| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Volume Management Device driver |
| * Copyright (c) 2015, Intel Corporation. |
| */ |
| |
| #include <linux/device.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/msi.h> |
| #include <linux/pci.h> |
| #include <linux/srcu.h> |
| #include <linux/rculist.h> |
| #include <linux/rcupdate.h> |
| |
| #include <asm/irqdomain.h> |
| #include <asm/device.h> |
| #include <asm/msi.h> |
| #include <asm/msidef.h> |
| |
| #define VMD_CFGBAR 0 |
| #define VMD_MEMBAR1 2 |
| #define VMD_MEMBAR2 4 |
| |
| #define PCI_REG_VMCAP 0x40 |
| #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1) |
| #define PCI_REG_VMCONFIG 0x44 |
| #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3) |
| #define PCI_REG_VMLOCK 0x70 |
| #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2) |
| |
| #define MB2_SHADOW_OFFSET 0x2000 |
| #define MB2_SHADOW_SIZE 16 |
| |
| enum vmd_features { |
| /* |
| * Device may contain registers which hint the physical location of the |
| * membars, in order to allow proper address translation during |
| * resource assignment to enable guest virtualization |
| */ |
| VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0), |
| |
| /* |
| * Device may provide root port configuration information which limits |
| * bus numbering |
| */ |
| VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1), |
| }; |
| |
| /* |
| * Lock for manipulating VMD IRQ lists. |
| */ |
| static DEFINE_RAW_SPINLOCK(list_lock); |
| |
| /** |
| * struct vmd_irq - private data to map driver IRQ to the VMD shared vector |
| * @node: list item for parent traversal. |
| * @irq: back pointer to parent. |
| * @enabled: true if driver enabled IRQ |
| * @virq: the virtual IRQ value provided to the requesting driver. |
| * |
| * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to |
| * a VMD IRQ using this structure. |
| */ |
| struct vmd_irq { |
| struct list_head node; |
| struct vmd_irq_list *irq; |
| bool enabled; |
| unsigned int virq; |
| }; |
| |
| /** |
| * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector |
| * @irq_list: the list of irq's the VMD one demuxes to. |
| * @srcu: SRCU struct for local synchronization. |
| * @count: number of child IRQs assigned to this vector; used to track |
| * sharing. |
| */ |
| struct vmd_irq_list { |
| struct list_head irq_list; |
| struct srcu_struct srcu; |
| unsigned int count; |
| }; |
| |
| struct vmd_dev { |
| struct pci_dev *dev; |
| |
| spinlock_t cfg_lock; |
| char __iomem *cfgbar; |
| |
| int msix_count; |
| struct vmd_irq_list *irqs; |
| |
| struct pci_sysdata sysdata; |
| struct resource resources[3]; |
| struct irq_domain *irq_domain; |
| struct pci_bus *bus; |
| u8 busn_start; |
| }; |
| |
| static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus) |
| { |
| return container_of(bus->sysdata, struct vmd_dev, sysdata); |
| } |
| |
| static inline unsigned int index_from_irqs(struct vmd_dev *vmd, |
| struct vmd_irq_list *irqs) |
| { |
| return irqs - vmd->irqs; |
| } |
| |
| /* |
| * Drivers managing a device in a VMD domain allocate their own IRQs as before, |
| * but the MSI entry for the hardware it's driving will be programmed with a |
| * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its |
| * domain into one of its own, and the VMD driver de-muxes these for the |
| * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations |
| * and irq_chip to set this up. |
| */ |
| static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) |
| { |
| struct vmd_irq *vmdirq = data->chip_data; |
| struct vmd_irq_list *irq = vmdirq->irq; |
| struct vmd_dev *vmd = irq_data_get_irq_handler_data(data); |
| |
| msg->address_hi = MSI_ADDR_BASE_HI; |
| msg->address_lo = MSI_ADDR_BASE_LO | |
| MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq)); |
| msg->data = 0; |
| } |
| |
| /* |
| * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops. |
| */ |
| static void vmd_irq_enable(struct irq_data *data) |
| { |
| struct vmd_irq *vmdirq = data->chip_data; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&list_lock, flags); |
| WARN_ON(vmdirq->enabled); |
| list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list); |
