| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include <linux/efi.h> |
| #include <asm/efi.h> |
| |
| #include "efistub.h" |
| |
| #define EFI_MMAP_NR_SLACK_SLOTS 8 |
| |
| static inline bool mmap_has_headroom(unsigned long buff_size, |
| unsigned long map_size, |
| unsigned long desc_size) |
| { |
| unsigned long slack = buff_size - map_size; |
| |
| return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS; |
| } |
| |
| efi_status_t efi_get_memory_map(struct efi_boot_memmap *map) |
| { |
| efi_memory_desc_t *m = NULL; |
| efi_status_t status; |
| unsigned long key; |
| u32 desc_version; |
| |
| *map->desc_size = sizeof(*m); |
| *map->map_size = *map->desc_size * 32; |
| *map->buff_size = *map->map_size; |
| again: |
| status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, |
| *map->map_size, (void **)&m); |
| if (status != EFI_SUCCESS) |
| goto fail; |
| |
| *map->desc_size = 0; |
| key = 0; |
| status = efi_bs_call(get_memory_map, map->map_size, m, |
| &key, map->desc_size, &desc_version); |
| if (status == EFI_BUFFER_TOO_SMALL || |
| !mmap_has_headroom(*map->buff_size, *map->map_size, |
| *map->desc_size)) { |
| efi_bs_call(free_pool, m); |
| /* |
| * Make sure there is some entries of headroom so that the |
| * buffer can be reused for a new map after allocations are |
| * no longer permitted. Its unlikely that the map will grow to |
| * exceed this headroom once we are ready to trigger |
| * ExitBootServices() |
| */ |
| *map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS; |
| *map->buff_size = *map->map_size; |
| goto again; |
| } |
| |
| if (status != EFI_SUCCESS) |
| efi_bs_call(free_pool, m); |
| |
| if (map->key_ptr && status == EFI_SUCCESS) |
| *map->key_ptr = key; |
| if (map->desc_ver && status == EFI_SUCCESS) |
| *map->desc_ver = desc_version; |
| |
| fail: |
| *map->map = m; |
| return status; |
| } |
| |
| /** |
| * efi_allocate_pages() - Allocate memory pages |
| * @size: minimum number of bytes to allocate |
| * @addr: On return the address of the first allocated page. The first |
| * allocated page has alignment EFI_ALLOC_ALIGN which is an |
| * architecture dependent multiple of the page size. |
| * @max: the address that the last allocated memory page shall not |
| * exceed |
| * |
| * Allocate pages as EFI_LOADER_DATA. The allocated pages are aligned according |
| * to EFI_ALLOC_ALIGN. The last allocated page will not exceed the address |
| * given by @max. |
| * |
| * Return: status code |
| */ |
| efi_status_t efi_allocate_pages(unsigned long size, unsigned long *addr, |
| unsigned long max) |
| { |
| efi_physical_addr_t alloc_addr = ALIGN_DOWN(max + 1, EFI_ALLOC_ALIGN) - 1; |
| int slack = EFI_ALLOC_ALIGN / EFI_PAGE_SIZE - 1; |
| efi_status_t status; |
| |
| size = round_up(size, EFI_ALLOC_ALIGN); |
| status = efi_bs_call(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS, |
| EFI_LOADER_DATA, size / EFI_PAGE_SIZE + slack, |
| &alloc_addr); |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| *addr = ALIGN((unsigned long)alloc_addr, EFI_ALLOC_ALIGN); |
| |
| if (slack > 0) { |
| int l = (alloc_addr % EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE; |
| |
| if (l) { |
| efi_bs_call(free_pages, alloc_addr, slack - l + 1); |
| slack = l - 1; |
| } |
| if (slack) |
| efi_bs_call(free_pages, *addr + size, slack); |
| } |
| return EFI_SUCCESS; |
| } |
| /* |
| * Allocate at the lowest possible address that is not below 'min'. |
| */ |
| efi_status_t efi_low_alloc_above(unsigned long size, unsigned long align, |
| unsigned long *addr, unsigned long min) |
| { |
| unsigned long map_size, desc_size, buff_size; |
| efi_memory_desc_t *map; |
| efi_status_t status; |
| unsigned long nr_pages; |
| int i; |
| struct efi_boot_memmap boot_map; |
| |
| boot_map.map = ↦ |
| boot_map.map_size = &map_size; |
| boot_map.desc_size = &desc_size; |
| boot_map.desc_ver = NULL; |
| boot_map.key_ptr = NULL; |
| boot_map.buff_size = &buff_size; |
| |
