blob: 4bbd89e03324d713ca7110c62a669c4cd024be83 [file] [log] [blame]
/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* Copyright (C) 2006 Qumranet, Inc.
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include "kvm.h"
#include "x86_emulate.h"
#include "segment_descriptor.h"
#include <linux/kvm.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/percpu.h>
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/miscdevice.h>
#include <linux/vmalloc.h>
#include <linux/reboot.h>
#include <linux/debugfs.h>
#include <linux/highmem.h>
#include <linux/file.h>
#include <linux/sysdev.h>
#include <linux/cpu.h>
#include <linux/sched.h>
#include <linux/cpumask.h>
#include <linux/smp.h>
#include <linux/anon_inodes.h>
#include <asm/processor.h>
#include <asm/msr.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/desc.h>
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
static DEFINE_SPINLOCK(kvm_lock);
static LIST_HEAD(vm_list);
static cpumask_t cpus_hardware_enabled;
struct kvm_arch_ops *kvm_arch_ops;
static __read_mostly struct preempt_ops kvm_preempt_ops;
#define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
static struct kvm_stats_debugfs_item {
const char *name;
int offset;
struct dentry *dentry;
} debugfs_entries[] = {
{ "pf_fixed", STAT_OFFSET(pf_fixed) },
{ "pf_guest", STAT_OFFSET(pf_guest) },
{ "tlb_flush", STAT_OFFSET(tlb_flush) },
{ "invlpg", STAT_OFFSET(invlpg) },
{ "exits", STAT_OFFSET(exits) },
{ "io_exits", STAT_OFFSET(io_exits) },
{ "mmio_exits", STAT_OFFSET(mmio_exits) },
{ "signal_exits", STAT_OFFSET(signal_exits) },
{ "irq_window", STAT_OFFSET(irq_window_exits) },
{ "halt_exits", STAT_OFFSET(halt_exits) },
{ "request_irq", STAT_OFFSET(request_irq_exits) },
{ "irq_exits", STAT_OFFSET(irq_exits) },
{ "light_exits", STAT_OFFSET(light_exits) },
{ "efer_reload", STAT_OFFSET(efer_reload) },
{ NULL }
};
static struct dentry *debugfs_dir;
#define MAX_IO_MSRS 256
#define CR0_RESERVED_BITS \
(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
| X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
| X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
#define CR4_RESERVED_BITS \
(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
| X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
| X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
| X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
#define EFER_RESERVED_BITS 0xfffffffffffff2fe
#ifdef CONFIG_X86_64
// LDT or TSS descriptor in the GDT. 16 bytes.
struct segment_descriptor_64 {
struct segment_descriptor s;
u32 base_higher;
u32 pad_zero;
};
#endif
static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
unsigned long arg);
unsigned long segment_base(u16 selector)
{
struct descriptor_table gdt;
struct segment_descriptor *d;
unsigned long table_base;
typedef unsigned long ul;
unsigned long v;
if (selector == 0)
return 0;
asm ("sgdt %0" : "=m"(gdt));
table_base = gdt.base;
if (selector & 4) { /* from ldt */
u16 ldt_selector;
asm ("sldt %0" : "=g"(ldt_selector));
table_base = segment_base(ldt_selector);
}
d = (struct segment_descriptor *)(table_base + (selector & ~7));
v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
#ifdef CONFIG_X86_64
if (d->system == 0
&& (d->type == 2 || d->type == 9 || d->type == 11))
v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
#endif
return v;
}
EXPORT_SYMBOL_GPL(segment_base);
static inline int valid_vcpu(int n)
{
return likely(n >= 0 && n < KVM_MAX_VCPUS);
}
void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
{
if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
return;
vcpu->guest_fpu_loaded = 1;
fx_save(vcpu->host_fx_image);
fx_restore(vcpu->guest_fx_image);
}
EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
{
if (!vcpu->guest_fpu_loaded)
return;
vcpu->guest_fpu_loaded = 0;
fx_save(vcpu->guest_fx_image);
fx_restore(vcpu->host_fx_image);
}
EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
/*
* Switches to specified vcpu, until a matching vcpu_put()
*/
static void vcpu_load(struct kvm_vcpu *vcpu)
{
int cpu;
mutex_lock(&vcpu->mutex);
cpu = get_cpu();
preempt_notifier_register(&vcpu->preempt_notifier);
kvm_arch_ops->vcpu_load(vcpu, cpu);
put_cpu();
}
static void vcpu_put(struct kvm_vcpu *vcpu)
{
preempt_disable();
kvm_arch_ops->vcpu_put(vcpu);
preempt_notifier_unregister(&vcpu->preempt_notifier);
preempt_enable();
mutex_unlock(&vcpu->mutex);
}
static void ack_flush(void *_completed)
{
atomic_t *completed = _completed;
atomic_inc(completed);
}
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
int i, cpu, needed;
cpumask_t cpus;
struct kvm_vcpu *vcpu;
atomic_t completed;
atomic_set(&completed, 0);
cpus_clear(cpus);
needed = 0;
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
vcpu = kvm->vcpus[i];
if (!vcpu)
continue;
if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
continue;
cpu = vcpu->cpu;
if (cpu != -1 && cpu != raw_smp_processor_id())
if (!cpu_isset(cpu, cpus)) {
cpu_set(cpu, cpus);
++needed;
}
}
/*
* We really want smp_call_function_mask() here. But that's not
* available, so ipi all cpus in parallel and wait for them
* to complete.
*/
for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
while (atomic_read(&completed) != needed) {
cpu_relax();
barrier();
}
}
int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
{
struct page *page;
int r;
mutex_init(&vcpu->mutex);
vcpu->cpu = -1;
vcpu->mmu.root_hpa = INVALID_PAGE;
vcpu->kvm = kvm;
vcpu->vcpu_id = id;
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!page) {
r = -ENOMEM;
goto fail;
}
vcpu->run = page_address(page);
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!page) {
r = -ENOMEM;
goto fail_free_run;
}
vcpu->pio_data = page_address(page);
vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
FX_IMAGE_ALIGN);
vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
r = kvm_mmu_create(vcpu);
if (r < 0)
goto fail_free_pio_data;
return 0;
fail_free_pio_data:
free_page((unsigned long)vcpu->pio_data);
fail_free_run:
free_page((unsigned long)vcpu->run);
fail:
return -ENOMEM;
}
EXPORT_SYMBOL_GPL(kvm_vcpu_init);
void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
{
kvm_mmu_destroy(vcpu);
free_page((unsigned long)vcpu->pio_data);
free_page((unsigned long)vcpu->run);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
static struct kvm *kvm_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
if (!kvm)
return ERR_PTR(-ENOMEM);
kvm_io_bus_init(&kvm->pio_bus);
mutex_init(&kvm->lock);
INIT_LIST_HEAD(&kvm->active_mmu_pages);
kvm_io_bus_init(&kvm->mmio_bus);
spin_lock(&kvm_lock);
list_add(&kvm->vm_list, &vm_list);
spin_unlock(&kvm_lock);
return kvm;
}
static int kvm_dev_open(struct inode *inode, struct file *filp)
{
return 0;
}
/*
* Free any memory in @free but not in @dont.
*/
static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
int i;
if (!dont || free->phys_mem != dont->phys_mem)
if (free->phys_mem) {
for (i = 0; i < free->npages; ++i)
if (free->phys_mem[i])
__free_page(free->phys_mem[i]);
vfree(free->phys_mem);
}
if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
vfree(free->dirty_bitmap);
free->phys_mem = NULL;
free->npages = 0;
free->dirty_bitmap = NULL;
}
static void kvm_free_physmem(struct kvm *kvm)
{
int i;
for (i = 0; i < kvm->nmemslots; ++i)
kvm_free_physmem_slot(&kvm->memslots[i], NULL);
}
static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
{
int i;
for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
if (vcpu->pio.guest_pages[i]) {
__free_page(vcpu->pio.guest_pages[i]);
vcpu->pio.guest_pages[i] = NULL;
}
}
static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
vcpu_load(vcpu);
kvm_mmu_unload(vcpu);
vcpu_put(vcpu);
}
static void kvm_free_vcpus(struct kvm *kvm)
{
unsigned int i;
/*
* Unpin any mmu pages first.
*/
for (i = 0; i < KVM_MAX_VCPUS; ++i)
if (kvm->vcpus[i])
kvm_unload_vcpu_mmu(kvm->vcpus[i]);
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
if (kvm->vcpus[i]) {
kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
kvm->vcpus[i] = NULL;
}
}
}
static int kvm_dev_release(struct inode *inode, struct file *filp)
{
return 0;
}
static void kvm_destroy_vm(struct kvm *kvm)
{
spin_lock(&kvm_lock);
list_del(&kvm->vm_list);
spin_unlock(&kvm_lock);
kvm_io_bus_destroy(&kvm->pio_bus);
kvm_io_bus_destroy(&kvm->mmio_bus);
kvm_free_vcpus(kvm);
kvm_free_physmem(kvm);
kfree(kvm);
}
static int kvm_vm_release(struct inode *inode, struct file *filp)
{
struct kvm *kvm = filp->private_data;
kvm_destroy_vm(kvm);
return 0;
}
static void inject_gp(struct kvm_vcpu *vcpu)
{
kvm_arch_ops->inject_gp(vcpu, 0);
}
/*
* Load the pae pdptrs. Return true is they are all valid.