| vmdirq->enabled = true; |
| raw_spin_unlock_irqrestore(&list_lock, flags); |
| |
| data->chip->irq_unmask(data); |
| } |
| |
| static void vmd_irq_disable(struct irq_data *data) |
| { |
| struct vmd_irq *vmdirq = data->chip_data; |
| unsigned long flags; |
| |
| data->chip->irq_mask(data); |
| |
| raw_spin_lock_irqsave(&list_lock, flags); |
| if (vmdirq->enabled) { |
| list_del_rcu(&vmdirq->node); |
| vmdirq->enabled = false; |
| } |
| raw_spin_unlock_irqrestore(&list_lock, flags); |
| } |
| |
| /* |
| * XXX: Stubbed until we develop acceptable way to not create conflicts with |
| * other devices sharing the same vector. |
| */ |
| static int vmd_irq_set_affinity(struct irq_data *data, |
| const struct cpumask *dest, bool force) |
| { |
| return -EINVAL; |
| } |
| |
| static struct irq_chip vmd_msi_controller = { |
| .name = "VMD-MSI", |
| .irq_enable = vmd_irq_enable, |
| .irq_disable = vmd_irq_disable, |
| .irq_compose_msi_msg = vmd_compose_msi_msg, |
| .irq_set_affinity = vmd_irq_set_affinity, |
| }; |
| |
| static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info, |
| msi_alloc_info_t *arg) |
| { |
| return 0; |
| } |
| |
| /* |
| * XXX: We can be even smarter selecting the best IRQ once we solve the |
| * affinity problem. |
| */ |
| static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc) |
| { |
| int i, best = 1; |
| unsigned long flags; |
| |
| if (vmd->msix_count == 1) |
| return &vmd->irqs[0]; |
| |
| /* |
| * White list for fast-interrupt handlers. All others will share the |
| * "slow" interrupt vector. |
| */ |
| switch (msi_desc_to_pci_dev(desc)->class) { |
| case PCI_CLASS_STORAGE_EXPRESS: |
| break; |
| default: |
| return &vmd->irqs[0]; |
| } |
| |
| raw_spin_lock_irqsave(&list_lock, flags); |
| for (i = 1; i < vmd->msix_count; i++) |
| if (vmd->irqs[i].count < vmd->irqs[best].count) |
| best = i; |
| vmd->irqs[best].count++; |
| raw_spin_unlock_irqrestore(&list_lock, flags); |
| |
| return &vmd->irqs[best]; |
| } |
| |
| static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info, |
| unsigned int virq, irq_hw_number_t hwirq, |
| msi_alloc_info_t *arg) |
| { |
| struct msi_desc *desc = arg->desc; |
| struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus); |
| struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL); |
| unsigned int index, vector; |
| |
| if (!vmdirq) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&vmdirq->node); |
| vmdirq->irq = vmd_next_irq(vmd, desc); |
| vmdirq->virq = virq; |
| index = index_from_irqs(vmd, vmdirq->irq); |
| vector = pci_irq_vector(vmd->dev, index); |
| |
| irq_domain_set_info(domain, virq, vector, info->chip, vmdirq, |
| handle_untracked_irq, vmd, NULL); |
| return 0; |
| } |
| |
| static void vmd_msi_free(struct irq_domain *domain, |
| struct msi_domain_info *info, unsigned int virq) |
| { |
| struct vmd_irq *vmdirq = irq_get_chip_data(virq); |
| unsigned long flags; |
| |
| synchronize_srcu(&vmdirq->irq->srcu); |
| |
| /* XXX: Potential optimization to rebalance */ |
| raw_spin_lock_irqsave(&list_lock, flags); |
| vmdirq->irq->count--; |
| raw_spin_unlock_irqrestore(&list_lock, flags); |
| |
| kfree(vmdirq); |
| } |
| |
| static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev, |
| int nvec, msi_alloc_info_t *arg) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct vmd_dev *vmd = vmd_from_bus(pdev->bus); |
| |
| if (nvec > vmd->msix_count) |
| return vmd->msix_count; |
| |
| memset(arg, 0, sizeof(*arg)); |
| return 0; |
| } |
| |
| static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc) |
| { |
| arg->desc = desc; |
| } |
| |
| static struct msi_domain_ops vmd_msi_domain_ops = { |
| .get_hwirq = vmd_get_hwirq, |
| .msi_init = vmd_msi_init, |
| .msi_free = vmd_msi_free, |
| .msi_prepare = vmd_msi_prepare, |
| .set_desc = vmd_set_desc, |
| }; |
| |
| static struct msi_domain_info vmd_msi_domain_info = { |
| .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | |
| MSI_FLAG_PCI_MSIX, |
| .ops = &vmd_msi_domain_ops, |
| .chip = &vmd_msi_controller, |
| }; |
| |
| static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus, |
| unsigned int devfn, int reg, int len) |
| { |
| char __iomem *addr = vmd->cfgbar + |
