| /* |
| drbd_req.c |
| |
| This file is part of DRBD by Philipp Reisner and Lars Ellenberg. |
| |
| Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. |
| Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. |
| Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. |
| |
| drbd is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2, or (at your option) |
| any later version. |
| |
| drbd is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with drbd; see the file COPYING. If not, write to |
| the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. |
| |
| */ |
| |
| #include <linux/module.h> |
| |
| #include <linux/slab.h> |
| #include <linux/drbd.h> |
| #include "drbd_int.h" |
| #include "drbd_req.h" |
| |
| |
| static bool drbd_may_do_local_read(struct drbd_device *device, sector_t sector, int size); |
| |
| /* Update disk stats at start of I/O request */ |
| static void _drbd_start_io_acct(struct drbd_device *device, struct drbd_request *req) |
| { |
| const int rw = bio_data_dir(req->master_bio); |
| int cpu; |
| cpu = part_stat_lock(); |
| part_round_stats(cpu, &device->vdisk->part0); |
| part_stat_inc(cpu, &device->vdisk->part0, ios[rw]); |
| part_stat_add(cpu, &device->vdisk->part0, sectors[rw], req->i.size >> 9); |
| (void) cpu; /* The macro invocations above want the cpu argument, I do not like |
| the compiler warning about cpu only assigned but never used... */ |
| part_inc_in_flight(&device->vdisk->part0, rw); |
| part_stat_unlock(); |
| } |
| |
| /* Update disk stats when completing request upwards */ |
| static void _drbd_end_io_acct(struct drbd_device *device, struct drbd_request *req) |
| { |
| int rw = bio_data_dir(req->master_bio); |
| unsigned long duration = jiffies - req->start_time; |
| int cpu; |
| cpu = part_stat_lock(); |
| part_stat_add(cpu, &device->vdisk->part0, ticks[rw], duration); |
| part_round_stats(cpu, &device->vdisk->part0); |
| part_dec_in_flight(&device->vdisk->part0, rw); |
| part_stat_unlock(); |
| } |
| |
| static struct drbd_request *drbd_req_new(struct drbd_device *device, |
| struct bio *bio_src) |
| { |
| struct drbd_request *req; |
| |
| req = mempool_alloc(drbd_request_mempool, GFP_NOIO); |
| if (!req) |
| return NULL; |
| |
| drbd_req_make_private_bio(req, bio_src); |
| req->rq_state = bio_data_dir(bio_src) == WRITE ? RQ_WRITE : 0; |
| req->device = device; |
| req->master_bio = bio_src; |
| req->epoch = 0; |
| |
| drbd_clear_interval(&req->i); |
| req->i.sector = bio_src->bi_iter.bi_sector; |
| req->i.size = bio_src->bi_iter.bi_size; |
| req->i.local = true; |
| req->i.waiting = false; |
| |
| INIT_LIST_HEAD(&req->tl_requests); |
| INIT_LIST_HEAD(&req->w.list); |
| |
| /* one reference to be put by __drbd_make_request */ |
| atomic_set(&req->completion_ref, 1); |
| /* one kref as long as completion_ref > 0 */ |
| kref_init(&req->kref); |
| return req; |
| } |
| |
| static void drbd_remove_request_interval(struct rb_root *root, |
| struct drbd_request *req) |
| { |
| struct drbd_device *device = req->device; |
| struct drbd_interval *i = &req->i; |
| |
| drbd_remove_interval(root, i); |
| |
| /* Wake up any processes waiting for this request to complete. */ |
| if (i->waiting) |
| wake_up(&device->misc_wait); |
| } |
| |
| void drbd_req_destroy(struct kref *kref) |
| { |
| struct drbd_request *req = container_of(kref, struct drbd_request, kref); |
| struct drbd_device *device = req->device; |
| const unsigned s = req->rq_state; |