*/
static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
{
gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
int i;
u64 *pdpt;
int ret;
struct page *page;
u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
mutex_lock(&vcpu->kvm->lock);
page = gfn_to_page(vcpu->kvm, pdpt_gfn);
if (!page) {
ret = 0;
goto out;
}
pdpt = kmap_atomic(page, KM_USER0);
memcpy(pdpte, pdpt+offset, sizeof(pdpte));
kunmap_atomic(pdpt, KM_USER0);
for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
ret = 0;
goto out;
}
}
ret = 1;
memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
out:
mutex_unlock(&vcpu->kvm->lock);
return ret;
}
void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
if (cr0 & CR0_RESERVED_BITS) {
printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
cr0, vcpu->cr0);
inject_gp(vcpu);
return;
}
if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
inject_gp(vcpu);
return;
}
if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
"and a clear PE flag\n");
inject_gp(vcpu);
return;
}
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
#ifdef CONFIG_X86_64
if ((vcpu->shadow_efer & EFER_LME)) {
int cs_db, cs_l;
if (!is_pae(vcpu)) {
printk(KERN_DEBUG "set_cr0: #GP, start paging "
"in long mode while PAE is disabled\n");
inject_gp(vcpu);
return;
}
kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
if (cs_l) {
printk(KERN_DEBUG "set_cr0: #GP, start paging "
"in long mode while CS.L == 1\n");
inject_gp(vcpu);
return;
}
} else
#endif
if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
"reserved bits\n");
inject_gp(vcpu);
return;
}
}
kvm_arch_ops->set_cr0(vcpu, cr0);
vcpu->cr0 = cr0;
mutex_lock(&vcpu->kvm->lock);
kvm_mmu_reset_context(vcpu);
mutex_unlock(&vcpu->kvm->lock);
return;
}
EXPORT_SYMBOL_GPL(set_cr0);
void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
{
set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
}
EXPORT_SYMBOL_GPL(lmsw);
void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
if (cr4 & CR4_RESERVED_BITS) {
printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
inject_gp(vcpu);
return;
}
if (is_long_mode(vcpu)) {
if (!(cr4 & X86_CR4_PAE)) {
printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
"in long mode\n");
inject_gp(vcpu);
return;
}
} else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
&& !load_pdptrs(vcpu, vcpu->cr3)) {
printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
inject_gp(vcpu);
return;
}
if (cr4 & X86_CR4_VMXE) {
printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
inject_gp(vcpu);
return;
}
kvm_arch_ops->set_cr4(vcpu, cr4);
mutex_lock(&vcpu->kvm->lock);
kvm_mmu_reset_context(vcpu);
mutex_unlock(&vcpu->kvm->lock);
}
EXPORT_SYMBOL_GPL(set_cr4);
void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
if (is_long_mode(vcpu)) {
if (cr3 & CR3_L_MODE_RESERVED_BITS) {
printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
inject_gp(vcpu);
return;
}
} else {
if (is_pae(vcpu)) {
if (cr3 & CR3_PAE_RESERVED_BITS) {
printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
inject_gp(vcpu);
return;
}
if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
"reserved bits\n");
inject_gp(vcpu);
return;
}
} else {
if (cr3 & CR3_NONPAE_RESERVED_BITS) {
printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
inject_gp(vcpu);
return;
}
}
}
vcpu->cr3 = cr3;
mutex_lock(&vcpu->kvm->lock);
/*
* Does the new cr3 value map to physical memory? (Note, we
* catch an invalid cr3 even in real-mode, because it would
* cause trouble later on when we turn on paging anyway.)
*
* A real CPU would silently accept an invalid cr3 and would
* attempt to use it - with largely undefined (and often hard
* to debug) behavior on the guest side.
*/
if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
inject_gp(vcpu);
else
vcpu->mmu.new_cr3(vcpu);
mutex_unlock(&vcpu->kvm->lock);
}
EXPORT_SYMBOL_GPL(set_cr3);
void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
{
if (cr8 & CR8_RESERVED_BITS) {
printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
inject_gp(vcpu);
return;
}
vcpu->cr8 = cr8;
}
EXPORT_SYMBOL_GPL(set_cr8);
void fx_init(struct kvm_vcpu *vcpu)
{
struct __attribute__ ((__packed__)) fx_image_s {
u16 control; //fcw
u16 status; //fsw
u16 tag; // ftw
u16 opcode; //fop
u64 ip; // fpu ip
u64 operand;// fpu dp
u32 mxcsr;
u32 mxcsr_mask;
} *fx_image;
/* Initialize guest FPU by resetting ours and saving into guest's */
preempt_disable();
fx_save(vcpu->host_fx_image);
fpu_init();
fx_save(vcpu->guest_fx_image);
fx_restore(vcpu->host_fx_image);
preempt_enable();
fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
fx_image->mxcsr = 0x1f80;
memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
}
EXPORT_SYMBOL_GPL(fx_init);
/*
* Allocate some memory and give it an address in the guest physical address
* space.
*
* Discontiguous memory is allowed, mostly for framebuffers.
*/
static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
struct kvm_memory_region *mem)
{
int r;
gfn_t base_gfn;
unsigned long npages;
unsigned long i;
struct kvm_memory_slot *memslot;
struct kvm_memory_slot old, new;
int memory_config_version;
r = -EINVAL;
/* General sanity checks */
if (mem->memory_size & (PAGE_SIZE - 1))
goto out;
if (mem->guest_phys_addr & (PAGE_SIZE - 1))
goto out;
if (mem->slot >= KVM_MEMORY_SLOTS)
goto out;
if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
goto out;
memslot = &kvm->memslots[mem->slot];
base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
npages = mem->memory_size >> PAGE_SHIFT;
if (!npages)
mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
raced:
mutex_lock(&kvm->lock);
memory_config_version = kvm->memory_config_version;
new = old = *memslot;
new.base_gfn = base_gfn;
new.npages = npages;
new.flags = mem->flags;
/* Disallow changing a memory slot's size. */
r = -EINVAL;
if (npages && old.npages && npages != old.npages)
goto out_unlock;
/* Check for overlaps */
r = -EEXIST;
for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
struct kvm_memory_slot *s = &kvm->memslots[i];
if (s == memslot)
continue;
if (!((base_gfn + npages <= s->base_gfn) ||
(base_gfn >= s->base_gfn + s->npages)))
goto out_unlock;
}
/*
* Do memory allocations outside lock. memory_config_version will
* detect any races.
*/
mutex_unlock(&kvm->lock);
/* Deallocate if slot is being removed */
if (!npages)
new.phys_mem = NULL;
/* Free page dirty bitmap if unneeded */
if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
new.dirty_bitmap = NULL;
r = -ENOMEM;
/* Allocate if a slot is being created */
if (npages && !new.phys_mem) {
new.phys_mem = vmalloc(npages * sizeof(struct page *));
if (!new.phys_mem)
goto out_free;
memset(new.phys_mem, 0, npages * sizeof(struct page *));
for (i = 0; i < npages; ++i) {
new.phys_mem[i] = alloc_page(GFP_HIGHUSER
| __GFP_ZERO);
if (!new.phys_mem[i])
goto out_free;
set_page_private(new.phys_mem[i],0);
}
}
/* Allocate page dirty bitmap if needed */
if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
new.dirty_bitmap = vmalloc(dirty_bytes);
if (!new.dirty_bitmap)
goto out_free;
memset(new.dirty_bitmap, 0, dirty_bytes);
}
mutex_lock(&kvm->lock);
if (memory_config_version != kvm->memory_config_version) {
mutex_unlock(&kvm->lock);
kvm_free_physmem_slot(&new, &old);
goto raced;
}
r = -EAGAIN;
if (kvm->busy)
goto out_unlock;
if (mem->slot >= kvm->nmemslots)
kvm->nmemslots = mem->slot + 1;
*memslot = new;
++kvm->memory_config_version;
kvm_mmu_slot_remove_write_access(kvm, mem->slot);
kvm_flush_remote_tlbs(kvm);
mutex_unlock(&kvm->lock);
kvm_free_physmem_slot(&old, &new);
return 0;
out_unlock:
mutex_unlock(&kvm->lock);
out_free:
kvm_free_physmem_slot(&new, &old);
out:
return r;
}
/*
* Get (and clear) the dirty memory log for a memory slot.
*/
static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log)
{
struct kvm_memory_slot *memslot;
int r, i;
int n;
unsigned long any = 0;
mutex_lock(&kvm->lock);
/*
* Prevent changes to guest memory configuration even while the lock
* is not taken.