| ((bus->number - vmd->busn_start) << 20) + |
| (devfn << 12) + reg; |
| |
| if ((addr - vmd->cfgbar) + len >= |
| resource_size(&vmd->dev->resource[VMD_CFGBAR])) |
| return NULL; |
| |
| return addr; |
| } |
| |
| /* |
| * CPU may deadlock if config space is not serialized on some versions of this |
| * hardware, so all config space access is done under a spinlock. |
| */ |
| static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg, |
| int len, u32 *value) |
| { |
| struct vmd_dev *vmd = vmd_from_bus(bus); |
| char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); |
| unsigned long flags; |
| int ret = 0; |
| |
| if (!addr) |
| return -EFAULT; |
| |
| spin_lock_irqsave(&vmd->cfg_lock, flags); |
| switch (len) { |
| case 1: |
| *value = readb(addr); |
| break; |
| case 2: |
| *value = readw(addr); |
| break; |
| case 4: |
| *value = readl(addr); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| spin_unlock_irqrestore(&vmd->cfg_lock, flags); |
| return ret; |
| } |
| |
| /* |
| * VMD h/w converts non-posted config writes to posted memory writes. The |
| * read-back in this function forces the completion so it returns only after |
| * the config space was written, as expected. |
| */ |
| static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg, |
| int len, u32 value) |
| { |
| struct vmd_dev *vmd = vmd_from_bus(bus); |
| char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); |
| unsigned long flags; |
| int ret = 0; |
| |
| if (!addr) |
| return -EFAULT; |
| |
| spin_lock_irqsave(&vmd->cfg_lock, flags); |
| switch (len) { |
| case 1: |
| writeb(value, addr); |
| readb(addr); |
| break; |
| case 2: |
| writew(value, addr); |
| readw(addr); |
| break; |
| case 4: |
| writel(value, addr); |
| readl(addr); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| spin_unlock_irqrestore(&vmd->cfg_lock, flags); |
| return ret; |
| } |
| |
| static struct pci_ops vmd_ops = { |
| .read = vmd_pci_read, |
| .write = vmd_pci_write, |
| }; |
| |
| static void vmd_attach_resources(struct vmd_dev *vmd) |
| { |
| vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1]; |
| vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2]; |
| } |
| |
| static void vmd_detach_resources(struct vmd_dev *vmd) |
| { |
| vmd->dev->resource[VMD_MEMBAR1].child = NULL; |
| vmd->dev->resource[VMD_MEMBAR2].child = NULL; |
| } |
| |
| /* |
| * VMD domains start at 0x10000 to not clash with ACPI _SEG domains. |
| * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower |
| * 16 bits are the PCI Segment Group (domain) number. Other bits are |
| * currently reserved. |
| */ |
| static int vmd_find_free_domain(void) |
| { |
| int domain = 0xffff; |
| struct pci_bus *bus = NULL; |
| |
| while ((bus = pci_find_next_bus(bus)) != NULL) |
| domain = max_t(int, domain, pci_domain_nr(bus)); |
| return domain + 1; |
| } |
| |
| static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features) |
| { |
| struct pci_sysdata *sd = &vmd->sysdata; |
| struct fwnode_handle *fn; |
| struct resource *res; |
| u32 upper_bits; |
| unsigned long flags; |
| LIST_HEAD(resources); |
| resource_size_t offset[2] = {0}; |
| resource_size_t membar2_offset = 0x2000; |
| struct pci_bus *child; |
| |
| /* |
| * Shadow registers may exist in certain VMD device ids which allow |
| * guests to correctly assign host physical addresses to the root ports |
| * and child devices. These registers will either return the host value |
| * or 0, depending on an enable bit in the VMD device. |
| */ |
| if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) { |
| u32 vmlock; |
| int ret; |
| |
| membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE; |
| ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock); |
| if (ret || vmlock == ~0) |
| return -ENODEV; |
| |
| if (MB2_SHADOW_EN(vmlock)) { |
| void __iomem *membar2; |
| |
| membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0); |
| if (!membar2) |
| return -ENOMEM; |
| offset[0] = vmd->dev->resource[VMD_MEMBAR1].start - |
| (readq(membar2 + MB2_SHADOW_OFFSET) & |
| PCI_BASE_ADDRESS_MEM_MASK); |
| offset[1] = vmd->dev->resource[VMD_MEMBAR2].start - |
| (readq(membar2 + MB2_SHADOW_OFFSET + 8) & |
