_MASK_16, |
| MLXBF_I2C_SHIFT_0); |
| timer |= mlxbf_i2c_set_timer(priv, timings->scl_low, |
| false, MLXBF_I2C_MASK_16, |
| MLXBF_I2C_SHIFT_16); |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH, |
| timer); |
| |
| timer = mlxbf_i2c_set_timer(priv, timings->sda_rise, false, |
| MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_0); |
| timer |= mlxbf_i2c_set_timer(priv, timings->sda_fall, false, |
| MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_8); |
| timer |= mlxbf_i2c_set_timer(priv, timings->scl_rise, false, |
| MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_16); |
| timer |= mlxbf_i2c_set_timer(priv, timings->scl_fall, false, |
| MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_24); |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE, |
| timer); |
| |
| timer = mlxbf_i2c_set_timer(priv, timings->hold_start, true, |
| MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0); |
| timer |= mlxbf_i2c_set_timer(priv, timings->hold_data, true, |
| MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16); |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_TIMER_THOLD, timer); |
| |
| timer = mlxbf_i2c_set_timer(priv, timings->setup_start, true, |
| MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0); |
| timer |= mlxbf_i2c_set_timer(priv, timings->setup_stop, true, |
| MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16); |
| mlxbf_i2c_write(priv->smbus->io, |
| MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP, timer); |
| |
| timer = mlxbf_i2c_set_timer(priv, timings->setup_data, true, |
| MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0); |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA, |
| timer); |
| |
| timer = mlxbf_i2c_set_timer(priv, timings->buf, false, |
| MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0); |
| timer |= mlxbf_i2c_set_timer(priv, timings->thigh_max, false, |
| MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16); |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_THIGH_MAX_TBUF, |
| timer); |
| |
| timer = timings->timeout; |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT, |
| timer); |
| } |
| |
| enum mlxbf_i2c_timings_config { |
| MLXBF_I2C_TIMING_CONFIG_100KHZ, |
| MLXBF_I2C_TIMING_CONFIG_400KHZ, |
| MLXBF_I2C_TIMING_CONFIG_1000KHZ, |
| }; |
| |
| /* |
| * Note that the mlxbf_i2c_timings->timeout value is not related to the |
| * bus frequency, it is impacted by the time it takes the driver to |
| * complete data transmission before transaction abort. |
| */ |
| static const struct mlxbf_i2c_timings mlxbf_i2c_timings[] = { |
| [MLXBF_I2C_TIMING_CONFIG_100KHZ] = { |
| .scl_high = 4810, |
| .scl_low = 5000, |
| .hold_start = 4000, |
| .setup_start = 4800, |
| .setup_stop = 4000, |
| .setup_data = 250, |
| .sda_rise = 50, |
| .sda_fall = 50, |
| .scl_rise = 50, |
| .scl_fall = 50, |
| .hold_data = 300, |
| .buf = 20000, |
| .thigh_max = 5000, |
| .timeout = 106500 |
| }, |
| [MLXBF_I2C_TIMING_CONFIG_400KHZ] = { |
| .scl_high = 1011, |
| .scl_low = 1300, |
| .hold_start = 600, |
| .setup_start = 700, |
| .setup_stop = 600, |
| .setup_data = 100, |
| .sda_rise = 50, |
| .sda_fall = 50, |
| .scl_rise = 50, |
| .scl_fall = 50, |
| .hold_data = 300, |
| .buf = 20000, |
| .thigh_max = 5000, |
| .timeout = 106500 |
| }, |
| [MLXBF_I2C_TIMING_CONFIG_1000KHZ] = { |
| .scl_high = 600, |
| .scl_low = 1300, |
| .hold_start = 600, |
| .setup_start = 600, |
| .setup_stop = 600, |
| .setup_data = 100, |
| .sda_rise = 50, |
| .sda_fall = 50, |
| .scl_rise = 50, |
| .scl_fall = 50, |
| .hold_data = 300, |
| .buf = 20000, |
| .thigh_max = 5000, |
| .timeout = 106500 |
| } |
| }; |
| |
| static int mlxbf_i2c_init_timings(struct platform_device *pdev, |
| struct mlxbf_i2c_priv *priv) |
| { |
| enum mlxbf_i2c_timings_config config_idx; |
| struct device *dev = &pdev->dev; |
| u32 config_khz; |
| |
| int ret; |
| |
| ret = device_property_read_u32(dev, "clock-frequency", &config_khz); |
| if (ret < 0) |
| config_khz = MLXBF_I2C_TIMING_100KHZ; |
| |
| switch (config_khz) { |
| default: |
| /* Default settings is 100 KHz. */ |
| pr_warn("Illegal value %d: defaulting to 100 KHz\n", |
| config_khz); |
| fallthrough; |
| case MLXBF_I2C_TIMING_100KHZ: |
| config_idx = MLXBF_I2C_TIMING_CONFIG_100KHZ; |
| break; |
| |
| case MLXBF_I2C_TIMING_400KHZ: |
| config_idx = MLXBF_I2C_TIMING_CONFIG_400KHZ; |
| break; |
| |
| case MLXBF_I2C_TIMING_1000KHZ: |
| config_idx = MLXBF_I2C_TIMING_CONFIG_1000KHZ; |
| break; |
| } |
| |
| mlxbf_i2c_set_timings(priv, &mlxbf_i2c_timings[config_idx]); |
| |
| return 0; |
| } |
| |
| static int mlxbf_i2c_get_gpio(struct platform_device *pdev, |
| struct mlxbf_i2c_priv *priv) |
| { |
| struct mlxbf_i2c_resource *gpio_res; |
| struct device *dev = &pdev->dev; |
| struct resource *params; |
| resource_size_t size; |
| |
| gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES); |
| if (!gpio_res) |
| return -EPERM; |
| |
| /* |
| * The GPIO region in TYU space is shared among I2C busses. |
| * This function MUST be serialized to avoid racing when |
| * claiming the memory region and/or setting up the GPIO. |
| */ |
| lockdep_assert_held(gpio_res->lock); |
| |
| /* Check whether the memory map exist. */ |