*/
++kvm->busy;
mutex_unlock(&kvm->lock);
r = -EINVAL;
if (log->slot >= KVM_MEMORY_SLOTS)
goto out;
memslot = &kvm->memslots[log->slot];
r = -ENOENT;
if (!memslot->dirty_bitmap)
goto out;
n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
for (i = 0; !any && i < n/sizeof(long); ++i)
any = memslot->dirty_bitmap[i];
r = -EFAULT;
if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
goto out;
mutex_lock(&kvm->lock);
kvm_mmu_slot_remove_write_access(kvm, log->slot);
kvm_flush_remote_tlbs(kvm);
memset(memslot->dirty_bitmap, 0, n);
mutex_unlock(&kvm->lock);
r = 0;
out:
mutex_lock(&kvm->lock);
--kvm->busy;
mutex_unlock(&kvm->lock);
return r;
}
/*
* Set a new alias region. Aliases map a portion of physical memory into
* another portion. This is useful for memory windows, for example the PC
* VGA region.
*/
static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
struct kvm_memory_alias *alias)
{
int r, n;
struct kvm_mem_alias *p;
r = -EINVAL;
/* General sanity checks */
if (alias->memory_size & (PAGE_SIZE - 1))
goto out;
if (alias->guest_phys_addr & (PAGE_SIZE - 1))
goto out;
if (alias->slot >= KVM_ALIAS_SLOTS)
goto out;
if (alias->guest_phys_addr + alias->memory_size
< alias->guest_phys_addr)
goto out;
if (alias->target_phys_addr + alias->memory_size
< alias->target_phys_addr)
goto out;
mutex_lock(&kvm->lock);
p = &kvm->aliases[alias->slot];
p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
p->npages = alias->memory_size >> PAGE_SHIFT;
p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
for (n = KVM_ALIAS_SLOTS; n > 0; --n)
if (kvm->aliases[n - 1].npages)
break;
kvm->naliases = n;
kvm_mmu_zap_all(kvm);
mutex_unlock(&kvm->lock);
return 0;
out:
return r;
}
static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
{
int i;
struct kvm_mem_alias *alias;
for (i = 0; i < kvm->naliases; ++i) {
alias = &kvm->aliases[i];
if (gfn >= alias->base_gfn
&& gfn < alias->base_gfn + alias->npages)
return alias->target_gfn + gfn - alias->base_gfn;
}
return gfn;
}
static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
{
int i;
for (i = 0; i < kvm->nmemslots; ++i) {
struct kvm_memory_slot *memslot = &kvm->memslots[i];
if (gfn >= memslot->base_gfn
&& gfn < memslot->base_gfn + memslot->npages)
return memslot;
}
return NULL;
}
struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
{
gfn = unalias_gfn(kvm, gfn);
return __gfn_to_memslot(kvm, gfn);
}
struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
{
struct kvm_memory_slot *slot;
gfn = unalias_gfn(kvm, gfn);
slot = __gfn_to_memslot(kvm, gfn);
if (!slot)
return NULL;
return slot->phys_mem[gfn - slot->base_gfn];
}
EXPORT_SYMBOL_GPL(gfn_to_page);
void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
{
int i;
struct kvm_memory_slot *memslot;
unsigned long rel_gfn;
for (i = 0; i < kvm->nmemslots; ++i) {
memslot = &kvm->memslots[i];
if (gfn >= memslot->base_gfn
&& gfn < memslot->base_gfn + memslot->npages) {
if (!memslot->dirty_bitmap)
return;
rel_gfn = gfn - memslot->base_gfn;
/* avoid RMW */
if (!test_bit(rel_gfn, memslot->dirty_bitmap))
set_bit(rel_gfn, memslot->dirty_bitmap);
return;
}
}
}
int emulator_read_std(unsigned long addr,
void *val,
unsigned int bytes,
struct kvm_vcpu *vcpu)
{
void *data = val;
while (bytes) {
gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
unsigned offset = addr & (PAGE_SIZE-1);
unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
unsigned long pfn;
struct page *page;
void *page_virt;
if (gpa == UNMAPPED_GVA)
return X86EMUL_PROPAGATE_FAULT;
pfn = gpa >> PAGE_SHIFT;
page = gfn_to_page(vcpu->kvm, pfn);
if (!page)
return X86EMUL_UNHANDLEABLE;
page_virt = kmap_atomic(page, KM_USER0);
memcpy(data, page_virt + offset, tocopy);
kunmap_atomic(page_virt, KM_USER0);
bytes -= tocopy;
data += tocopy;
addr += tocopy;
}
return X86EMUL_CONTINUE;
}
EXPORT_SYMBOL_GPL(emulator_read_std);
static int emulator_write_std(unsigned long addr,
const void *val,
unsigned int bytes,
struct kvm_vcpu *vcpu)
{
printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
addr, bytes);
return X86EMUL_UNHANDLEABLE;
}
static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
gpa_t addr)
{
/*
* Note that its important to have this wrapper function because
* in the very near future we will be checking for MMIOs against
* the LAPIC as well as the general MMIO bus
*/
return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
}
static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
gpa_t addr)
{
return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
}
static int emulator_read_emulated(unsigned long addr,
void *val,
unsigned int bytes,
struct kvm_vcpu *vcpu)
{
struct kvm_io_device *mmio_dev;
gpa_t gpa;
if (vcpu->mmio_read_completed) {
memcpy(val, vcpu->mmio_data, bytes);
vcpu->mmio_read_completed = 0;
return X86EMUL_CONTINUE;
} else if (emulator_read_std(addr, val, bytes, vcpu)
== X86EMUL_CONTINUE)
return X86EMUL_CONTINUE;
gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
if (gpa == UNMAPPED_GVA)
return X86EMUL_PROPAGATE_FAULT;
/*
* Is this MMIO handled locally?
*/
mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
if (mmio_dev) {
kvm_iodevice_read(mmio_dev, gpa, bytes, val);
return X86EMUL_CONTINUE;
}
vcpu->mmio_needed = 1;
vcpu->mmio_phys_addr = gpa;
vcpu->mmio_size = bytes;
vcpu->mmio_is_write = 0;
return X86EMUL_UNHANDLEABLE;
}
static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
const void *val, int bytes)
{
struct page *page;
void *virt;
if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
return 0;
page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
if (!page)
return 0;
mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
virt = kmap_atomic(page, KM_USER0);
kvm_mmu_pte_write(vcpu, gpa, val, bytes);
memcpy(virt + offset_in_page(gpa), val, bytes);
kunmap_atomic(virt, KM_USER0);
return 1;
}
static int emulator_write_emulated_onepage(unsigned long addr,
const void *val,
unsigned int bytes,
struct kvm_vcpu *vcpu)
{
struct kvm_io_device *mmio_dev;
gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
if (gpa == UNMAPPED_GVA) {
kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
return X86EMUL_PROPAGATE_FAULT;
}
if (emulator_write_phys(vcpu, gpa, val, bytes))
return X86EMUL_CONTINUE;
/*
* Is this MMIO handled locally?
*/
mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
if (mmio_dev) {
kvm_iodevice_write(mmio_dev, gpa, bytes, val);
return X86EMUL_CONTINUE;
}
vcpu->mmio_needed = 1;
vcpu->mmio_phys_addr = gpa;
vcpu->mmio_size = bytes;
vcpu->mmio_is_write = 1;
memcpy(vcpu->mmio_data, val, bytes);
return X86EMUL_CONTINUE;
}
int emulator_write_emulated(unsigned long addr,
const void *val,
unsigned int bytes,
struct kvm_vcpu *vcpu)
{
/* Crossing a page boundary? */
if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
int rc, now;
now = -addr & ~PAGE_MASK;
rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
if (rc != X86EMUL_CONTINUE)
return rc;
addr += now;
val += now;
bytes -= now;
}
return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
}
EXPORT_SYMBOL_GPL(emulator_write_emulated);
static int emulator_cmpxchg_emulated(unsigned long addr,
const void *old,
const void *new,
unsigned int bytes,
struct kvm_vcpu *vcpu)
{
static int reported;
if (!reported) {
reported = 1;
printk(KERN_WARNING "kvm: emulating exchange as write\n");
}
return emulator_write_emulated(addr, new, bytes, vcpu);
}
static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
return kvm_arch_ops->get_segment_base(vcpu, seg);
}
int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
{
return X86EMUL_CONTINUE;
}
int emulate_clts(struct kvm_vcpu *vcpu)
{
unsigned long cr0;
cr0 = vcpu->cr0 & ~X86_CR0_TS;
kvm_arch_ops->set_cr0(vcpu, cr0);
return X86EMUL_CONTINUE;
}
int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
switch (dr) {
case 0 ... 3:
*dest = kvm_arch_ops->get_dr(vcpu, dr);
return X86EMUL_CONTINUE;
default:
printk(KERN_DEBUG "%s: unexpected dr %u\n",
__FUNCTION__, dr);
return X86EMUL_UNHANDLEABLE;
}
}
int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
{
unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
int exception;
kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
if (exception) {
/* FIXME: better handling */
return X86EMUL_UNHANDLEABLE;
}
return X86EMUL_CONTINUE;
}
static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
{
static int reported;
u8 opcodes[4];
unsigned long rip = ctxt->vcpu->rip;
unsigned long rip_linear;
rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
if (reported)
return;
emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
printk(KERN_ERR "emulation failed but !mmio_needed?"