| PCI_BASE_ADDRESS_MEM_MASK); |
| pci_iounmap(vmd->dev, membar2); |
| } |
| } |
| |
| /* |
| * Certain VMD devices may have a root port configuration option which |
| * limits the bus range to between 0-127, 128-255, or 224-255 |
| */ |
| if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) { |
| u16 reg16; |
| |
| pci_read_config_word(vmd->dev, PCI_REG_VMCAP, ®16); |
| if (BUS_RESTRICT_CAP(reg16)) { |
| pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, |
| ®16); |
| |
| switch (BUS_RESTRICT_CFG(reg16)) { |
| case 1: |
| vmd->busn_start = 128; |
| break; |
| case 2: |
| vmd->busn_start = 224; |
| break; |
| case 3: |
| pci_err(vmd->dev, "Unknown Bus Offset Setting\n"); |
| return -ENODEV; |
| default: |
| break; |
| } |
| } |
| } |
| |
| res = &vmd->dev->resource[VMD_CFGBAR]; |
| vmd->resources[0] = (struct resource) { |
| .name = "VMD CFGBAR", |
| .start = vmd->busn_start, |
| .end = vmd->busn_start + (resource_size(res) >> 20) - 1, |
| .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED, |
| }; |
| |
| /* |
| * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can |
| * put 32-bit resources in the window. |
| * |
| * There's no hardware reason why a 64-bit window *couldn't* |
| * contain a 32-bit resource, but pbus_size_mem() computes the |
| * bridge window size assuming a 64-bit window will contain no |
| * 32-bit resources. __pci_assign_resource() enforces that |
| * artificial restriction to make sure everything will fit. |
| * |
| * The only way we could use a 64-bit non-prefetchable MEMBAR is |
| * if its address is <4GB so that we can convert it to a 32-bit |
| * resource. To be visible to the host OS, all VMD endpoints must |
| * be initially configured by platform BIOS, which includes setting |
| * up these resources. We can assume the device is configured |
| * according to the platform needs. |
| */ |
| res = &vmd->dev->resource[VMD_MEMBAR1]; |
| upper_bits = upper_32_bits(res->end); |
| flags = res->flags & ~IORESOURCE_SIZEALIGN; |
| if (!upper_bits) |
| flags &= ~IORESOURCE_MEM_64; |
| vmd->resources[1] = (struct resource) { |
| .name = "VMD MEMBAR1", |
| .start = res->start, |
| .end = res->end, |
| .flags = flags, |
| .parent = res, |
| }; |
| |
| res = &vmd->dev->resource[VMD_MEMBAR2]; |
| upper_bits = upper_32_bits(res->end); |
| flags = res->flags & ~IORESOURCE_SIZEALIGN; |
| if (!upper_bits) |
| flags &= ~IORESOURCE_MEM_64; |
| vmd->resources[2] = (struct resource) { |
| .name = "VMD MEMBAR2", |
| .start = res->start + membar2_offset, |
| .end = res->end, |
| .flags = flags, |
| .parent = res, |
| }; |
| |
| sd->vmd_dev = vmd->dev; |
| sd->domain = vmd_find_free_domain(); |
| if (sd->domain < 0) |
| return sd->domain; |
| |
| sd->node = pcibus_to_node(vmd->dev->bus); |
| |
| fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain); |
| if (!fn) |
| return -ENODEV; |
| |
| vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, |
| x86_vector_domain); |
| if (!vmd->irq_domain) { |
| irq_domain_free_fwnode(fn); |
| return -ENODEV; |
| } |
| |
| pci_add_resource(&resources, &vmd->resources[0]); |
| pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]); |
| pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]); |
| |
| vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start, |
| &vmd_ops, sd, &resources); |
| if (!vmd->bus) { |
| pci_free_resource_list(&resources); |
| irq_domain_remove(vmd->irq_domain); |
| return -ENODEV; |
| } |
| |
| vmd_attach_resources(vmd); |
| dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain); |
| |
| pci_scan_child_bus(vmd->bus); |
| pci_assign_unassigned_bus_resources(vmd->bus); |
| |
| /* |
| * VMD root buses are virtual and don't return true on pci_is_pcie() |
| * and will fail pcie_bus_configure_settings() early. It can instead be |
| * run on each of the real root ports. |
| */ |
| list_for_each_entry(child, &vmd->bus->children, node) |
| pcie_bus_configure_settings(child); |
| |
| pci_bus_add_devices(vmd->bus); |
| |
| WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj, |
| "domain"), "Can't create symlink to domain\n"); |
| return 0; |
| } |
| |
| static irqreturn_t vmd_irq(int irq, void *data) |
| { |
| struct vmd_irq_list *irqs = data; |