| if (gpio_res->io) |
| return 0; |
| |
| params = gpio_res->params; |
| size = resource_size(params); |
| |
| if (!devm_request_mem_region(dev, params->start, size, params->name)) |
| return -EFAULT; |
| |
| gpio_res->io = devm_ioremap(dev, params->start, size); |
| if (IS_ERR(gpio_res->io)) { |
| devm_release_mem_region(dev, params->start, size); |
| return PTR_ERR(gpio_res->io); |
| } |
| |
| return 0; |
| } |
| |
| static int mlxbf_i2c_release_gpio(struct platform_device *pdev, |
| struct mlxbf_i2c_priv *priv) |
| { |
| struct mlxbf_i2c_resource *gpio_res; |
| struct device *dev = &pdev->dev; |
| struct resource *params; |
| |
| gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES); |
| if (!gpio_res) |
| return 0; |
| |
| mutex_lock(gpio_res->lock); |
| |
| if (gpio_res->io) { |
| /* Release the GPIO resource. */ |
| params = gpio_res->params; |
| devm_iounmap(dev, gpio_res->io); |
| devm_release_mem_region(dev, params->start, |
| resource_size(params)); |
| } |
| |
| mutex_unlock(gpio_res->lock); |
| |
| return 0; |
| } |
| |
| static int mlxbf_i2c_get_corepll(struct platform_device *pdev, |
| struct mlxbf_i2c_priv *priv) |
| { |
| struct mlxbf_i2c_resource *corepll_res; |
| struct device *dev = &pdev->dev; |
| struct resource *params; |
| resource_size_t size; |
| |
| corepll_res = mlxbf_i2c_get_shared_resource(priv, |
| MLXBF_I2C_COREPLL_RES); |
| if (!corepll_res) |
| return -EPERM; |
| |
| /* |
| * The COREPLL region in TYU space is shared among I2C busses. |
| * This function MUST be serialized to avoid racing when |
| * claiming the memory region. |
| */ |
| lockdep_assert_held(corepll_res->lock); |
| |
| /* Check whether the memory map exist. */ |
| if (corepll_res->io) |
| return 0; |
| |
| params = corepll_res->params; |
| size = resource_size(params); |
| |
| if (!devm_request_mem_region(dev, params->start, size, params->name)) |
| return -EFAULT; |
| |
| corepll_res->io = devm_ioremap(dev, params->start, size); |
| if (IS_ERR(corepll_res->io)) { |
| devm_release_mem_region(dev, params->start, size); |
| return PTR_ERR(corepll_res->io); |
| } |
| |
| return 0; |
| } |
| |
| static int mlxbf_i2c_release_corepll(struct platform_device *pdev, |
| struct mlxbf_i2c_priv *priv) |
| { |
| struct mlxbf_i2c_resource *corepll_res; |
| struct device *dev = &pdev->dev; |
| struct resource *params; |
| |
| corepll_res = mlxbf_i2c_get_shared_resource(priv, |
| MLXBF_I2C_COREPLL_RES); |
| |
| mutex_lock(corepll_res->lock); |
| |
| if (corepll_res->io) { |
| /* Release the CorePLL resource. */ |
| params = corepll_res->params; |
| devm_iounmap(dev, corepll_res->io); |
| devm_release_mem_region(dev, params->start, |
| resource_size(params)); |
| } |
| |
| mutex_unlock(corepll_res->lock); |
| |
| return 0; |
| } |
| |
| static int mlxbf_i2c_init_master(struct platform_device *pdev, |
| struct mlxbf_i2c_priv *priv) |
| { |
| struct mlxbf_i2c_resource *gpio_res; |
| struct device *dev = &pdev->dev; |
| u32 config_reg; |
| int ret; |
| |
| /* This configuration is only needed for BlueField 1. */ |
| if (!mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) |
| return 0; |
| |
| gpio_res = mlxbf_i2c_get_shared_resource(priv, MLXBF_I2C_GPIO_RES); |
| if (!gpio_res) |
| return -EPERM; |
| |
| /* |
| * The GPIO region in TYU space is shared among I2C busses. |
| * This function MUST be serialized to avoid racing when |
| * claiming the memory region and/or setting up the GPIO. |
| */ |
| |
| mutex_lock(gpio_res->lock); |
| |
| ret = mlxbf_i2c_get_gpio(pdev, priv); |
| if (ret < 0) { |
| dev_err(dev, "Failed to get gpio resource"); |
| mutex_unlock(gpio_res->lock); |
| return ret; |
| } |
| |
| /* |
| * TYU - Configuration for GPIO pins. Those pins must be asserted in |
| * MLXBF_I2C_GPIO_0_FUNC_EN_0, i.e. GPIO 0 is controlled by HW, and must |
| * be reset in MLXBF_I2C_GPIO_0_FORCE_OE_EN, i.e. GPIO_OE will be driven |
| * instead of HW_OE. |
| * For now, we do not reset the GPIO state when the driver is removed. |
| * First, it is not necessary to disable the bus since we are using |
| * the same busses. Then, some busses might be shared among Linux and |
| * platform firmware; disabling the bus might compromise the system |
| * functionality. |
| */ |
| config_reg = mlxbf_i2c_read(gpio_res->io, |
| MLXBF_I2C_GPIO_0_FUNC_EN_0); |
| config_reg = MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(priv->bus, |
| config_reg); |
| mlxbf_i2c_write(gpio_res->io, MLXBF_I2C_GPIO_0_FUNC_EN_0, |
| config_reg); |
| |
| config_reg = mlxbf_i2c_read(gpio_res->io, |
| MLXBF_I2C_GPIO_0_FORCE_OE_EN); |
| config_reg = MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(priv->bus, |
| config_reg); |
| mlxbf_i2c_write(gpio_res->io, MLXBF_I2C_GPIO_0_FORCE_OE_EN, |
| config_reg); |
| |
| mutex_unlock(gpio_res->lock); |
| |
| return 0; |
| } |
| |
| static u64 mlxbf_calculate_freq_from_tyu(struct mlxbf_i2c_resource *corepll_res) |
| { |
| u64 core_frequency, pad_frequency; |
| u8 core_od, core_r; |
| u32 corepll_val; |
| u16 core_f; |
| |
| pad_frequency = MLXBF_I2C_TYU_PLL_IN_FREQ; |
| |
| corepll_val = mlxbf_i2c_read(corepll_res->io, |
| MLXBF_I2C_CORE_PLL_REG1); |
| |
| /* Get Core PLL configuration bits. */ |
| core_f = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_F_TYU_SHIFT) & |