" rip %lx %02x %02x %02x %02x\n",
rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
reported = 1;
}
struct x86_emulate_ops emulate_ops = {
.read_std = emulator_read_std,
.write_std = emulator_write_std,
.read_emulated = emulator_read_emulated,
.write_emulated = emulator_write_emulated,
.cmpxchg_emulated = emulator_cmpxchg_emulated,
};
int emulate_instruction(struct kvm_vcpu *vcpu,
struct kvm_run *run,
unsigned long cr2,
u16 error_code)
{
struct x86_emulate_ctxt emulate_ctxt;
int r;
int cs_db, cs_l;
vcpu->mmio_fault_cr2 = cr2;
kvm_arch_ops->cache_regs(vcpu);
kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
emulate_ctxt.vcpu = vcpu;
emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
emulate_ctxt.cr2 = cr2;
emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
? X86EMUL_MODE_REAL : cs_l
? X86EMUL_MODE_PROT64 : cs_db
? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
emulate_ctxt.cs_base = 0;
emulate_ctxt.ds_base = 0;
emulate_ctxt.es_base = 0;
emulate_ctxt.ss_base = 0;
} else {
emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
}
emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
vcpu->mmio_is_write = 0;
r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
if ((r || vcpu->mmio_is_write) && run) {
run->exit_reason = KVM_EXIT_MMIO;
run->mmio.phys_addr = vcpu->mmio_phys_addr;
memcpy(run->mmio.data, vcpu->mmio_data, 8);
run->mmio.len = vcpu->mmio_size;
run->mmio.is_write = vcpu->mmio_is_write;
}
if (r) {
if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
return EMULATE_DONE;
if (!vcpu->mmio_needed) {
report_emulation_failure(&emulate_ctxt);
return EMULATE_FAIL;
}
return EMULATE_DO_MMIO;
}
kvm_arch_ops->decache_regs(vcpu);
kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
if (vcpu->mmio_is_write) {
vcpu->mmio_needed = 0;
return EMULATE_DO_MMIO;
}
return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(emulate_instruction);
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
if (vcpu->irq_summary)
return 1;
vcpu->run->exit_reason = KVM_EXIT_HLT;
++vcpu->stat.halt_exits;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt);
int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
kvm_arch_ops->cache_regs(vcpu);
ret = -KVM_EINVAL;
#ifdef CONFIG_X86_64
if (is_long_mode(vcpu)) {
nr = vcpu->regs[VCPU_REGS_RAX];
a0 = vcpu->regs[VCPU_REGS_RDI];
a1 = vcpu->regs[VCPU_REGS_RSI];
a2 = vcpu->regs[VCPU_REGS_RDX];
a3 = vcpu->regs[VCPU_REGS_RCX];
a4 = vcpu->regs[VCPU_REGS_R8];
a5 = vcpu->regs[VCPU_REGS_R9];
} else
#endif
{
nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
}
switch (nr) {
default:
run->hypercall.nr = nr;
run->hypercall.args[0] = a0;
run->hypercall.args[1] = a1;
run->hypercall.args[2] = a2;
run->hypercall.args[3] = a3;
run->hypercall.args[4] = a4;
run->hypercall.args[5] = a5;
run->hypercall.ret = ret;
run->hypercall.longmode = is_long_mode(vcpu);
kvm_arch_ops->decache_regs(vcpu);
return 0;
}
vcpu->regs[VCPU_REGS_RAX] = ret;
kvm_arch_ops->decache_regs(vcpu);
return 1;
}
EXPORT_SYMBOL_GPL(kvm_hypercall);
static u64 mk_cr_64(u64 curr_cr, u32 new_val)
{
return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
}
void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
struct descriptor_table dt = { limit, base };
kvm_arch_ops->set_gdt(vcpu, &dt);
}
void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
struct descriptor_table dt = { limit, base };
kvm_arch_ops->set_idt(vcpu, &dt);
}
void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
unsigned long *rflags)
{
lmsw(vcpu, msw);
*rflags = kvm_arch_ops->get_rflags(vcpu);
}
unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
{
kvm_arch_ops->decache_cr4_guest_bits(vcpu);
switch (cr) {
case 0:
return vcpu->cr0;
case 2:
return vcpu->cr2;
case 3:
return vcpu->cr3;
case 4:
return vcpu->cr4;
default:
vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
return 0;
}
}
void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
unsigned long *rflags)
{
switch (cr) {
case 0:
set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
*rflags = kvm_arch_ops->get_rflags(vcpu);
break;
case 2:
vcpu->cr2 = val;
break;
case 3:
set_cr3(vcpu, val);
break;
case 4:
set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
break;
default:
vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
}
}
/*
* Register the para guest with the host:
*/
static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
{
struct kvm_vcpu_para_state *para_state;
hpa_t para_state_hpa, hypercall_hpa;
struct page *para_state_page;
unsigned char *hypercall;
gpa_t hypercall_gpa;
printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
/*
* Needs to be page aligned:
*/
if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
goto err_gp;
para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
if (is_error_hpa(para_state_hpa))
goto err_gp;
mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
para_state = kmap(para_state_page);
printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
printk(KERN_DEBUG ".... size: %d\n", para_state->size);
para_state->host_version = KVM_PARA_API_VERSION;
/*
* We cannot support guests that try to register themselves
* with a newer API version than the host supports:
*/
if (para_state->guest_version > KVM_PARA_API_VERSION) {
para_state->ret = -KVM_EINVAL;
goto err_kunmap_skip;
}
hypercall_gpa = para_state->hypercall_gpa;
hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
if (is_error_hpa(hypercall_hpa)) {
para_state->ret = -KVM_EINVAL;
goto err_kunmap_skip;
}
printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
vcpu->para_state_page = para_state_page;
vcpu->para_state_gpa = para_state_gpa;
vcpu->hypercall_gpa = hypercall_gpa;
mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
kvm_arch_ops->patch_hypercall(vcpu, hypercall);
kunmap_atomic(hypercall, KM_USER1);
para_state->ret = 0;
err_kunmap_skip:
kunmap(para_state_page);
return 0;
err_gp:
return 1;
}
int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
u64 data;
switch (msr) {
case 0xc0010010: /* SYSCFG */
case 0xc0010015: /* HWCR */
case MSR_IA32_PLATFORM_ID:
case MSR_IA32_P5_MC_ADDR:
case MSR_IA32_P5_MC_TYPE:
case MSR_IA32_MC0_CTL:
case MSR_IA32_MCG_STATUS:
case MSR_IA32_MCG_CAP:
case MSR_IA32_MC0_MISC:
case MSR_IA32_MC0_MISC+4:
case MSR_IA32_MC0_MISC+8:
case MSR_IA32_MC0_MISC+12:
case MSR_IA32_MC0_MISC+16:
case MSR_IA32_UCODE_REV:
case MSR_IA32_PERF_STATUS:
case MSR_IA32_EBL_CR_POWERON:
/* MTRR registers */
case 0xfe:
case 0x200 ... 0x2ff:
data = 0;
break;
case 0xcd: /* fsb frequency */
data = 3;
break;
case MSR_IA32_APICBASE:
data = vcpu->apic_base;
break;
case MSR_IA32_MISC_ENABLE:
data = vcpu->ia32_misc_enable_msr;
break;
#ifdef CONFIG_X86_64
case MSR_EFER:
data = vcpu->shadow_efer;
break;
#endif
default:
printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
return 1;
}
*pdata = data;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_msr_common);
/*
* Reads an msr value (of 'msr_index') into 'pdata'.
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
}
#ifdef CONFIG_X86_64
static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
if (efer & EFER_RESERVED_BITS) {
printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
efer);
inject_gp(vcpu);
return;
}
if (is_paging(vcpu)
&& (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
inject_gp(vcpu);
return;
}
kvm_arch_ops->set_efer(vcpu, efer);
efer &= ~EFER_LMA;
efer |= vcpu->shadow_efer & EFER_LMA;
vcpu->shadow_efer = efer;
}
#endif
int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
switch (msr) {
#ifdef CONFIG_X86_64
case MSR_EFER:
set_efer(vcpu, data);
break;
#endif
case MSR_IA32_MC0_STATUS:
printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
__FUNCTION__, data);
break;
case MSR_IA32_MCG_STATUS:
printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
__FUNCTION__, data);
break;
case MSR_IA32_UCODE_REV:
case MSR_IA32_UCODE_WRITE:
case 0x200 ... 0x2ff: /* MTRRs */
break;
case MSR_IA32_APICBASE:
vcpu->apic_base = data;
break;
case MSR_IA32_MISC_ENABLE:
vcpu->ia32_misc_enable_msr = data;
break;
/*
* This is the 'probe whether the host is KVM' logic:
*/
case MSR_KVM_API_MAGIC:
return vcpu_register_para(vcpu, data);
default:
printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_msr_common);
/*
* Writes msr value into into the appropriate "register".
