| /* |
| * FDT related Helper functions used by the EFI stub on multiple |
| * architectures. This should be #included by the EFI stub |
| * implementation files. |
| * |
| * Copyright 2013 Linaro Limited; author Roy Franz |
| * |
| * This file is part of the Linux kernel, and is made available |
| * under the terms of the GNU General Public License version 2. |
| * |
| */ |
| |
| #include <linux/efi.h> |
| #include <linux/libfdt.h> |
| #include <asm/efi.h> |
| |
| #include "efistub.h" |
| |
| efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt, |
| unsigned long orig_fdt_size, |
| void *fdt, int new_fdt_size, char *cmdline_ptr, |
| u64 initrd_addr, u64 initrd_size, |
| efi_memory_desc_t *memory_map, |
| unsigned long map_size, unsigned long desc_size, |
| u32 desc_ver) |
| { |
| int node, prev, num_rsv; |
| int status; |
| u32 fdt_val32; |
| u64 fdt_val64; |
| |
| /* Do some checks on provided FDT, if it exists*/ |
| if (orig_fdt) { |
| if (fdt_check_header(orig_fdt)) { |
| pr_efi_err(sys_table, "Device Tree header not valid!\n"); |
| return EFI_LOAD_ERROR; |
| } |
| /* |
| * We don't get the size of the FDT if we get if from a |
| * configuration table. |
| */ |
| if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) { |
| pr_efi_err(sys_table, "Truncated device tree! foo!\n"); |
| return EFI_LOAD_ERROR; |
| } |
| } |
| |
| if (orig_fdt) |
| status = fdt_open_into(orig_fdt, fdt, new_fdt_size); |
| else |
| status = fdt_create_empty_tree(fdt, new_fdt_size); |
| |
| if (status != 0) |
| goto fdt_set_fail; |
| |
| /* |
| * Delete any memory nodes present. We must delete nodes which |
| * early_init_dt_scan_memory may try to use. |
| */ |
| prev = 0; |
| for (;;) { |
| const char *type; |
| int len; |
| |
| node = fdt_next_node(fdt, prev, NULL); |
| if (node < 0) |
| break; |
| |
| type = fdt_getprop(fdt, node, "device_type", &len); |
| if (type && strncmp(type, "memory", len) == 0) { |
| fdt_del_node(fdt, node); |
| continue; |
| } |
| |
| prev = node; |
| } |
| |
| /* |
| * Delete all memory reserve map entries. When booting via UEFI, |
| * kernel will use the UEFI memory map to find reserved regions. |
| */ |
| num_rsv = fdt_num_mem_rsv(fdt); |
| while (num_rsv-- > 0) |
| fdt_del_mem_rsv(fdt, num_rsv); |
| |
| node = fdt_subnode_offset(fdt, 0, "chosen"); |
| if (node < 0) { |
| node = fdt_add_subnode(fdt, 0, "chosen"); |
| if (node < 0) { |
| status = node; /* node is error code when negative */ |
| goto fdt_set_fail; |
| } |
| } |
| |
| if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) { |
| status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr, |
| strlen(cmdline_ptr) + 1); |
| if (status) |
| goto fdt_set_fail; |
| } |
| |
| /* Set initrd address/end in device tree, if present */ |
| if (initrd_size != 0) { |
| u64 initrd_image_end; |
| u64 initrd_image_start = cpu_to_fdt64(initrd_addr); |
| |
| status = fdt_setprop(fdt, node, "linux,initrd-start", |
| &initrd_image_start, sizeof(u64)); |
| if (status) |
| goto fdt_set_fail; |
| initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size); |
| status = fdt_setprop(fdt, node, "linux,initrd-end", |
| &initrd_image_end, sizeof(u64)); |
| if (status) |
| goto fdt_set_fail; |
| } |
| |
| /* Add FDT entries for EFI runtime services in chosen node. */ |
| node = fdt_subnode_offset(fdt, 0, "chosen"); |
| fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table); |