| MLXBF_I2C_COREPLL_CORE_F_TYU_MASK; |
| core_od = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_OD_TYU_SHIFT) & |
| MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK; |
| core_r = rol32(corepll_val, MLXBF_I2C_COREPLL_CORE_R_TYU_SHIFT) & |
| MLXBF_I2C_COREPLL_CORE_R_TYU_MASK; |
| |
| /* |
| * Compute PLL output frequency as follow: |
| * |
| * CORE_F + 1 |
| * PLL_OUT_FREQ = PLL_IN_FREQ * ---------------------------- |
| * (CORE_R + 1) * (CORE_OD + 1) |
| * |
| * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency |
| * and PadFrequency, respectively. |
| */ |
| core_frequency = pad_frequency * (++core_f); |
| core_frequency /= (++core_r) * (++core_od); |
| |
| return core_frequency; |
| } |
| |
| static u64 mlxbf_calculate_freq_from_yu(struct mlxbf_i2c_resource *corepll_res) |
| { |
| u32 corepll_reg1_val, corepll_reg2_val; |
| u64 corepll_frequency, pad_frequency; |
| u8 core_od, core_r; |
| u32 core_f; |
| |
| pad_frequency = MLXBF_I2C_YU_PLL_IN_FREQ; |
| |
| corepll_reg1_val = mlxbf_i2c_read(corepll_res->io, |
| MLXBF_I2C_CORE_PLL_REG1); |
| corepll_reg2_val = mlxbf_i2c_read(corepll_res->io, |
| MLXBF_I2C_CORE_PLL_REG2); |
| |
| /* Get Core PLL configuration bits */ |
| core_f = rol32(corepll_reg1_val, MLXBF_I2C_COREPLL_CORE_F_YU_SHIFT) & |
| MLXBF_I2C_COREPLL_CORE_F_YU_MASK; |
| core_r = rol32(corepll_reg1_val, MLXBF_I2C_COREPLL_CORE_R_YU_SHIFT) & |
| MLXBF_I2C_COREPLL_CORE_R_YU_MASK; |
| core_od = rol32(corepll_reg2_val, MLXBF_I2C_COREPLL_CORE_OD_YU_SHIFT) & |
| MLXBF_I2C_COREPLL_CORE_OD_YU_MASK; |
| |
| /* |
| * Compute PLL output frequency as follow: |
| * |
| * CORE_F / 16384 |
| * PLL_OUT_FREQ = PLL_IN_FREQ * ---------------------------- |
| * (CORE_R + 1) * (CORE_OD + 1) |
| * |
| * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency |
| * and PadFrequency, respectively. |
| */ |
| corepll_frequency = (pad_frequency * core_f) / MLNXBF_I2C_COREPLL_CONST; |
| corepll_frequency /= (++core_r) * (++core_od); |
| |
| return corepll_frequency; |
| } |
| |
| static int mlxbf_i2c_calculate_corepll_freq(struct platform_device *pdev, |
| struct mlxbf_i2c_priv *priv) |
| { |
| const struct mlxbf_i2c_chip_info *chip = priv->chip; |
| struct mlxbf_i2c_resource *corepll_res; |
| struct device *dev = &pdev->dev; |
| u64 *freq = &priv->frequency; |
| int ret; |
| |
| corepll_res = mlxbf_i2c_get_shared_resource(priv, |
| MLXBF_I2C_COREPLL_RES); |
| if (!corepll_res) |
| return -EPERM; |
| |
| /* |
| * First, check whether the TYU core Clock frequency is set. |
| * The TYU core frequency is the same for all I2C busses; when |
| * the first device gets probed the frequency is determined and |
| * stored into a globally visible variable. So, first of all, |
| * check whether the frequency is already set. Here, we assume |
| * that the frequency is expected to be greater than 0. |
| */ |
| mutex_lock(corepll_res->lock); |
| if (!mlxbf_i2c_corepll_frequency) { |
| if (!chip->calculate_freq) { |
| mutex_unlock(corepll_res->lock); |
| return -EPERM; |
| } |
| |
| ret = mlxbf_i2c_get_corepll(pdev, priv); |
| if (ret < 0) { |
| dev_err(dev, "Failed to get corePLL resource"); |
| mutex_unlock(corepll_res->lock); |
| return ret; |
| } |
| |
| mlxbf_i2c_corepll_frequency = chip->calculate_freq(corepll_res); |
| } |
| mutex_unlock(corepll_res->lock); |
| |
| *freq = mlxbf_i2c_corepll_frequency; |
| |
| return 0; |
| } |
| |
| static int mlxbf_slave_enable(struct mlxbf_i2c_priv *priv, u8 addr) |
| { |
| u32 slave_reg, slave_reg_tmp, slave_reg_avail, slave_addr_mask; |
| u8 reg, reg_cnt, byte, addr_tmp, reg_avail, byte_avail; |
| bool avail, disabled; |
| |
| disabled = false; |
| avail = false; |
| |
| if (!priv) |
| return -EPERM; |
| |
| reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2; |
| slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK; |
| |
| /* |
| * Read the slave registers. There are 4 * 32-bit slave registers. |
| * Each slave register can hold up to 4 * 8-bit slave configuration |
| * (7-bit address, 1 status bit (1 if enabled, 0 if not)). |
| */ |
| for (reg = 0; reg < reg_cnt; reg++) { |
| slave_reg = mlxbf_i2c_read(priv->smbus->io, |
| MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4); |
| /* |
| * Each register holds 4 slave addresses. So, we have to keep |
| * the byte order consistent with the value read in order to |
| * update the register correctly, if needed. |
| */ |
| slave_reg_tmp = slave_reg; |
| for (byte = 0; byte < 4; byte++) { |
| addr_tmp = slave_reg_tmp & GENMASK(7, 0); |
| |
| /* |
| * Mark the first available slave address slot, i.e. its |
| * enabled bit should be unset. This slot might be used |
| * later on to register our slave. |
| */ |
| if (!avail && !MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp)) { |
| avail = true; |
| reg_avail = reg; |
| byte_avail = byte; |
| slave_reg_avail = slave_reg; |
| } |
| |
| /* |
| * Parse slave address bytes and check whether the |
| * slave address already exists and it's enabled, |
| * i.e. most significant bit is set. |
| */ |
| if ((addr_tmp & slave_addr_mask) == addr) { |
| if (MLXBF_I2C_SLAVE_ADDR_ENABLED(addr_tmp)) |
| return 0; |
| disabled = true; |
| break; |
| } |
| |
| /* Parse next byte. */ |