| |
| if ((req->master_bio && !(s & RQ_POSTPONED)) || |
| atomic_read(&req->completion_ref) || |
| (s & RQ_LOCAL_PENDING) || |
| ((s & RQ_NET_MASK) && !(s & RQ_NET_DONE))) { |
| drbd_err(device, "drbd_req_destroy: Logic BUG rq_state = 0x%x, completion_ref = %d\n", |
| s, atomic_read(&req->completion_ref)); |
| return; |
| } |
| |
| /* remove it from the transfer log. |
| * well, only if it had been there in the first |
| * place... if it had not (local only or conflicting |
| * and never sent), it should still be "empty" as |
| * initialized in drbd_req_new(), so we can list_del() it |
| * here unconditionally */ |
| list_del_init(&req->tl_requests); |
| |
| /* finally remove the request from the conflict detection |
| * respective block_id verification interval tree. */ |
| if (!drbd_interval_empty(&req->i)) { |
| struct rb_root *root; |
| |
| if (s & RQ_WRITE) |
| root = &device->write_requests; |
| else |
| root = &device->read_requests; |
| drbd_remove_request_interval(root, req); |
| } else if (s & (RQ_NET_MASK & ~RQ_NET_DONE) && req->i.size != 0) |
| drbd_err(device, "drbd_req_destroy: Logic BUG: interval empty, but: rq_state=0x%x, sect=%llu, size=%u\n", |
| s, (unsigned long long)req->i.sector, req->i.size); |
| |
| /* if it was a write, we may have to set the corresponding |
| * bit(s) out-of-sync first. If it had a local part, we need to |
| * release the reference to the activity log. */ |
| if (s & RQ_WRITE) { |
| /* Set out-of-sync unless both OK flags are set |
| * (local only or remote failed). |
| * Other places where we set out-of-sync: |
| * READ with local io-error */ |
| |
| /* There is a special case: |
| * we may notice late that IO was suspended, |
| * and postpone, or schedule for retry, a write, |
| * before it even was submitted or sent. |
| * In that case we do not want to touch the bitmap at all. |
| */ |
| if ((s & (RQ_POSTPONED|RQ_LOCAL_MASK|RQ_NET_MASK)) != RQ_POSTPONED) { |
| if (!(s & RQ_NET_OK) || !(s & RQ_LOCAL_OK)) |
| drbd_set_out_of_sync(device, req->i.sector, req->i.size); |
| |
| if ((s & RQ_NET_OK) && (s & RQ_LOCAL_OK) && (s & RQ_NET_SIS)) |
| drbd_set_in_sync(device, req->i.sector, req->i.size); |
| } |
| |
| /* one might be tempted to move the drbd_al_complete_io |
| * to the local io completion callback drbd_request_endio. |
| * but, if this was a mirror write, we may only |
| * drbd_al_complete_io after this is RQ_NET_DONE, |
| * otherwise the extent could be dropped from the al |
| * before it has actually been written on the peer. |
| * if we crash before our peer knows about the request, |
| * but after the extent has been dropped from the al, |
| * we would forget to resync the corresponding extent. |
| */ |
| if (s & RQ_IN_ACT_LOG) { |
| if (get_ldev_if_state(device, D_FAILED)) { |
| drbd_al_complete_io(device, &req->i); |
| put_ldev(device); |
| } else if (__ratelimit(&drbd_ratelimit_state)) { |
| drbd_warn(device, "Should have called drbd_al_complete_io(, %llu, %u), " |
| "but my Disk seems to have failed :(\n", |
| (unsigned long long) req->i.sector, req->i.size); |
| } |
| } |
| } |
| |
| mempool_free(req, drbd_request_mempool); |
| } |
| |
| static void wake_all_senders(struct drbd_connection *connection) |
| { |
| wake_up(&connection->sender_work.q_wait); |
| } |
| |
| /* must hold resource->req_lock */ |
| void start_new_tl_epoch(struct drbd_connection *connection) |
| { |