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
return kvm_arch_ops->set_msr(vcpu, msr_index, data);
}
void kvm_resched(struct kvm_vcpu *vcpu)
{
if (!need_resched())
return;
cond_resched();
}
EXPORT_SYMBOL_GPL(kvm_resched);
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
int i;
u32 function;
struct kvm_cpuid_entry *e, *best;
kvm_arch_ops->cache_regs(vcpu);
function = vcpu->regs[VCPU_REGS_RAX];
vcpu->regs[VCPU_REGS_RAX] = 0;
vcpu->regs[VCPU_REGS_RBX] = 0;
vcpu->regs[VCPU_REGS_RCX] = 0;
vcpu->regs[VCPU_REGS_RDX] = 0;
best = NULL;
for (i = 0; i < vcpu->cpuid_nent; ++i) {
e = &vcpu->cpuid_entries[i];
if (e->function == function) {
best = e;
break;
}
/*
* Both basic or both extended?
*/
if (((e->function ^ function) & 0x80000000) == 0)
if (!best || e->function > best->function)
best = e;
}
if (best) {
vcpu->regs[VCPU_REGS_RAX] = best->eax;
vcpu->regs[VCPU_REGS_RBX] = best->ebx;
vcpu->regs[VCPU_REGS_RCX] = best->ecx;
vcpu->regs[VCPU_REGS_RDX] = best->edx;
}
kvm_arch_ops->decache_regs(vcpu);
kvm_arch_ops->skip_emulated_instruction(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
static int pio_copy_data(struct kvm_vcpu *vcpu)
{
void *p = vcpu->pio_data;
void *q;
unsigned bytes;
int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
PAGE_KERNEL);
if (!q) {
free_pio_guest_pages(vcpu);
return -ENOMEM;
}
q += vcpu->pio.guest_page_offset;
bytes = vcpu->pio.size * vcpu->pio.cur_count;
if (vcpu->pio.in)
memcpy(q, p, bytes);
else
memcpy(p, q, bytes);
q -= vcpu->pio.guest_page_offset;
vunmap(q);
free_pio_guest_pages(vcpu);
return 0;
}
static int complete_pio(struct kvm_vcpu *vcpu)
{
struct kvm_pio_request *io = &vcpu->pio;
long delta;
int r;
kvm_arch_ops->cache_regs(vcpu);
if (!io->string) {
if (io->in)
memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
io->size);
} else {
if (io->in) {
r = pio_copy_data(vcpu);
if (r) {
kvm_arch_ops->cache_regs(vcpu);
return r;
}
}
delta = 1;
if (io->rep) {
delta *= io->cur_count;
/*
* The size of the register should really depend on
* current address size.
*/
vcpu->regs[VCPU_REGS_RCX] -= delta;
}
if (io->down)
delta = -delta;
delta *= io->size;
if (io->in)
vcpu->regs[VCPU_REGS_RDI] += delta;
else
vcpu->regs[VCPU_REGS_RSI] += delta;
}
kvm_arch_ops->decache_regs(vcpu);
io->count -= io->cur_count;
io->cur_count = 0;
if (!io->count)
kvm_arch_ops->skip_emulated_instruction(vcpu);
return 0;
}
static void kernel_pio(struct kvm_io_device *pio_dev,
struct kvm_vcpu *vcpu,
void *pd)
{
/* TODO: String I/O for in kernel device */
if (vcpu->pio.in)
kvm_iodevice_read(pio_dev, vcpu->pio.port,
vcpu->pio.size,
pd);
else
kvm_iodevice_write(pio_dev, vcpu->pio.port,
vcpu->pio.size,
pd);
}
static void pio_string_write(struct kvm_io_device *pio_dev,
struct kvm_vcpu *vcpu)
{
struct kvm_pio_request *io = &vcpu->pio;
void *pd = vcpu->pio_data;
int i;
for (i = 0; i < io->cur_count; i++) {
kvm_iodevice_write(pio_dev, io->port,
io->size,
pd);
pd += io->size;
}
}
int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
int size, unsigned long count, int string, int down,
gva_t address, int rep, unsigned port)
{
unsigned now, in_page;
int i, ret = 0;
int nr_pages = 1;
struct page *page;
struct kvm_io_device *pio_dev;
vcpu->run->exit_reason = KVM_EXIT_IO;
vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
vcpu->run->io.size = size;
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
vcpu->run->io.count = count;
vcpu->run->io.port = port;
vcpu->pio.count = count;
vcpu->pio.cur_count = count;
vcpu->pio.size = size;
vcpu->pio.in = in;
vcpu->pio.port = port;
vcpu->pio.string = string;
vcpu->pio.down = down;
vcpu->pio.guest_page_offset = offset_in_page(address);
vcpu->pio.rep = rep;
pio_dev = vcpu_find_pio_dev(vcpu, port);
if (!string) {
kvm_arch_ops->cache_regs(vcpu);
memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
kvm_arch_ops->decache_regs(vcpu);
if (pio_dev) {
kernel_pio(pio_dev, vcpu, vcpu->pio_data);
complete_pio(vcpu);
return 1;
}
return 0;
}
if (!count) {
kvm_arch_ops->skip_emulated_instruction(vcpu);
return 1;
}
now = min(count, PAGE_SIZE / size);
if (!down)
in_page = PAGE_SIZE - offset_in_page(address);
else
in_page = offset_in_page(address) + size;
now = min(count, (unsigned long)in_page / size);
if (!now) {
/*
* String I/O straddles page boundary. Pin two guest pages
* so that we satisfy atomicity constraints. Do just one
* transaction to avoid complexity.
*/
nr_pages = 2;
now = 1;
}
if (down) {
/*
* String I/O in reverse. Yuck. Kill the guest, fix later.
*/
printk(KERN_ERR "kvm: guest string pio down\n");
inject_gp(vcpu);
return 1;
}
vcpu->run->io.count = now;
vcpu->pio.cur_count = now;
for (i = 0; i < nr_pages; ++i) {
mutex_lock(&vcpu->kvm->lock);
page = gva_to_page(vcpu, address + i * PAGE_SIZE);
if (page)
get_page(page);
vcpu->pio.guest_pages[i] = page;
mutex_unlock(&vcpu->kvm->lock);
if (!page) {
inject_gp(vcpu);
free_pio_guest_pages(vcpu);
return 1;
}
}
if (!vcpu->pio.in) {
/* string PIO write */
ret = pio_copy_data(vcpu);
if (ret >= 0 && pio_dev) {
pio_string_write(pio_dev, vcpu);
complete_pio(vcpu);
if (vcpu->pio.count == 0)
ret = 1;
}
} else if (pio_dev)
printk(KERN_ERR "no string pio read support yet, "
"port %x size %d count %ld\n",
port, size, count);
return ret;
}
EXPORT_SYMBOL_GPL(kvm_setup_pio);
static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
int r;
sigset_t sigsaved;
vcpu_load(vcpu);
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
/* re-sync apic's tpr */
vcpu->cr8 = kvm_run->cr8;
if (vcpu->pio.cur_count) {
r = complete_pio(vcpu);
if (r)
goto out;
}
if (vcpu->mmio_needed) {
memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
vcpu->mmio_read_completed = 1;
vcpu->mmio_needed = 0;
r = emulate_instruction(vcpu, kvm_run,
vcpu->mmio_fault_cr2, 0);
if (r == EMULATE_DO_MMIO) {
/*
* Read-modify-write. Back to userspace.