| slave_reg_tmp >>= 8; |
| } |
| |
| /* Exit the loop if the slave address is found. */ |
| if (disabled) |
| break; |
| } |
| |
| if (!avail && !disabled) |
| return -EINVAL; /* No room for a new slave address. */ |
| |
| if (avail && !disabled) { |
| reg = reg_avail; |
| byte = byte_avail; |
| /* Set the slave address. */ |
| slave_reg_avail &= ~(slave_addr_mask << (byte * 8)); |
| slave_reg_avail |= addr << (byte * 8); |
| slave_reg = slave_reg_avail; |
| } |
| |
| /* Enable the slave address and update the register. */ |
| slave_reg |= (1 << MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT) << (byte * 8); |
| mlxbf_i2c_write(priv->smbus->io, |
| MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4, slave_reg); |
| |
| return 0; |
| } |
| |
| static int mlxbf_slave_disable(struct mlxbf_i2c_priv *priv) |
| { |
| u32 slave_reg, slave_reg_tmp, slave_addr_mask; |
| u8 addr, addr_tmp, reg, reg_cnt, slave_byte; |
| struct i2c_client *client = priv->slave; |
| bool exist; |
| |
| exist = false; |
| |
| addr = client->addr; |
| reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2; |
| slave_addr_mask = MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK; |
| |
| /* |
| * Read the slave registers. There are 4 * 32-bit slave registers. |
| * Each slave register can hold up to 4 * 8-bit slave configuration |
| * (7-bit address, 1 status bit (1 if enabled, 0 if not)). |
| */ |
| for (reg = 0; reg < reg_cnt; reg++) { |
| slave_reg = mlxbf_i2c_read(priv->smbus->io, |
| MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4); |
| |
| /* Check whether the address slots are empty. */ |
| if (slave_reg == 0) |
| continue; |
| |
| /* |
| * Each register holds 4 slave addresses. So, we have to keep |
| * the byte order consistent with the value read in order to |
| * update the register correctly, if needed. |
| */ |
| slave_reg_tmp = slave_reg; |
| slave_byte = 0; |
| while (slave_reg_tmp != 0) { |
| addr_tmp = slave_reg_tmp & slave_addr_mask; |
| /* |
| * Parse slave address bytes and check whether the |
| * slave address already exists. |
| */ |
| if (addr_tmp == addr) { |
| exist = true; |
| break; |
| } |
| |
| /* Parse next byte. */ |
| slave_reg_tmp >>= 8; |
| slave_byte += 1; |
| } |
| |
| /* Exit the loop if the slave address is found. */ |
| if (exist) |
| break; |
| } |
| |
| if (!exist) |
| return 0; /* Slave is not registered, nothing to do. */ |
| |
| /* Cleanup the slave address slot. */ |
| slave_reg &= ~(GENMASK(7, 0) << (slave_byte * 8)); |
| mlxbf_i2c_write(priv->smbus->io, |
| MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4, slave_reg); |
| |
| return 0; |
| } |
| |
| static int mlxbf_i2c_init_coalesce(struct platform_device *pdev, |
| struct mlxbf_i2c_priv *priv) |
| { |
| struct mlxbf_i2c_resource *coalesce_res; |
| struct resource *params; |
| resource_size_t size; |
| int ret = 0; |
| |
| /* |
| * Unlike BlueField-1 platform, the coalesce registers is a dedicated |
| * resource in the next generations of BlueField. |
| */ |
| if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) { |
| coalesce_res = mlxbf_i2c_get_shared_resource(priv, |
| MLXBF_I2C_COALESCE_RES); |
| if (!coalesce_res) |
| return -EPERM; |
| |
| /* |
| * The Cause Coalesce group in TYU space is shared among |
| * I2C busses. This function MUST be serialized to avoid |
| * racing when claiming the memory region. |
| */ |
| lockdep_assert_held(mlxbf_i2c_gpio_res->lock); |
| |
| /* Check whether the memory map exist. */ |
| if (coalesce_res->io) { |
| priv->coalesce = coalesce_res; |
| return 0; |
| } |
| |
| params = coalesce_res->params; |
| size = resource_size(params); |
| |
| if (!request_mem_region(params->start, size, params->name)) |
| return -EFAULT; |
| |
| coalesce_res->io = ioremap(params->start, size); |
| if (IS_ERR(coalesce_res->io)) { |
| release_mem_region(params->start, size); |
| return PTR_ERR(coalesce_res->io); |
| } |
| |
| priv->coalesce = coalesce_res; |
| |
| } else { |
| ret = mlxbf_i2c_init_resource(pdev, &priv->coalesce, |
| MLXBF_I2C_COALESCE_RES); |
| } |
| |
| return ret; |
| } |
| |
| static int mlxbf_i2c_release_coalesce(struct platform_device *pdev, |
| struct mlxbf_i2c_priv *priv) |
| { |
| struct mlxbf_i2c_resource *coalesce_res; |
| struct device *dev = &pdev->dev; |
| struct resource *params; |
| resource_size_t size; |
| |
| coalesce_res = priv->coalesce; |
| |
| if (coalesce_res->io) { |
| params = coalesce_res->params; |
| size = resource_size(params); |
| if (mlxbf_i2c_has_chip_type(priv, MLXBF_I2C_CHIP_TYPE_1)) { |
| mutex_lock(coalesce_res->lock); |
| iounmap(coalesce_res->io); |
| release_mem_region(params->start, size); |
| mutex_unlock(coalesce_res->lock); |
| } else { |
| devm_release_mem_region(dev, params->start, size); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int mlxbf_i2c_init_slave(struct platform_device *pdev, |
| struct mlxbf_i2c_priv *priv) |
| { |
| struct device *dev = &pdev->dev; |
| u32 int_reg; |
| int ret; |
| |
| /* Reset FSM. */ |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_SLAVE_FSM, 0); |
| |
| /* |
| * Enable slave cause interrupt bits. Drive |
| * MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE and |