| /* no point closing an epoch, if it is empty, anyways. */ |
| if (connection->current_tle_writes == 0) |
| return; |
| |
| connection->current_tle_writes = 0; |
| atomic_inc(&connection->current_tle_nr); |
| wake_all_senders(connection); |
| } |
| |
| void complete_master_bio(struct drbd_device *device, |
| struct bio_and_error *m) |
| { |
| bio_endio(m->bio, m->error); |
| dec_ap_bio(device); |
| } |
| |
| |
| /* Helper for __req_mod(). |
| * Set m->bio to the master bio, if it is fit to be completed, |
| * or leave it alone (it is initialized to NULL in __req_mod), |
| * if it has already been completed, or cannot be completed yet. |
| * If m->bio is set, the error status to be returned is placed in m->error. |
| */ |
| static |
| void drbd_req_complete(struct drbd_request *req, struct bio_and_error *m) |
| { |
| const unsigned s = req->rq_state; |
| struct drbd_device *device = req->device; |
| int rw; |
| int error, ok; |
| |
| /* we must not complete the master bio, while it is |
| * still being processed by _drbd_send_zc_bio (drbd_send_dblock) |
| * not yet acknowledged by the peer |
| * not yet completed by the local io subsystem |
| * these flags may get cleared in any order by |
| * the worker, |
| * the receiver, |
| * the bio_endio completion callbacks. |
| */ |
| if ((s & RQ_LOCAL_PENDING && !(s & RQ_LOCAL_ABORTED)) || |
| (s & RQ_NET_QUEUED) || (s & RQ_NET_PENDING) || |
| (s & RQ_COMPLETION_SUSP)) { |
| drbd_err(device, "drbd_req_complete: Logic BUG rq_state = 0x%x\n", s); |
| return; |
| } |
| |
| if (!req->master_bio) { |
| drbd_err(device, "drbd_req_complete: Logic BUG, master_bio == NULL!\n"); |
| return; |
| } |
| |
| rw = bio_rw(req->master_bio); |
| |
| /* |
| * figure out whether to report success or failure. |
| * |
| * report success when at least one of the operations succeeded. |
| * or, to put the other way, |
| * only report failure, when both operations failed. |
| * |
| * what to do about the failures is handled elsewhere. |
| * what we need to do here is just: complete the master_bio. |
| * |
| * local completion error, if any, has been stored as ERR_PTR |
| * in private_bio within drbd_request_endio. |
| */ |
| ok = (s & RQ_LOCAL_OK) || (s & RQ_NET_OK); |
| error = PTR_ERR(req->private_bio); |
| |
| /* Before we can signal completion to the upper layers, |
| * we may need to close the current transfer log epoch. |
| * We are within the request lock, so we can simply compare |
| * the request epoch number with the current transfer log |
| * epoch number. If they match, increase the current_tle_nr, |
| * and reset the transfer log epoch write_cnt. |
| */ |
| if (rw == WRITE && |
| req->epoch == atomic_read(&first_peer_device(device)->connection->current_tle_nr)) |
| start_new_tl_epoch(first_peer_device(device)->connection); |
| |
| /* Update disk stats */ |
| _drbd_end_io_acct(device, req); |
| |
| /* If READ failed, |
| * have it be pushed back to the retry work queue, |
| * so it will re-enter __drbd_make_request(), |
| * and be re-assigned to a suitable local or remote path, |
| * or failed if we do not have access to good data anymore. |
| * |
| * Unless it was failed early by __drbd_make_request(), |
| * because no path was available, in which case |
| * it was not even added to the transfer_log. |
| * |
| * READA may fail, and will not be retried. |
| * |
| * WRITE should have used all available paths already. |
| */ |
| if (!ok && rw == READ && !list_empty(&req->tl_requests)) |