*/
r = 0;
goto out;
}
}
if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
kvm_arch_ops->cache_regs(vcpu);
vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
kvm_arch_ops->decache_regs(vcpu);
}
r = kvm_arch_ops->run(vcpu, kvm_run);
out:
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
vcpu_put(vcpu);
return r;
}
static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
struct kvm_regs *regs)
{
vcpu_load(vcpu);
kvm_arch_ops->cache_regs(vcpu);
regs->rax = vcpu->regs[VCPU_REGS_RAX];
regs->rbx = vcpu->regs[VCPU_REGS_RBX];
regs->rcx = vcpu->regs[VCPU_REGS_RCX];
regs->rdx = vcpu->regs[VCPU_REGS_RDX];
regs->rsi = vcpu->regs[VCPU_REGS_RSI];
regs->rdi = vcpu->regs[VCPU_REGS_RDI];
regs->rsp = vcpu->regs[VCPU_REGS_RSP];
regs->rbp = vcpu->regs[VCPU_REGS_RBP];
#ifdef CONFIG_X86_64
regs->r8 = vcpu->regs[VCPU_REGS_R8];
regs->r9 = vcpu->regs[VCPU_REGS_R9];
regs->r10 = vcpu->regs[VCPU_REGS_R10];
regs->r11 = vcpu->regs[VCPU_REGS_R11];
regs->r12 = vcpu->regs[VCPU_REGS_R12];
regs->r13 = vcpu->regs[VCPU_REGS_R13];
regs->r14 = vcpu->regs[VCPU_REGS_R14];
regs->r15 = vcpu->regs[VCPU_REGS_R15];
#endif
regs->rip = vcpu->rip;
regs->rflags = kvm_arch_ops->get_rflags(vcpu);
/*
* Don't leak debug flags in case they were set for guest debugging
*/
if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
vcpu_put(vcpu);
return 0;
}
static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
struct kvm_regs *regs)
{
vcpu_load(vcpu);
vcpu->regs[VCPU_REGS_RAX] = regs->rax;
vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
#ifdef CONFIG_X86_64
vcpu->regs[VCPU_REGS_R8] = regs->r8;
vcpu->regs[VCPU_REGS_R9] = regs->r9;
vcpu->regs[VCPU_REGS_R10] = regs->r10;
vcpu->regs[VCPU_REGS_R11] = regs->r11;
vcpu->regs[VCPU_REGS_R12] = regs->r12;
vcpu->regs[VCPU_REGS_R13] = regs->r13;
vcpu->regs[VCPU_REGS_R14] = regs->r14;
vcpu->regs[VCPU_REGS_R15] = regs->r15;
#endif
vcpu->rip = regs->rip;
kvm_arch_ops->set_rflags(vcpu, regs->rflags);
kvm_arch_ops->decache_regs(vcpu);
vcpu_put(vcpu);
return 0;
}
static void get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
return kvm_arch_ops->get_segment(vcpu, var, seg);
}
static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct descriptor_table dt;
vcpu_load(vcpu);
get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
kvm_arch_ops->get_idt(vcpu, &dt);
sregs->idt.limit = dt.limit;
sregs->idt.base = dt.base;
kvm_arch_ops->get_gdt(vcpu, &dt);
sregs->gdt.limit = dt.limit;
sregs->gdt.base = dt.base;
kvm_arch_ops->decache_cr4_guest_bits(vcpu);
sregs->cr0 = vcpu->cr0;
sregs->cr2 = vcpu->cr2;
sregs->cr3 = vcpu->cr3;
sregs->cr4 = vcpu->cr4;
sregs->cr8 = vcpu->cr8;
sregs->efer = vcpu->shadow_efer;
sregs->apic_base = vcpu->apic_base;
memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
sizeof sregs->interrupt_bitmap);
vcpu_put(vcpu);
return 0;
}
static void set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
return kvm_arch_ops->set_segment(vcpu, var, seg);
}
static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
int mmu_reset_needed = 0;
int i;
struct descriptor_table dt;
vcpu_load(vcpu);
dt.limit = sregs->idt.limit;
dt.base = sregs->idt.base;
kvm_arch_ops->set_idt(vcpu, &dt);
dt.limit = sregs->gdt.limit;
dt.base = sregs->gdt.base;
kvm_arch_ops->set_gdt(vcpu, &dt);
vcpu->cr2 = sregs->cr2;
mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
vcpu->cr3 = sregs->cr3;
vcpu->cr8 = sregs->cr8;
mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
#ifdef CONFIG_X86_64
kvm_arch_ops->set_efer(vcpu, sregs->efer);
#endif
vcpu->apic_base = sregs->apic_base;
kvm_arch_ops->decache_cr4_guest_bits(vcpu);
mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
if (!is_long_mode(vcpu) && is_pae(vcpu))
load_pdptrs(vcpu, vcpu->cr3);
if (mmu_reset_needed)
kvm_mmu_reset_context(vcpu);
memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
sizeof vcpu->irq_pending);
vcpu->irq_summary = 0;
for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
if (vcpu->irq_pending[i])
__set_bit(i, &vcpu->irq_summary);
set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
vcpu_put(vcpu);
return 0;
}
/*
* List of msr numbers which we expose to userspace through KVM_GET_MSRS
* and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
*
* This list is modified at module load time to reflect the
* capabilities of the host cpu.
*/
static u32 msrs_to_save[] = {
MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
MSR_K6_STAR,
#ifdef CONFIG_X86_64
MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
#endif
MSR_IA32_TIME_STAMP_COUNTER,
};
static unsigned num_msrs_to_save;
static u32 emulated_msrs[] = {
MSR_IA32_MISC_ENABLE,
};
static __init void kvm_init_msr_list(void)
{
u32 dummy[2];
unsigned i, j;
for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
continue;
if (j < i)
msrs_to_save[j] = msrs_to_save[i];
j++;
}
num_msrs_to_save = j;
}
/*
* Adapt set_msr() to msr_io()'s calling convention
*/
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
return kvm_set_msr(vcpu, index, *data);
}
/*
* Read or write a bunch of msrs. All parameters are kernel addresses.
*
* @return number of msrs set successfully.
*/
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
struct kvm_msr_entry *entries,
int (*do_msr)(struct kvm_vcpu *vcpu,
unsigned index, u64 *data))
{
int i;
vcpu_load(vcpu);
for (i = 0; i < msrs->nmsrs; ++i)
if (do_msr(vcpu, entries[i].index, &entries[i].data))
break;
vcpu_put(vcpu);
return i;
}
/*
* Read or write a bunch of msrs. Parameters are user addresses.
*
* @return number of msrs set successfully.
*/
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
int (*do_msr)(struct kvm_vcpu *vcpu,
unsigned index, u64 *data),
int writeback)
{
struct kvm_msrs msrs;
struct kvm_msr_entry *entries;
int r, n;
unsigned size;
r = -EFAULT;
if (copy_from_user(&msrs, user_msrs, sizeof msrs))
goto out;
r = -E2BIG;
if (msrs.nmsrs >= MAX_IO_MSRS)
goto out;
r = -ENOMEM;
size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
entries = vmalloc(size);
if (!entries)
goto out;
r = -EFAULT;
if (copy_from_user(entries, user_msrs->entries, size))
goto out_free;
r = n = __msr_io(vcpu, &msrs, entries, do_msr);
if (r < 0)
goto out_free;
r = -EFAULT;
if (writeback && copy_to_user(user_msrs->entries, entries, size))
goto out_free;
r = n;
out_free:
vfree(entries);
out:
return r;
}
/*
* Translate a guest virtual address to a guest physical address.
*/
static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
unsigned long vaddr = tr->linear_address;
gpa_t gpa;
vcpu_load(vcpu);
mutex_lock(&vcpu->kvm->lock);
gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
tr->physical_address = gpa;
tr->valid = gpa != UNMAPPED_GVA;
tr->writeable = 1;
tr->usermode = 0;
mutex_unlock(&vcpu->kvm->lock);
vcpu_put(vcpu);
return 0;
}
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
if (irq->irq < 0 || irq->irq >= 256)
return -EINVAL;
vcpu_load(vcpu);
set_bit(irq->irq, vcpu->irq_pending);
set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
vcpu_put(vcpu);
return 0;
}
static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
struct kvm_debug_guest *dbg)
{
int r;
vcpu_load(vcpu);
r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
vcpu_put(vcpu);
return r;
}
static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
unsigned long address,
int *type)
{
struct kvm_vcpu *vcpu = vma->vm_file->private_data;
unsigned long pgoff;
struct page *page;
pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
if (pgoff == 0)
page = virt_to_page(vcpu->run);
else if (pgoff == KVM_PIO_PAGE_OFFSET)
page = virt_to_page(vcpu->pio_data);
else
return NOPAGE_SIGBUS;
get_page(page);
if (type != NULL)
*type = VM_FAULT_MINOR;
return page;
}
static struct vm_operations_struct kvm_vcpu_vm_ops = {
.nopage = kvm_vcpu_nopage,
};
static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
{
vma->vm_ops = &kvm_vcpu_vm_ops;
return 0;
}
static int kvm_vcpu_release(struct inode *inode, struct file *filp)
{
struct kvm_vcpu *vcpu = filp->private_data;
fput(vcpu->kvm->filp);
return 0;
}
static struct file_operations kvm_vcpu_fops = {
.release = kvm_vcpu_release,
.unlocked_ioctl = kvm_vcpu_ioctl,
.compat_ioctl = kvm_vcpu_ioctl,
.mmap = kvm_vcpu_mmap,
};
/*
* Allocates an inode for the vcpu.
*/
static int create_vcpu_fd(struct kvm_vcpu *vcpu)
{
int fd, r;
struct inode *inode;
struct file *file;
r = anon_inode_getfd(&fd, &inode, &file,
"kvm-vcpu", &kvm_vcpu_fops, vcpu);
if (r)
return r;
atomic_inc(&vcpu->kvm->filp->f_count);
return fd;
}
/*
* Creates some virtual cpus. Good luck creating more than one.