| * MLXBF_I2C_CAUSE_WRITE_SUCCESS, these are enabled when an external |
| * masters issue a Read and Write, respectively. But, clear all |
| * interrupts first. |
| */ |
| mlxbf_i2c_write(priv->slv_cause->io, |
| MLXBF_I2C_CAUSE_OR_CLEAR, ~0); |
| int_reg = MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE; |
| int_reg |= MLXBF_I2C_CAUSE_WRITE_SUCCESS; |
| mlxbf_i2c_write(priv->slv_cause->io, |
| MLXBF_I2C_CAUSE_OR_EVTEN0, int_reg); |
| |
| /* Finally, set the 'ready' bit to start handling transactions. */ |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_SLAVE_READY, 0x1); |
| |
| /* Initialize the cause coalesce resource. */ |
| ret = mlxbf_i2c_init_coalesce(pdev, priv); |
| if (ret < 0) { |
| dev_err(dev, "failed to initialize cause coalesce\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static bool mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv *priv, bool *read, |
| bool *write) |
| { |
| const struct mlxbf_i2c_chip_info *chip = priv->chip; |
| u32 coalesce0_reg, cause_reg; |
| u8 slave_shift, is_set; |
| |
| *write = false; |
| *read = false; |
| |
| slave_shift = chip->type != MLXBF_I2C_CHIP_TYPE_1 ? |
| MLXBF_I2C_CAUSE_YU_SLAVE_BIT : |
| priv->bus + MLXBF_I2C_CAUSE_TYU_SLAVE_BIT; |
| |
| coalesce0_reg = mlxbf_i2c_read(priv->coalesce->io, |
| MLXBF_I2C_CAUSE_COALESCE_0); |
| is_set = coalesce0_reg & (1 << slave_shift); |
| |
| if (!is_set) |
| return false; |
| |
| /* Check the source of the interrupt, i.e. whether a Read or Write. */ |
| cause_reg = mlxbf_i2c_read(priv->slv_cause->io, |
| MLXBF_I2C_CAUSE_ARBITER); |
| if (cause_reg & MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE) |
| *read = true; |
| else if (cause_reg & MLXBF_I2C_CAUSE_WRITE_SUCCESS) |
| *write = true; |
| |
| /* Clear cause bits. */ |
| mlxbf_i2c_write(priv->slv_cause->io, MLXBF_I2C_CAUSE_OR_CLEAR, ~0x0); |
| |
| return true; |
| } |
| |
| static bool mlxbf_smbus_slave_wait_for_idle(struct mlxbf_i2c_priv *priv, |
| u32 timeout) |
| { |
| u32 mask = MLXBF_I2C_CAUSE_S_GW_BUSY_FALL; |
| u32 addr = MLXBF_I2C_CAUSE_ARBITER; |
| |
| if (mlxbf_smbus_poll(priv->slv_cause->io, addr, mask, false, timeout)) |
| return true; |
| |
| return false; |
| } |
| |
| /* Send byte to 'external' smbus master. */ |
| static int mlxbf_smbus_irq_send(struct mlxbf_i2c_priv *priv, u8 recv_bytes) |
| { |
| u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 }; |
| u8 write_size, pec_en, addr, byte, value, byte_cnt, desc_size; |
| struct i2c_client *slave = priv->slave; |
| u32 control32, data32; |
| int ret; |
| |
| if (!slave) |
| return -EINVAL; |
| |
| addr = 0; |
| byte = 0; |
| desc_size = MLXBF_I2C_SLAVE_DATA_DESC_SIZE; |
| |
| /* |
| * Read bytes received from the external master. These bytes should |
| * be located in the first data descriptor register of the slave GW. |
| * These bytes are the slave address byte and the internal register |
| * address, if supplied. |
| */ |
| if (recv_bytes > 0) { |
| data32 = mlxbf_i2c_read_data(priv->smbus->io, |
| MLXBF_I2C_SLAVE_DATA_DESC_ADDR); |
| |
| /* Parse the received bytes. */ |
| switch (recv_bytes) { |
| case 2: |
| byte = (data32 >> 8) & GENMASK(7, 0); |
| fallthrough; |
| case 1: |
| addr = (data32 & GENMASK(7, 0)) >> 1; |
| } |
| |
| /* Check whether it's our slave address. */ |
| if (slave->addr != addr) |
| return -EINVAL; |
| } |
| |
| /* |
| * I2C read transactions may start by a WRITE followed by a READ. |
| * Indeed, most slave devices would expect the internal address |
| * following the slave address byte. So, write that byte first, |
| * and then, send the requested data bytes to the master. |
| */ |
| if (recv_bytes > 1) { |
| i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value); |
| value = byte; |
| ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED, |
| &value); |
| i2c_slave_event(slave, I2C_SLAVE_STOP, &value); |
| |
| if (ret < 0) |
| return ret; |
| } |
| |
| /* |
| * Now, send data to the master; currently, the driver supports |
| * READ_BYTE, READ_WORD and BLOCK READ protocols. Note that the |
| * hardware can send up to 128 bytes per transfer. That is the |
| * size of its data registers. |
| */ |
| i2c_slave_event(slave, I2C_SLAVE_READ_REQUESTED, &value); |
| |
| for (byte_cnt = 0; byte_cnt < desc_size; byte_cnt++) { |
| data_desc[byte_cnt] = value; |
| i2c_slave_event(slave, I2C_SLAVE_READ_PROCESSED, &value); |
| } |
| |
| /* Send a stop condition to the backend. */ |
| i2c_slave_event(slave, I2C_SLAVE_STOP, &value); |
| |
| /* Handle the actual transfer. */ |
| |
| /* Set the number of bytes to write to master. */ |
| write_size = (byte_cnt - 1) & 0x7f; |
| |
| /* Write data to Slave GW data descriptor. */ |
| mlxbf_i2c_smbus_write_data(priv, data_desc, byte_cnt, |
| MLXBF_I2C_SLAVE_DATA_DESC_ADDR); |
| |
| pec_en = 0; /* Disable PEC since it is not supported. */ |
| |
| /* Prepare control word. */ |
| control32 = MLXBF_I2C_SLAVE_ENABLE; |
| control32 |= rol32(write_size, MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT); |
| control32 |= rol32(pec_en, MLXBF_I2C_SLAVE_SEND_PEC_SHIFT); |
| |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_SLAVE_GW, control32); |
| |
| /* |
| * Wait until the transfer is completed; the driver will wait |