| req->rq_state |= RQ_POSTPONED; |
| |
| if (!(req->rq_state & RQ_POSTPONED)) { |
| m->error = ok ? 0 : (error ?: -EIO); |
| m->bio = req->master_bio; |
| req->master_bio = NULL; |
| /* We leave it in the tree, to be able to verify later |
| * write-acks in protocol != C during resync. |
| * But we mark it as "complete", so it won't be counted as |
| * conflict in a multi-primary setup. */ |
| req->i.completed = true; |
| } |
| |
| if (req->i.waiting) |
| wake_up(&device->misc_wait); |
| } |
| |
| static int drbd_req_put_completion_ref(struct drbd_request *req, struct bio_and_error *m, int put) |
| { |
| struct drbd_device *device = req->device; |
| D_ASSERT(device, m || (req->rq_state & RQ_POSTPONED)); |
| |
| if (!atomic_sub_and_test(put, &req->completion_ref)) |
| return 0; |
| |
| drbd_req_complete(req, m); |
| |
| if (req->rq_state & RQ_POSTPONED) { |
| /* don't destroy the req object just yet, |
| * but queue it for retry */ |
| drbd_restart_request(req); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* I'd like this to be the only place that manipulates |
| * req->completion_ref and req->kref. */ |
| static void mod_rq_state(struct drbd_request *req, struct bio_and_error *m, |
| int clear, int set) |
| { |
| struct drbd_device *device = req->device; |
| unsigned s = req->rq_state; |
| int c_put = 0; |
| int k_put = 0; |
| |
| if (drbd_suspended(device) && !((s | clear) & RQ_COMPLETION_SUSP)) |
| set |= RQ_COMPLETION_SUSP; |
| |
| /* apply */ |
| |
| req->rq_state &= ~clear; |
| req->rq_state |= set; |
| |
| /* no change? */ |
| if (req->rq_state == s) |
| return; |
| |
| /* intent: get references */ |
| |
| if (!(s & RQ_LOCAL_PENDING) && (set & RQ_LOCAL_PENDING)) |
| atomic_inc(&req->completion_ref); |
| |
| if (!(s & RQ_NET_PENDING) && (set & RQ_NET_PENDING)) { |
| inc_ap_pending(device); |
| atomic_inc(&req->completion_ref); |
| } |
| |
| if (!(s & RQ_NET_QUEUED) && (set & RQ_NET_QUEUED)) |
| atomic_inc(&req->completion_ref); |
| |
| if (!(s & RQ_EXP_BARR_ACK) && (set & RQ_EXP_BARR_ACK)) |
| kref_get(&req->kref); /* wait for the DONE */ |
| |
| if (!(s & RQ_NET_SENT) && (set & RQ_NET_SENT)) |
| atomic_add(req->i.size >> 9, &device->ap_in_flight); |
| |
| if (!(s & RQ_COMPLETION_SUSP) && (set & RQ_COMPLETION_SUSP)) |
| atomic_inc(&req->completion_ref); |
| |
| /* progress: put references */ |
| |
| if ((s & RQ_COMPLETION_SUSP) && (clear & RQ_COMPLETION_SUSP)) |
| ++c_put; |
| |
| if (!(s & RQ_LOCAL_ABORTED) && (set & RQ_LOCAL_ABORTED)) { |
| D_ASSERT(device, req->rq_state & RQ_LOCAL_PENDING); |
| /* local completion may still come in later, |
| * we need to keep the req object around. */ |
| kref_get(&req->kref); |
| ++c_put; |
| } |
| |
| if ((s & RQ_LOCAL_PENDING) && (clear & RQ_LOCAL_PENDING)) { |
| if (req->rq_state & RQ_LOCAL_ABORTED) |
| ++k_put; |
| else |
| ++c_put; |
| } |
| |
| if ((s & RQ_NET_PENDING) && (clear & RQ_NET_PENDING)) { |
| dec_ap_pending(device); |
| ++c_put; |
| } |
| |
| if ((s & RQ_NET_QUEUED) && (clear & RQ_NET_QUEUED)) |
| ++c_put; |
| |
| if ((s & RQ_EXP_BARR_ACK) && !(s & RQ_NET_DONE) && (set & RQ_NET_DONE)) { |
| if (req->rq_state & RQ_NET_SENT) |
| atomic_sub(req->i.size >> 9, &device->ap_in_flight); |
| ++k_put; |
| } |
| |
| /* potentially complete and destroy */ |
| |
| if (k_put || c_put) { |
| /* Completion does it's own kref_put. If we are going to |
| * kref_sub below, we need req to be still around then. */ |