| status = fdt_setprop(fdt, node, "linux,uefi-system-table", |
| &fdt_val64, sizeof(fdt_val64)); |
| if (status) |
| goto fdt_set_fail; |
| |
| fdt_val64 = cpu_to_fdt64((u64)(unsigned long)memory_map); |
| status = fdt_setprop(fdt, node, "linux,uefi-mmap-start", |
| &fdt_val64, sizeof(fdt_val64)); |
| if (status) |
| goto fdt_set_fail; |
| |
| fdt_val32 = cpu_to_fdt32(map_size); |
| status = fdt_setprop(fdt, node, "linux,uefi-mmap-size", |
| &fdt_val32, sizeof(fdt_val32)); |
| if (status) |
| goto fdt_set_fail; |
| |
| fdt_val32 = cpu_to_fdt32(desc_size); |
| status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size", |
| &fdt_val32, sizeof(fdt_val32)); |
| if (status) |
| goto fdt_set_fail; |
| |
| fdt_val32 = cpu_to_fdt32(desc_ver); |
| status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver", |
| &fdt_val32, sizeof(fdt_val32)); |
| if (status) |
| goto fdt_set_fail; |
| |
| return EFI_SUCCESS; |
| |
| fdt_set_fail: |
| if (status == -FDT_ERR_NOSPACE) |
| return EFI_BUFFER_TOO_SMALL; |
| |
| return EFI_LOAD_ERROR; |
| } |
| |
| #ifndef EFI_FDT_ALIGN |
| #define EFI_FDT_ALIGN EFI_PAGE_SIZE |
| #endif |
| |
| /* |
| * Allocate memory for a new FDT, then add EFI, commandline, and |
| * initrd related fields to the FDT. This routine increases the |
| * FDT allocation size until the allocated memory is large |
| * enough. EFI allocations are in EFI_PAGE_SIZE granules, |
| * which are fixed at 4K bytes, so in most cases the first |
| * allocation should succeed. |
| * EFI boot services are exited at the end of this function. |
| * There must be no allocations between the get_memory_map() |
| * call and the exit_boot_services() call, so the exiting of |
| * boot services is very tightly tied to the creation of the FDT |
| * with the final memory map in it. |
| */ |
| |
| efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table, |
| void *handle, |
| unsigned long *new_fdt_addr, |
| unsigned long max_addr, |
| u64 initrd_addr, u64 initrd_size, |
| char *cmdline_ptr, |
| unsigned long fdt_addr, |
| unsigned long fdt_size) |
| { |
| unsigned long map_size, desc_size; |
| u32 desc_ver; |
| unsigned long mmap_key; |
| efi_memory_desc_t *memory_map, *runtime_map; |
| unsigned long new_fdt_size; |
| efi_status_t status; |
| int runtime_entry_count = 0; |
| |
| /* |
| * Get a copy of the current memory map that we will use to prepare |
| * the input for SetVirtualAddressMap(). We don't have to worry about |
| * subsequent allocations adding entries, since they could not affect |
| * the number of EFI_MEMORY_RUNTIME regions. |
| */ |
| status = efi_get_memory_map(sys_table, &runtime_map, &map_size, |
| &desc_size, &desc_ver, &mmap_key); |
| if (status != EFI_SUCCESS) { |
| pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n"); |
| return status; |
| } |
| |
| pr_efi(sys_table, |
| "Exiting boot services and installing virtual address map...\n"); |
| |
| /* |
| * Estimate size of new FDT, and allocate memory for it. We |
| * will allocate a bigger buffer if this ends up being too |
| * small, so a rough guess is OK here. |
| */ |
| new_fdt_size = fdt_size + EFI_PAGE_SIZE; |
| while (1) { |
| status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN, |
| new_fdt_addr, max_addr); |
| if (status != EFI_SUCCESS) { |
| pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n"); |
| goto fail; |
| } |
| |
| /* |
| * Now that we have done our final memory allocation (and free) |