| * until the GW is idle, a cause will rise on fall of GW busy. |
| */ |
| mlxbf_smbus_slave_wait_for_idle(priv, MLXBF_I2C_SMBUS_TIMEOUT); |
| |
| /* Release the Slave GW. */ |
| mlxbf_i2c_write(priv->smbus->io, |
| MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES, 0x0); |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_SLAVE_PEC, 0x0); |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_SLAVE_READY, 0x1); |
| |
| return 0; |
| } |
| |
| /* Receive bytes from 'external' smbus master. */ |
| static int mlxbf_smbus_irq_recv(struct mlxbf_i2c_priv *priv, u8 recv_bytes) |
| { |
| u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 }; |
| struct i2c_client *slave = priv->slave; |
| u8 value, byte, addr; |
| int ret = 0; |
| |
| if (!slave) |
| return -EINVAL; |
| |
| /* Read data from Slave GW data descriptor. */ |
| mlxbf_i2c_smbus_read_data(priv, data_desc, recv_bytes, |
| MLXBF_I2C_SLAVE_DATA_DESC_ADDR); |
| |
| /* Check whether its our slave address. */ |
| addr = data_desc[0] >> 1; |
| if (slave->addr != addr) |
| return -EINVAL; |
| |
| /* |
| * Notify the slave backend; another I2C master wants to write data |
| * to us. This event is sent once the slave address and the write bit |
| * is detected. |
| */ |
| i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value); |
| |
| /* Send the received data to the slave backend. */ |
| for (byte = 1; byte < recv_bytes; byte++) { |
| value = data_desc[byte]; |
| ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED, |
| &value); |
| if (ret < 0) |
| break; |
| } |
| |
| /* Send a stop condition to the backend. */ |
| i2c_slave_event(slave, I2C_SLAVE_STOP, &value); |
| |
| /* Release the Slave GW. */ |
| mlxbf_i2c_write(priv->smbus->io, |
| MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES, 0x0); |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_SLAVE_PEC, 0x0); |
| mlxbf_i2c_write(priv->smbus->io, MLXBF_I2C_SMBUS_SLAVE_READY, 0x1); |
| |
| return ret; |
| } |
| |
| static irqreturn_t mlxbf_smbus_irq(int irq, void *ptr) |
| { |
| struct mlxbf_i2c_priv *priv = ptr; |
| bool read, write, irq_is_set; |
| u32 rw_bytes_reg; |
| u8 recv_bytes; |
| |
| /* |
| * Read TYU interrupt register and determine the source of the |
| * interrupt. Based on the source of the interrupt one of the |
| * following actions are performed: |
| * - Receive data and send response to master. |
| * - Send data and release slave GW. |
| * |
| * Handle read/write transaction only. CRmaster and Iarp requests |
| * are ignored for now. |
| */ |
| irq_is_set = mlxbf_i2c_has_coalesce(priv, &read, &write); |
| if (!irq_is_set || (!read && !write)) { |
| /* Nothing to do here, interrupt was not from this device. */ |
| return IRQ_NONE; |
| } |
| |
| /* |
| * The MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES includes the number of |
| * bytes from/to master. These are defined by 8-bits each. If the lower |
| * 8 bits are set, then the master expect to read N bytes from the |
| * slave, if the higher 8 bits are sent then the slave expect N bytes |
| * from the master. |
| */ |
| rw_bytes_reg = mlxbf_i2c_read(priv->smbus->io, |
| MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES); |
| recv_bytes = (rw_bytes_reg >> 8) & GENMASK(7, 0); |
| |
| /* |
| * For now, the slave supports 128 bytes transfer. Discard remaining |
| * data bytes if the master wrote more than |
| * MLXBF_I2C_SLAVE_DATA_DESC_SIZE, i.e, the actual size of the slave |
| * data descriptor. |
| * |
| * Note that we will never expect to transfer more than 128 bytes; as |
| * specified in the SMBus standard, block transactions cannot exceed |
| * 32 bytes. |
| */ |
| recv_bytes = recv_bytes > MLXBF_I2C_SLAVE_DATA_DESC_SIZE ? |
| MLXBF_I2C_SLAVE_DATA_DESC_SIZE : recv_bytes; |
| |
| if (read) |
| mlxbf_smbus_irq_send(priv, recv_bytes); |
| else |
| mlxbf_smbus_irq_recv(priv, recv_bytes); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* Return negative errno on error. */ |
| static s32 mlxbf_i2c_smbus_xfer(struct i2c_adapter *adap, u16 addr, |
| unsigned short flags, char read_write, |
| u8 command, int size, |
| union i2c_smbus_data *data) |
| { |
| struct mlxbf_i2c_smbus_request request = { 0 }; |
| struct mlxbf_i2c_priv *priv; |
| bool read, pec; |
| u8 byte_cnt; |
| |
| request.slave = addr; |
| |
| read = (read_write == I2C_SMBUS_READ); |
| pec = flags & I2C_FUNC_SMBUS_PEC; |
| |
| switch (size) { |
| case I2C_SMBUS_QUICK: |
| mlxbf_i2c_smbus_quick_command(&request, read); |
| dev_dbg(&adap->dev, "smbus quick, slave 0x%02x\n", addr); |
| break; |
| |
| case I2C_SMBUS_BYTE: |
| mlxbf_i2c_smbus_byte_func(&request, |
| read ? &data->byte : &command, read, |
| pec); |
| dev_dbg(&adap->dev, "smbus %s byte, slave 0x%02x.\n", |
| read ? "read" : "write", addr); |
| break; |
| |
| case I2C_SMBUS_BYTE_DATA: |
| mlxbf_i2c_smbus_data_byte_func(&request, &command, &data->byte, |
| read, pec); |
| dev_dbg(&adap->dev, "smbus %s byte data at 0x%02x, slave 0x%02x.\n", |
| read ? "read" : "write", command, addr); |
| break; |
| |
| case I2C_SMBUS_WORD_DATA: |
| mlxbf_i2c_smbus_data_word_func(&request, &command, |
| (u8 *)&data->word, read, pec); |
| dev_dbg(&adap->dev, "smbus %s word data at 0x%02x, slave 0x%02x.\n", |
| read ? "read" : "write", command, addr); |