*/
static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
{
int r;
struct kvm_vcpu *vcpu;
if (!valid_vcpu(n))
return -EINVAL;
vcpu = kvm_arch_ops->vcpu_create(kvm, n);
if (IS_ERR(vcpu))
return PTR_ERR(vcpu);
preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
vcpu_load(vcpu);
r = kvm_mmu_setup(vcpu);
vcpu_put(vcpu);
if (r < 0)
goto free_vcpu;
mutex_lock(&kvm->lock);
if (kvm->vcpus[n]) {
r = -EEXIST;
mutex_unlock(&kvm->lock);
goto mmu_unload;
}
kvm->vcpus[n] = vcpu;
mutex_unlock(&kvm->lock);
/* Now it's all set up, let userspace reach it */
r = create_vcpu_fd(vcpu);
if (r < 0)
goto unlink;
return r;
unlink:
mutex_lock(&kvm->lock);
kvm->vcpus[n] = NULL;
mutex_unlock(&kvm->lock);
mmu_unload:
vcpu_load(vcpu);
kvm_mmu_unload(vcpu);
vcpu_put(vcpu);
free_vcpu:
kvm_arch_ops->vcpu_free(vcpu);
return r;
}
static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
{
u64 efer;
int i;
struct kvm_cpuid_entry *e, *entry;
rdmsrl(MSR_EFER, efer);
entry = NULL;
for (i = 0; i < vcpu->cpuid_nent; ++i) {
e = &vcpu->cpuid_entries[i];
if (e->function == 0x80000001) {
entry = e;
break;
}
}
if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
entry->edx &= ~(1 << 20);
printk(KERN_INFO "kvm: guest NX capability removed\n");
}
}
static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
struct kvm_cpuid *cpuid,
struct kvm_cpuid_entry __user *entries)
{
int r;
r = -E2BIG;
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
goto out;
r = -EFAULT;
if (copy_from_user(&vcpu->cpuid_entries, entries,
cpuid->nent * sizeof(struct kvm_cpuid_entry)))
goto out;
vcpu->cpuid_nent = cpuid->nent;
cpuid_fix_nx_cap(vcpu);
return 0;
out:
return r;
}
static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
{
if (sigset) {
sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
vcpu->sigset_active = 1;
vcpu->sigset = *sigset;
} else
vcpu->sigset_active = 0;
return 0;
}
/*
* fxsave fpu state. Taken from x86_64/processor.h. To be killed when
* we have asm/x86/processor.h
*/
struct fxsave {
u16 cwd;
u16 swd;
u16 twd;
u16 fop;
u64 rip;
u64 rdp;
u32 mxcsr;
u32 mxcsr_mask;
u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
#ifdef CONFIG_X86_64
u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
#else
u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
#endif
};
static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
vcpu_load(vcpu);
memcpy(fpu->fpr, fxsave->st_space, 128);
fpu->fcw = fxsave->cwd;
fpu->fsw = fxsave->swd;
fpu->ftwx = fxsave->twd;
fpu->last_opcode = fxsave->fop;
fpu->last_ip = fxsave->rip;
fpu->last_dp = fxsave->rdp;
memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
vcpu_put(vcpu);
return 0;
}
static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
vcpu_load(vcpu);
memcpy(fxsave->st_space, fpu->fpr, 128);
fxsave->cwd = fpu->fcw;
fxsave->swd = fpu->fsw;
fxsave->twd = fpu->ftwx;
fxsave->fop = fpu->last_opcode;
fxsave->rip = fpu->last_ip;
fxsave->rdp = fpu->last_dp;
memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
vcpu_put(vcpu);
return 0;
}
static long kvm_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
int r = -EINVAL;
switch (ioctl) {
case KVM_RUN:
r = -EINVAL;
if (arg)
goto out;
r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
break;
case KVM_GET_REGS: {
struct kvm_regs kvm_regs;
memset(&kvm_regs, 0, sizeof kvm_regs);
r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
goto out;
r = 0;
break;
}
case KVM_SET_REGS: {
struct kvm_regs kvm_regs;
r = -EFAULT;
if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
goto out;
r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
if (r)
goto out;
r = 0;
break;
}
case KVM_GET_SREGS: {
struct kvm_sregs kvm_sregs;
memset(&kvm_sregs, 0, sizeof kvm_sregs);
r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
goto out;
r = 0;
break;
}
case KVM_SET_SREGS: {
struct kvm_sregs kvm_sregs;
r = -EFAULT;
if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
goto out;
r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
if (r)
goto out;
r = 0;
break;
}
case KVM_TRANSLATE: {
struct kvm_translation tr;
r = -EFAULT;
if (copy_from_user(&tr, argp, sizeof tr))
goto out;
r = kvm_vcpu_ioctl_translate(vcpu, &tr);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &tr, sizeof tr))
goto out;
r = 0;
break;
}
case KVM_INTERRUPT: {
struct kvm_interrupt irq;
r = -EFAULT;
if (copy_from_user(&irq, argp, sizeof irq))
goto out;
r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
if (r)
goto out;
r = 0;
break;
}
case KVM_DEBUG_GUEST: {
struct kvm_debug_guest dbg;
r = -EFAULT;
if (copy_from_user(&dbg, argp, sizeof dbg))
goto out;
r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
if (r)
goto out;
r = 0;
break;
}
case KVM_GET_MSRS:
r = msr_io(vcpu, argp, kvm_get_msr, 1);
break;
case KVM_SET_MSRS:
r = msr_io(vcpu, argp, do_set_msr, 0);
break;
case KVM_SET_CPUID: {
struct kvm_cpuid __user *cpuid_arg = argp;
struct kvm_cpuid cpuid;
r = -EFAULT;
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
goto out;
r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
if (r)
goto out;
break;
}
case KVM_SET_SIGNAL_MASK: {
struct kvm_signal_mask __user *sigmask_arg = argp;
struct kvm_signal_mask kvm_sigmask;
sigset_t sigset, *p;
p = NULL;
if (argp) {
r = -EFAULT;
if (copy_from_user(&kvm_sigmask, argp,
sizeof kvm_sigmask))
goto out;
r = -EINVAL;
if (kvm_sigmask.len != sizeof sigset)
goto out;
r = -EFAULT;
if (copy_from_user(&sigset, sigmask_arg->sigset,
sizeof sigset))
goto out;
p = &sigset;
}
r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
break;
}
case KVM_GET_FPU: {
struct kvm_fpu fpu;
memset(&fpu, 0, sizeof fpu);
r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &fpu, sizeof fpu))
goto out;
r = 0;
break;
}
case KVM_SET_FPU: {
struct kvm_fpu fpu;
r = -EFAULT;
if (copy_from_user(&fpu, argp, sizeof fpu))
goto out;
r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
if (r)
goto out;
r = 0;
break;
}
default:
;
}
out:
return r;
}
static long kvm_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm = filp->private_data;
void __user *argp = (void __user *)arg;
int r = -EINVAL;
switch (ioctl) {
case KVM_CREATE_VCPU:
r = kvm_vm_ioctl_create_vcpu(kvm, arg);
if (r < 0)
goto out;
break;
case KVM_SET_MEMORY_REGION: {
struct kvm_memory_region kvm_mem;
r = -EFAULT;
if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
goto out;
r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
if (r)
goto out;
break;
}
case KVM_GET_DIRTY_LOG: {
struct kvm_dirty_log log;
r = -EFAULT;
if (copy_from_user(&log, argp, sizeof log))
goto out;
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
if (r)
goto out;
break;
}
case KVM_SET_MEMORY_ALIAS: {
struct kvm_memory_alias alias;
r = -EFAULT;
if (copy_from_user(&alias, argp, sizeof alias))
goto out;
r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
if (r)
goto out;
break;
}
default:
;
}
out:
return r;
}
static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
unsigned long address,
int *type)
{
struct kvm *kvm = vma->vm_file->private_data;
unsigned long pgoff;
struct page *page;
pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
page = gfn_to_page(kvm, pgoff);
if (!page)
return NOPAGE_SIGBUS;
get_page(page);
if (type != NULL)
*type = VM_FAULT_MINOR;
return page;
}
static struct vm_operations_struct kvm_vm_vm_ops = {
.nopage = kvm_vm_nopage,
};
static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
{
vma->vm_ops = &kvm_vm_vm_ops;
return 0;
}
static struct file_operations kvm_vm_fops = {
.release = kvm_vm_release,
.unlocked_ioctl = kvm_vm_ioctl,
.compat_ioctl = kvm_vm_ioctl,
.mmap = kvm_vm_mmap,
};
static int kvm_dev_ioctl_create_vm(void)
{
int fd, r;
struct inode *inode;
struct file *file;
struct kvm *kvm;
kvm = kvm_create_vm();
if (IS_ERR(kvm))
return PTR_ERR(kvm);
r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
if (r) {
kvm_destroy_vm(kvm);
return r;
}
kvm->filp = file;
return fd;
}
static long kvm_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
void __user *argp = (void __user *)arg;
long r = -EINVAL;
switch (ioctl) {
case KVM_GET_API_VERSION:
r = -EINVAL;
if (arg)
goto out;
r = KVM_API_VERSION;
break;
case KVM_CREATE_VM:
r = -EINVAL;
if (arg)
goto out;
r = kvm_dev_ioctl_create_vm();
break;
case KVM_GET_MSR_INDEX_LIST: {
struct kvm_msr_list __user *user_msr_list = argp;
struct kvm_msr_list msr_list;
unsigned n;
r = -EFAULT;
if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
goto out;
n = msr_list.nmsrs;
msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
goto out;
r = -E2BIG;
if (n < num_msrs_to_save)
goto out;
r = -EFAULT;
if (copy_to_user(user_msr_list->indices, &msrs_to_save,
num_msrs_to_save * sizeof(u32)))
goto out;
if (copy_to_user(user_msr_list->indices
+ num_msrs_to_save * sizeof(u32),
&emulated_msrs,
ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
goto out;
r = 0;
break;
}
case KVM_CHECK_EXTENSION:
/*
* No extensions defined at present.