| struct vmd_irq *vmdirq; |
| int idx; |
| |
| idx = srcu_read_lock(&irqs->srcu); |
| list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node) |
| generic_handle_irq(vmdirq->virq); |
| srcu_read_unlock(&irqs->srcu, idx); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id) |
| { |
| struct vmd_dev *vmd; |
| int i, err; |
| |
| if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20)) |
| return -ENOMEM; |
| |
| vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL); |
| if (!vmd) |
| return -ENOMEM; |
| |
| vmd->dev = dev; |
| err = pcim_enable_device(dev); |
| if (err < 0) |
| return err; |
| |
| vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0); |
| if (!vmd->cfgbar) |
| return -ENOMEM; |
| |
| pci_set_master(dev); |
| if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) && |
| dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) |
| return -ENODEV; |
| |
| vmd->msix_count = pci_msix_vec_count(dev); |
| if (vmd->msix_count < 0) |
| return -ENODEV; |
| |
| vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count, |
| PCI_IRQ_MSIX); |
| if (vmd->msix_count < 0) |
| return vmd->msix_count; |
| |
| vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs), |
| GFP_KERNEL); |
| if (!vmd->irqs) |
| return -ENOMEM; |
| |
| for (i = 0; i < vmd->msix_count; i++) { |
| err = init_srcu_struct(&vmd->irqs[i].srcu); |
| if (err) |
| return err; |
| |
| INIT_LIST_HEAD(&vmd->irqs[i].irq_list); |
| err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i), |
| vmd_irq, IRQF_NO_THREAD, |
| "vmd", &vmd->irqs[i]); |
| if (err) |
| return err; |
| } |
| |
| spin_lock_init(&vmd->cfg_lock); |
| pci_set_drvdata(dev, vmd); |
| err = vmd_enable_domain(vmd, (unsigned long) id->driver_data); |
| if (err) |
| return err; |
| |
| dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n", |
| vmd->sysdata.domain); |
| return 0; |
| } |
| |
| static void vmd_cleanup_srcu(struct vmd_dev *vmd) |
| { |
| int i; |
| |
| for (i = 0; i < vmd->msix_count; i++) |
| cleanup_srcu_struct(&vmd->irqs[i].srcu); |
| } |
| |
| static void vmd_remove(struct pci_dev *dev) |
| { |
| struct vmd_dev *vmd = pci_get_drvdata(dev); |
| |
| sysfs_remove_link(&vmd->dev->dev.kobj, "domain"); |
| pci_stop_root_bus(vmd->bus); |
| pci_remove_root_bus(vmd->bus); |
| vmd_cleanup_srcu(vmd); |
| vmd_detach_resources(vmd); |
| irq_domain_remove(vmd->irq_domain); |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int vmd_suspend(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct vmd_dev *vmd = pci_get_drvdata(pdev); |
| int i; |
| |
| for (i = 0; i < vmd->msix_count; i++) |
| devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]); |
| |
| pci_save_state(pdev); |
| return 0; |
| } |
| |
| static int vmd_resume(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct vmd_dev *vmd = pci_get_drvdata(pdev); |
| int err, i; |
| |
| for (i = 0; i < vmd->msix_count; i++) { |
| err = devm_request_irq(dev, pci_irq_vector(pdev, i), |
| vmd_irq, IRQF_NO_THREAD, |
| "vmd", &vmd->irqs[i]); |
| if (err) |
| return err; |
| } |
| |
| pci_restore_state(pdev); |
| return 0; |
| } |
| #endif |
| static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume); |
| |
| static const struct pci_device_id vmd_ids[] = { |
| {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),}, |
| {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0), |
| .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW | |
| VMD_FEAT_HAS_BUS_RESTRICTIONS,}, |
| {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f), |
| .driver_data = VMD_FEAT_HAS_BUS_RESTRICTIONS,}, |
| {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d), |
| .driver_data = VMD_FEAT_HAS_BUS_RESTRICTIONS,}, |
| {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B), |
| .driver_data = VMD_FEAT_HAS_BUS_RESTRICTIONS,}, |
| {0,} |
| }; |
| MODULE_DEVICE_TABLE(pci, vmd_ids); |
| |
| static struct pci_driver vmd_drv = { |
| .name = "vmd", |
| .id_table = vmd_ids, |
| .probe = vmd_probe, |
| .remove = vmd_remove, |
| .driver = { |
| .pm = &vmd_dev_pm_ops, |
| }, |
| }; |
| module_pci_driver(vmd_drv); |
| |
| MODULE_AUTHOR("Intel Corporation"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_VERSION("0.6"); |