| break; |
| |
| case I2C_SMBUS_I2C_BLOCK_DATA: |
| byte_cnt = data->block[0]; |
| mlxbf_i2c_smbus_i2c_block_func(&request, &command, data->block, |
| &byte_cnt, read, pec); |
| dev_dbg(&adap->dev, "i2c %s block data, %d bytes at 0x%02x, slave 0x%02x.\n", |
| read ? "read" : "write", byte_cnt, command, addr); |
| break; |
| |
| case I2C_SMBUS_BLOCK_DATA: |
| byte_cnt = read ? I2C_SMBUS_BLOCK_MAX : data->block[0]; |
| mlxbf_i2c_smbus_block_func(&request, &command, data->block, |
| &byte_cnt, read, pec); |
| dev_dbg(&adap->dev, "smbus %s block data, %d bytes at 0x%02x, slave 0x%02x.\n", |
| read ? "read" : "write", byte_cnt, command, addr); |
| break; |
| |
| case I2C_FUNC_SMBUS_PROC_CALL: |
| mlxbf_i2c_smbus_process_call_func(&request, &command, |
| (u8 *)&data->word, pec); |
| dev_dbg(&adap->dev, "process call, wr/rd at 0x%02x, slave 0x%02x.\n", |
| command, addr); |
| break; |
| |
| case I2C_FUNC_SMBUS_BLOCK_PROC_CALL: |
| byte_cnt = data->block[0]; |
| mlxbf_i2c_smbus_blk_process_call_func(&request, &command, |
| data->block, &byte_cnt, |
| pec); |
| dev_dbg(&adap->dev, "block process call, wr/rd %d bytes, slave 0x%02x.\n", |
| byte_cnt, addr); |
| break; |
| |
| default: |
| dev_dbg(&adap->dev, "Unsupported I2C/SMBus command %d\n", |
| size); |
| return -EOPNOTSUPP; |
| } |
| |
| priv = i2c_get_adapdata(adap); |
| |
| return mlxbf_i2c_smbus_start_transaction(priv, &request); |
| } |
| |
| static int mlxbf_i2c_reg_slave(struct i2c_client *slave) |
| { |
| struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter); |
| int ret; |
| |
| if (priv->slave) |
| return -EBUSY; |
| |
| /* |
| * Do not support ten bit chip address and do not use Packet Error |
| * Checking (PEC). |
| */ |
| if (slave->flags & (I2C_CLIENT_TEN | I2C_CLIENT_PEC)) |
| return -EAFNOSUPPORT; |
| |
| ret = mlxbf_slave_enable(priv, slave->addr); |
| if (ret < 0) |
| return ret; |
| |
| priv->slave = slave; |
| |
| return 0; |
| } |
| |
| static int mlxbf_i2c_unreg_slave(struct i2c_client *slave) |
| { |
| struct mlxbf_i2c_priv *priv = i2c_get_adapdata(slave->adapter); |
| int ret; |
| |
| WARN_ON(!priv->slave); |
| |
| /* Unregister slave, i.e. disable the slave address in hardware. */ |
| ret = mlxbf_slave_disable(priv); |
| if (ret < 0) |
| return ret; |
| |
| priv->slave = NULL; |
| |
| return 0; |
| } |
| |
| static u32 mlxbf_i2c_functionality(struct i2c_adapter *adap) |
| { |
| return MLXBF_I2C_FUNC_ALL; |
| } |
| |
| static struct mlxbf_i2c_chip_info mlxbf_i2c_chip[] = { |
| [MLXBF_I2C_CHIP_TYPE_1] = { |
| .type = MLXBF_I2C_CHIP_TYPE_1, |
| .shared_res = { |
| [0] = &mlxbf_i2c_coalesce_res[MLXBF_I2C_CHIP_TYPE_1], |
| [1] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_1], |
| [2] = &mlxbf_i2c_gpio_res[MLXBF_I2C_CHIP_TYPE_1] |
| }, |
| .calculate_freq = mlxbf_calculate_freq_from_tyu |
| }, |
| [MLXBF_I2C_CHIP_TYPE_2] = { |
| .type = MLXBF_I2C_CHIP_TYPE_2, |
| .shared_res = { |
| [0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_2] |
| }, |
| .calculate_freq = mlxbf_calculate_freq_from_yu |
| } |
| }; |
| |
| static const struct i2c_algorithm mlxbf_i2c_algo = { |
| .smbus_xfer = mlxbf_i2c_smbus_xfer, |
| .functionality = mlxbf_i2c_functionality, |
| .reg_slave = mlxbf_i2c_reg_slave, |
| .unreg_slave = mlxbf_i2c_unreg_slave, |
| }; |
| |
| static struct i2c_adapter_quirks mlxbf_i2c_quirks = { |
| .max_read_len = MLXBF_I2C_MASTER_DATA_R_LENGTH, |
| .max_write_len = MLXBF_I2C_MASTER_DATA_W_LENGTH, |
| }; |
| |
| static const struct of_device_id mlxbf_i2c_dt_ids[] = { |
| { |
| .compatible = "mellanox,i2c-mlxbf1", |
| .data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1] |
| }, |
| { |
| .compatible = "mellanox,i2c-mlxbf2", |
| .data = &mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2] |
| }, |
| {}, |
| }; |
| |
| MODULE_DEVICE_TABLE(of, mlxbf_i2c_dt_ids); |
| |
| #ifdef CONFIG_ACPI |
| static const struct acpi_device_id mlxbf_i2c_acpi_ids[] = { |
| { "MLNXBF03", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1] }, |
| { "MLNXBF23", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2] }, |
| {}, |
| }; |
| |
| MODULE_DEVICE_TABLE(acpi, mlxbf_i2c_acpi_ids); |
| |
| static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv) |
| { |
| const struct acpi_device_id *aid; |
| struct acpi_device *adev; |
| unsigned long bus_id = 0; |
| const char *uid; |
| int ret; |
| |
| if (acpi_disabled) |
| return -ENOENT; |
| |
| adev = ACPI_COMPANION(dev); |
| if (!adev) |
| return -ENXIO; |
| |
| aid = acpi_match_device(mlxbf_i2c_acpi_ids, dev); |
| if (!aid) |
| return -ENODEV; |
| |
| priv->chip = (struct mlxbf_i2c_chip_info *)aid->driver_data; |
| |
| uid = acpi_device_uid(adev); |
| if (!uid || !(*uid)) { |
| dev_err(dev, "Cannot retrieve UID\n"); |
| return -ENODEV; |
| } |
| |
| ret = kstrtoul(uid, 0, &bus_id); |
| if (!ret) |
| priv->bus = bus_id; |
| |
| return ret; |
| } |
| #else |
| static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv) |
| { |
| return -ENOENT; |
| } |
| #endif /* CONFIG_ACPI */ |
| |
| static int mlxbf_i2c_of_probe(struct device *dev, struct mlxbf_i2c_priv *priv) |
| { |
| const struct of_device_id *oid; |
| int bus_id = -1; |
| |
| if (IS_ENABLED(CONFIG_OF) && dev->of_node) { |