*/
r = 0;
break;
case KVM_GET_VCPU_MMAP_SIZE:
r = -EINVAL;
if (arg)
goto out;
r = 2 * PAGE_SIZE;
break;
default:
;
}
out:
return r;
}
static struct file_operations kvm_chardev_ops = {
.open = kvm_dev_open,
.release = kvm_dev_release,
.unlocked_ioctl = kvm_dev_ioctl,
.compat_ioctl = kvm_dev_ioctl,
};
static struct miscdevice kvm_dev = {
KVM_MINOR,
"kvm",
&kvm_chardev_ops,
};
/*
* Make sure that a cpu that is being hot-unplugged does not have any vcpus
* cached on it.
*/
static void decache_vcpus_on_cpu(int cpu)
{
struct kvm *vm;
struct kvm_vcpu *vcpu;
int i;
spin_lock(&kvm_lock);
list_for_each_entry(vm, &vm_list, vm_list)
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
vcpu = vm->vcpus[i];
if (!vcpu)
continue;
/*
* If the vcpu is locked, then it is running on some
* other cpu and therefore it is not cached on the
* cpu in question.
*
* If it's not locked, check the last cpu it executed
* on.
*/
if (mutex_trylock(&vcpu->mutex)) {
if (vcpu->cpu == cpu) {
kvm_arch_ops->vcpu_decache(vcpu);
vcpu->cpu = -1;
}
mutex_unlock(&vcpu->mutex);
}
}
spin_unlock(&kvm_lock);
}
static void hardware_enable(void *junk)
{
int cpu = raw_smp_processor_id();
if (cpu_isset(cpu, cpus_hardware_enabled))
return;
cpu_set(cpu, cpus_hardware_enabled);
kvm_arch_ops->hardware_enable(NULL);
}
static void hardware_disable(void *junk)
{
int cpu = raw_smp_processor_id();
if (!cpu_isset(cpu, cpus_hardware_enabled))
return;
cpu_clear(cpu, cpus_hardware_enabled);
decache_vcpus_on_cpu(cpu);
kvm_arch_ops->hardware_disable(NULL);
}
static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
void *v)
{
int cpu = (long)v;
switch (val) {
case CPU_DYING:
case CPU_DYING_FROZEN:
printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
cpu);
hardware_disable(NULL);
break;
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
cpu);
smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
break;
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
cpu);
smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
break;
}
return NOTIFY_OK;
}
static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
void *v)
{
if (val == SYS_RESTART) {
/*
* Some (well, at least mine) BIOSes hang on reboot if
* in vmx root mode.
*/
printk(KERN_INFO "kvm: exiting hardware virtualization\n");
on_each_cpu(hardware_disable, NULL, 0, 1);
}
return NOTIFY_OK;
}
static struct notifier_block kvm_reboot_notifier = {
.notifier_call = kvm_reboot,
.priority = 0,
};
void kvm_io_bus_init(struct kvm_io_bus *bus)
{
memset(bus, 0, sizeof(*bus));
}
void kvm_io_bus_destroy(struct kvm_io_bus *bus)
{
int i;
for (i = 0; i < bus->dev_count; i++) {
struct kvm_io_device *pos = bus->devs[i];
kvm_iodevice_destructor(pos);
}
}
struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
{
int i;
for (i = 0; i < bus->dev_count; i++) {
struct kvm_io_device *pos = bus->devs[i];
if (pos->in_range(pos, addr))
return pos;
}
return NULL;
}
void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
{
BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
bus->devs[bus->dev_count++] = dev;
}
static struct notifier_block kvm_cpu_notifier = {
.notifier_call = kvm_cpu_hotplug,
.priority = 20, /* must be > scheduler priority */
};
static u64 stat_get(void *_offset)
{
unsigned offset = (long)_offset;
u64 total = 0;
struct kvm *kvm;
struct kvm_vcpu *vcpu;
int i;
spin_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list)
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
vcpu = kvm->vcpus[i];
if (vcpu)
total += *(u32 *)((void *)vcpu + offset);
}
spin_unlock(&kvm_lock);
return total;
}
static void stat_set(void *offset, u64 val)
{
}
DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
static __init void kvm_init_debug(void)
{
struct kvm_stats_debugfs_item *p;
debugfs_dir = debugfs_create_dir("kvm", NULL);
for (p = debugfs_entries; p->name; ++p)
p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
(void *)(long)p->offset,
&stat_fops);
}
static void kvm_exit_debug(void)
{
struct kvm_stats_debugfs_item *p;
for (p = debugfs_entries; p->name; ++p)
debugfs_remove(p->dentry);
debugfs_remove(debugfs_dir);
}
static int kvm_suspend(struct sys_device *dev, pm_message_t state)
{
hardware_disable(NULL);
return 0;
}
static int kvm_resume(struct sys_device *dev)
{
hardware_enable(NULL);
return 0;
}
static struct sysdev_class kvm_sysdev_class = {
set_kset_name("kvm"),
.suspend = kvm_suspend,
.resume = kvm_resume,
};
static struct sys_device kvm_sysdev = {
.id = 0,
.cls = &kvm_sysdev_class,
};
hpa_t bad_page_address;
static inline
struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
{
return container_of(pn, struct kvm_vcpu, preempt_notifier);
}
static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
{
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
kvm_arch_ops->vcpu_load(vcpu, cpu);
}
static void kvm_sched_out(struct preempt_notifier *pn,
struct task_struct *next)
{
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
kvm_arch_ops->vcpu_put(vcpu);
}
int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
{
int r;
if (kvm_arch_ops) {
printk(KERN_ERR "kvm: already loaded the other module\n");
return -EEXIST;
}
if (!ops->cpu_has_kvm_support()) {
printk(KERN_ERR "kvm: no hardware support\n");
return -EOPNOTSUPP;
}
if (ops->disabled_by_bios()) {
printk(KERN_ERR "kvm: disabled by bios\n");
return -EOPNOTSUPP;
}
kvm_arch_ops = ops;
r = kvm_arch_ops->hardware_setup();
if (r < 0)
goto out;
on_each_cpu(hardware_enable, NULL, 0, 1);
r = register_cpu_notifier(&kvm_cpu_notifier);
if (r)
goto out_free_1;
register_reboot_notifier(&kvm_reboot_notifier);
r = sysdev_class_register(&kvm_sysdev_class);
if (r)
goto out_free_2;
r = sysdev_register(&kvm_sysdev);
if (r)
goto out_free_3;
kvm_chardev_ops.owner = module;
r = misc_register(&kvm_dev);
if (r) {
printk (KERN_ERR "kvm: misc device register failed\n");
goto out_free;
}
kvm_preempt_ops.sched_in = kvm_sched_in;
kvm_preempt_ops.sched_out = kvm_sched_out;
return r;
out_free:
sysdev_unregister(&kvm_sysdev);
out_free_3:
sysdev_class_unregister(&kvm_sysdev_class);
out_free_2:
unregister_reboot_notifier(&kvm_reboot_notifier);
unregister_cpu_notifier(&kvm_cpu_notifier);
out_free_1:
on_each_cpu(hardware_disable, NULL, 0, 1);
kvm_arch_ops->hardware_unsetup();
out:
kvm_arch_ops = NULL;
return r;
}
void kvm_exit_arch(void)
{
misc_deregister(&kvm_dev);
sysdev_unregister(&kvm_sysdev);
sysdev_class_unregister(&kvm_sysdev_class);
unregister_reboot_notifier(&kvm_reboot_notifier);
unregister_cpu_notifier(&kvm_cpu_notifier);
on_each_cpu(hardware_disable, NULL, 0, 1);
kvm_arch_ops->hardware_unsetup();
kvm_arch_ops = NULL;
}
static __init int kvm_init(void)
{
static struct page *bad_page;
int r;
r = kvm_mmu_module_init();
if (r)
goto out4;
kvm_init_debug();
kvm_init_msr_list();
if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
r = -ENOMEM;
goto out;
}
bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
memset(__va(bad_page_address), 0, PAGE_SIZE);
return 0;
out:
kvm_exit_debug();
kvm_mmu_module_exit();
out4:
return r;
}
static __exit void kvm_exit(void)
{
kvm_exit_debug();
__free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
kvm_mmu_module_exit();
}
module_init(kvm_init)
module_exit(kvm_exit)
EXPORT_SYMBOL_GPL(kvm_init_arch);
EXPORT_SYMBOL_GPL(kvm_exit_arch);