| * we can get the memory map key needed for |
| * exit_boot_services(). |
| */ |
| status = efi_get_memory_map(sys_table, &memory_map, &map_size, |
| &desc_size, &desc_ver, &mmap_key); |
| if (status != EFI_SUCCESS) |
| goto fail_free_new_fdt; |
| |
| status = update_fdt(sys_table, |
| (void *)fdt_addr, fdt_size, |
| (void *)*new_fdt_addr, new_fdt_size, |
| cmdline_ptr, initrd_addr, initrd_size, |
| memory_map, map_size, desc_size, desc_ver); |
| |
| /* Succeeding the first time is the expected case. */ |
| if (status == EFI_SUCCESS) |
| break; |
| |
| if (status == EFI_BUFFER_TOO_SMALL) { |
| /* |
| * We need to allocate more space for the new |
| * device tree, so free existing buffer that is |
| * too small. Also free memory map, as we will need |
| * to get new one that reflects the free/alloc we do |
| * on the device tree buffer. |
| */ |
| efi_free(sys_table, new_fdt_size, *new_fdt_addr); |
| sys_table->boottime->free_pool(memory_map); |
| new_fdt_size += EFI_PAGE_SIZE; |
| } else { |
| pr_efi_err(sys_table, "Unable to construct new device tree.\n"); |
| goto fail_free_mmap; |
| } |
| } |
| |
| /* |
| * Update the memory map with virtual addresses. The function will also |
| * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME |
| * entries so that we can pass it straight into SetVirtualAddressMap() |
| */ |
| efi_get_virtmap(memory_map, map_size, desc_size, runtime_map, |
| &runtime_entry_count); |
| |
| /* Now we are ready to exit_boot_services.*/ |
| status = sys_table->boottime->exit_boot_services(handle, mmap_key); |
| |
| if (status == EFI_SUCCESS) { |
| efi_set_virtual_address_map_t *svam; |
| |
| /* Install the new virtual address map */ |
| svam = sys_table->runtime->set_virtual_address_map; |
| status = svam(runtime_entry_count * desc_size, desc_size, |
| desc_ver, runtime_map); |
| |
| /* |
| * We are beyond the point of no return here, so if the call to |
| * SetVirtualAddressMap() failed, we need to signal that to the |
| * incoming kernel but proceed normally otherwise. |
| */ |
| if (status != EFI_SUCCESS) { |
| int l; |
| |
| /* |
| * Set the virtual address field of all |
| * EFI_MEMORY_RUNTIME entries to 0. This will signal |
| * the incoming kernel that no virtual translation has |
| * been installed. |
| */ |
| for (l = 0; l < map_size; l += desc_size) { |
| efi_memory_desc_t *p = (void *)memory_map + l; |
| |
| if (p->attribute & EFI_MEMORY_RUNTIME) |
| p->virt_addr = 0; |
| } |
| } |
| return EFI_SUCCESS; |
| } |
| |
| pr_efi_err(sys_table, "Exit boot services failed.\n"); |
| |
| fail_free_mmap: |
| sys_table->boottime->free_pool(memory_map); |
| |
| fail_free_new_fdt: |
| efi_free(sys_table, new_fdt_size, *new_fdt_addr); |
| |
| fail: |
| sys_table->boottime->free_pool(runtime_map); |
| return EFI_LOAD_ERROR; |
| } |
| |
| void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size) |
| { |
| efi_guid_t fdt_guid = DEVICE_TREE_GUID; |
| efi_config_table_t *tables; |
| void *fdt; |
| int i; |
| |
| tables = (efi_config_table_t *) sys_table->tables; |
| fdt = NULL; |
| |
| for (i = 0; i < sys_table->nr_tables; i++) |
| if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) { |
| fdt = (void *) tables[i].table; |
| if (fdt_check_header(fdt) != 0) { |
| pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n"); |
| return NULL; |
| } |
| *fdt_size = fdt_totalsize(fdt); |
| break; |
| } |
| |
| return fdt; |
| } |