| oid = of_match_node(mlxbf_i2c_dt_ids, dev->of_node); |
| if (!oid) |
| return -ENODEV; |
| |
| priv->chip = oid->data; |
| |
| bus_id = of_alias_get_id(dev->of_node, "i2c"); |
| if (bus_id >= 0) |
| priv->bus = bus_id; |
| } |
| |
| if (bus_id < 0) { |
| dev_err(dev, "Cannot get bus id"); |
| return bus_id; |
| } |
| |
| return 0; |
| } |
| |
| static int mlxbf_i2c_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct mlxbf_i2c_priv *priv; |
| struct i2c_adapter *adap; |
| int irq, ret; |
| |
| priv = devm_kzalloc(dev, sizeof(struct mlxbf_i2c_priv), GFP_KERNEL); |
| if (!priv) |
| return -ENOMEM; |
| |
| ret = mlxbf_i2c_acpi_probe(dev, priv); |
| if (ret < 0 && ret != -ENOENT && ret != -ENXIO) |
| ret = mlxbf_i2c_of_probe(dev, priv); |
| |
| if (ret < 0) |
| return ret; |
| |
| ret = mlxbf_i2c_init_resource(pdev, &priv->smbus, |
| MLXBF_I2C_SMBUS_RES); |
| if (ret < 0) { |
| dev_err(dev, "Cannot fetch smbus resource info"); |
| return ret; |
| } |
| |
| ret = mlxbf_i2c_init_resource(pdev, &priv->mst_cause, |
| MLXBF_I2C_MST_CAUSE_RES); |
| if (ret < 0) { |
| dev_err(dev, "Cannot fetch cause master resource info"); |
| return ret; |
| } |
| |
| ret = mlxbf_i2c_init_resource(pdev, &priv->slv_cause, |
| MLXBF_I2C_SLV_CAUSE_RES); |
| if (ret < 0) { |
| dev_err(dev, "Cannot fetch cause slave resource info"); |
| return ret; |
| } |
| |
| adap = &priv->adap; |
| adap->owner = THIS_MODULE; |
| adap->class = I2C_CLASS_HWMON; |
| adap->algo = &mlxbf_i2c_algo; |
| adap->quirks = &mlxbf_i2c_quirks; |
| adap->dev.parent = dev; |
| adap->dev.of_node = dev->of_node; |
| adap->nr = priv->bus; |
| |
| snprintf(adap->name, sizeof(adap->name), "i2c%d", adap->nr); |
| i2c_set_adapdata(adap, priv); |
| |
| /* Read Core PLL frequency. */ |
| ret = mlxbf_i2c_calculate_corepll_freq(pdev, priv); |
| if (ret < 0) { |
| dev_err(dev, "cannot get core clock frequency\n"); |
| /* Set to default value. */ |
| priv->frequency = MLXBF_I2C_COREPLL_FREQ; |
| } |
| |
| /* |
| * Initialize master. |
| * Note that a physical bus might be shared among Linux and firmware |
| * (e.g., ATF). Thus, the bus should be initialized and ready and |
| * bus initialization would be unnecessary. This requires additional |
| * knowledge about physical busses. But, since an extra initialization |
| * does not really hurt, then keep the code as is. |
| */ |
| ret = mlxbf_i2c_init_master(pdev, priv); |
| if (ret < 0) { |
| dev_err(dev, "failed to initialize smbus master %d", |
| priv->bus); |
| return ret; |
| } |
| |
| mlxbf_i2c_init_timings(pdev, priv); |
| |
| mlxbf_i2c_init_slave(pdev, priv); |
| |
| irq = platform_get_irq(pdev, 0); |
| ret = devm_request_irq(dev, irq, mlxbf_smbus_irq, |
| IRQF_ONESHOT | IRQF_SHARED | IRQF_PROBE_SHARED, |
| dev_name(dev), priv); |
| if (ret < 0) { |
| dev_err(dev, "Cannot get irq %d\n", irq); |
| return ret; |
| } |
| |
| priv->irq = irq; |
| |
| platform_set_drvdata(pdev, priv); |
| |
| ret = i2c_add_numbered_adapter(adap); |
| if (ret < 0) |
| return ret; |
| |
| mutex_lock(&mlxbf_i2c_bus_lock); |
| mlxbf_i2c_bus_count++; |
| mutex_unlock(&mlxbf_i2c_bus_lock); |
| |
| return 0; |
| } |
| |
| static int mlxbf_i2c_remove(struct platform_device *pdev) |
| { |
| struct mlxbf_i2c_priv *priv = platform_get_drvdata(pdev); |
| struct device *dev = &pdev->dev; |
| struct resource *params; |
| |
| params = priv->smbus->params; |
| devm_release_mem_region(dev, params->start, resource_size(params)); |
| |
| params = priv->mst_cause->params; |
| devm_release_mem_region(dev, params->start, resource_size(params)); |
| |
| params = priv->slv_cause->params; |
| devm_release_mem_region(dev, params->start, resource_size(params)); |
| |
| /* |
| * Release shared resources. This should be done when releasing |
| * the I2C controller. |
| */ |
| mutex_lock(&mlxbf_i2c_bus_lock); |
| if (--mlxbf_i2c_bus_count == 0) { |
| mlxbf_i2c_release_coalesce(pdev, priv); |
| mlxbf_i2c_release_corepll(pdev, priv); |
| mlxbf_i2c_release_gpio(pdev, priv); |
| } |
| mutex_unlock(&mlxbf_i2c_bus_lock); |
| |
| devm_free_irq(dev, priv->irq, priv); |
| |
| i2c_del_adapter(&priv->adap); |
| |
| return 0; |
| } |
| |
| static struct platform_driver mlxbf_i2c_driver = { |
| .probe = mlxbf_i2c_probe, |
| .remove = mlxbf_i2c_remove, |
| .driver = { |
| .name = "i2c-mlxbf", |
| .of_match_table = mlxbf_i2c_dt_ids, |
| #ifdef CONFIG_ACPI |
| .acpi_match_table = ACPI_PTR(mlxbf_i2c_acpi_ids), |
| #endif /* CONFIG_ACPI */ |
| }, |
| }; |
| |
| static int __init mlxbf_i2c_init(void) |
| { |
| mutex_init(&mlxbf_i2c_coalesce_lock); |
| mutex_init(&mlxbf_i2c_corepll_lock); |
| mutex_init(&mlxbf_i2c_gpio_lock); |
| |
| mutex_init(&mlxbf_i2c_bus_lock); |
| |
| return platform_driver_register(&mlxbf_i2c_driver); |
| } |
| module_init(mlxbf_i2c_init); |
| |
| static void __exit mlxbf_i2c_exit(void) |
| { |
| platform_driver_unregister(&mlxbf_i2c_driver); |
| |
| mutex_destroy(&mlxbf_i2c_bus_lock); |
| |
| mutex_destroy(&mlxbf_i2c_gpio_lock); |
| mutex_destroy(&mlxbf_i2c_corepll_lock); |
| mutex_destroy(&mlxbf_i2c_coalesce_lock); |
| } |
| module_exit(mlxbf_i2c_exit); |
| |
| MODULE_DESCRIPTION("Mellanox BlueField I2C bus driver"); |
| MODULE_AUTHOR("Khalil Blaiech <kblaiech@mellanox.com>"); |
| MODULE_LICENSE("GPL v2"); |