| status = efi_get_memory_map(&boot_map); |
| if (status != EFI_SUCCESS) |
| goto fail; |
| |
| /* |
| * Enforce minimum alignment that EFI or Linux requires when |
| * requesting a specific address. We are doing page-based (or |
| * larger) allocations, and both the address and size must meet |
| * alignment constraints. |
| */ |
| if (align < EFI_ALLOC_ALIGN) |
| align = EFI_ALLOC_ALIGN; |
| |
| size = round_up(size, EFI_ALLOC_ALIGN); |
| nr_pages = size / EFI_PAGE_SIZE; |
| for (i = 0; i < map_size / desc_size; i++) { |
| efi_memory_desc_t *desc; |
| unsigned long m = (unsigned long)map; |
| u64 start, end; |
| |
| desc = efi_early_memdesc_ptr(m, desc_size, i); |
| |
| if (desc->type != EFI_CONVENTIONAL_MEMORY) |
| continue; |
| |
| if (efi_soft_reserve_enabled() && |
| (desc->attribute & EFI_MEMORY_SP)) |
| continue; |
| |
| if (desc->num_pages < nr_pages) |
| continue; |
| |
| start = desc->phys_addr; |
| end = start + desc->num_pages * EFI_PAGE_SIZE; |
| |
| if (start < min) |
| start = min; |
| |
| start = round_up(start, align); |
| if ((start + size) > end) |
| continue; |
| |
| status = efi_bs_call(allocate_pages, EFI_ALLOCATE_ADDRESS, |
| EFI_LOADER_DATA, nr_pages, &start); |
| if (status == EFI_SUCCESS) { |
| *addr = start; |
| break; |
| } |
| } |
| |
| if (i == map_size / desc_size) |
| status = EFI_NOT_FOUND; |
| |
| efi_bs_call(free_pool, map); |
| fail: |
| return status; |
| } |
| |
| void efi_free(unsigned long size, unsigned long addr) |
| { |
| unsigned long nr_pages; |
| |
| if (!size) |
| return; |
| |
| nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE; |
| efi_bs_call(free_pages, addr, nr_pages); |
| } |
| |
| /* |
| * Relocate a kernel image, either compressed or uncompressed. |
| * In the ARM64 case, all kernel images are currently |
| * uncompressed, and as such when we relocate it we need to |
| * allocate additional space for the BSS segment. Any low |
| * memory that this function should avoid needs to be |
| * unavailable in the EFI memory map, as if the preferred |
| * address is not available the lowest available address will |
| * be used. |
| */ |
| efi_status_t efi_relocate_kernel(unsigned long *image_addr, |
| unsigned long image_size, |
| unsigned long alloc_size, |
| unsigned long preferred_addr, |
| unsigned long alignment, |
| unsigned long min_addr) |
| { |
| unsigned long cur_image_addr; |
| unsigned long new_addr = 0; |
| efi_status_t status; |
| unsigned long nr_pages; |
| efi_physical_addr_t efi_addr = preferred_addr; |
| |
| if (!image_addr || !image_size || !alloc_size) |
| return EFI_INVALID_PARAMETER; |
| if (alloc_size < image_size) |
| return EFI_INVALID_PARAMETER; |
| |
| cur_image_addr = *image_addr; |
| |
| /* |
| * The EFI firmware loader could have placed the kernel image |
| * anywhere in memory, but the kernel has restrictions on the |
| * max physical address it can run at. Some architectures |
| * also have a prefered address, so first try to relocate |
| * to the preferred address. If that fails, allocate as low |
| * as possible while respecting the required alignment. |
| */ |
| nr_pages = round_up(alloc_size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE; |
| status = efi_bs_call(allocate_pages, EFI_ALLOCATE_ADDRESS, |
| EFI_LOADER_DATA, nr_pages, &efi_addr); |
| new_addr = efi_addr; |
| /* |
| * If preferred address allocation failed allocate as low as |
| * possible. |
| */ |
| if (status != EFI_SUCCESS) { |
| status = efi_low_alloc_above(alloc_size, alignment, &new_addr, |
| min_addr); |
| } |
| if (status != EFI_SUCCESS) { |
| pr_efi_err("Failed to allocate usable memory for kernel.\n"); |
| return status; |
| } |
| |
| /* |
| * We know source/dest won't overlap since both memory ranges |
| * have been allocated by UEFI, so we can safely use memcpy. |
| */ |
| memcpy((void *)new_addr, (void *)cur_image_addr, image_size); |
| |
| /* Return the new address of the relocated image. */ |
| *image_addr = new_addr; |
| |
| return status; |
| } |