| int at_least = k_put + !!c_put; |
| int refcount = atomic_read(&req->kref.refcount); |
| if (refcount < at_least) |
| drbd_err(device, |
| "mod_rq_state: Logic BUG: %x -> %x: refcount = %d, should be >= %d\n", |
| s, req->rq_state, refcount, at_least); |
| } |
| |
| /* If we made progress, retry conflicting peer requests, if any. */ |
| if (req->i.waiting) |
| wake_up(&device->misc_wait); |
| |
| if (c_put) |
| k_put += drbd_req_put_completion_ref(req, m, c_put); |
| if (k_put) |
| kref_sub(&req->kref, k_put, drbd_req_destroy); |
| } |
| |
| static void drbd_report_io_error(struct drbd_device *device, struct drbd_request *req) |
| { |
| char b[BDEVNAME_SIZE]; |
| |
| if (!__ratelimit(&drbd_ratelimit_state)) |
| return; |
| |
| drbd_warn(device, "local %s IO error sector %llu+%u on %s\n", |
| (req->rq_state & RQ_WRITE) ? "WRITE" : "READ", |
| (unsigned long long)req->i.sector, |
| req->i.size >> 9, |
| bdevname(device->ldev->backing_bdev, b)); |
| } |
| |
| /* obviously this could be coded as many single functions |
| * instead of one huge switch, |
| * or by putting the code directly in the respective locations |
| * (as it has been before). |
| * |
| * but having it this way |
| * enforces that it is all in this one place, where it is easier to audit, |
| * it makes it obvious that whatever "event" "happens" to a request should |
| * happen "atomically" within the req_lock, |
| * and it enforces that we have to think in a very structured manner |
| * about the "events" that may happen to a request during its life time ... |
| */ |
| int __req_mod(struct drbd_request *req, enum drbd_req_event what, |
| struct bio_and_error *m) |
| { |
| struct drbd_device *const device = req->device; |
| struct drbd_peer_device *const peer_device = first_peer_device(device); |
| struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL; |
| struct net_conf *nc; |
| int p, rv = 0; |
| |
| if (m) |
| m->bio = NULL; |
| |
| switch (what) { |
| default: |
| drbd_err(device, "LOGIC BUG in %s:%u\n", __FILE__ , __LINE__); |
| break; |
| |
| /* does not happen... |
| * initialization done in drbd_req_new |
| case CREATED: |
| break; |
| */ |
| |
| case TO_BE_SENT: /* via network */ |
| /* reached via __drbd_make_request |
| * and from w_read_retry_remote */ |
| D_ASSERT(device, !(req->rq_state & RQ_NET_MASK)); |
| rcu_read_lock(); |
| nc = rcu_dereference(connection->net_conf); |
| p = nc->wire_protocol; |
| rcu_read_unlock(); |
| req->rq_state |= |
| p == DRBD_PROT_C ? RQ_EXP_WRITE_ACK : |
| p == DRBD_PROT_B ? RQ_EXP_RECEIVE_ACK : 0; |
| mod_rq_state(req, m, 0, RQ_NET_PENDING); |
| break; |
| |
| case TO_BE_SUBMITTED: /* locally */ |
| /* reached via __drbd_make_request */ |
| D_ASSERT(device, !(req->rq_state & RQ_LOCAL_MASK)); |
| mod_rq_state(req, m, 0, RQ_LOCAL_PENDING); |
| break; |
| |
| case COMPLETED_OK: |
| if (req->rq_state & RQ_WRITE) |
| device->writ_cnt += req->i.size >> 9; |
| else |
| device->read_cnt += req->i.size >> 9; |
| |
| mod_rq_state(req, m, RQ_LOCAL_PENDING, |
| RQ_LOCAL_COMPLETED|RQ_LOCAL_OK); |
| break; |
| |
| case ABORT_DISK_IO: |
| mod_rq_state(req, m, 0, RQ_LOCAL_ABORTED); |
| break; |
| |
| case WRITE_COMPLETED_WITH_ERROR: |
| drbd_report_io_error(device, req); |
| __drbd_chk_io_error(device, DRBD_WRITE_ERROR); |
| mod_rq_state(req, m, RQ_LOCAL_PENDING, RQ_LOCAL_COMPLETED); |
| break; |
| |
| case READ_COMPLETED_WITH_ERROR: |
| drbd_set_out_of_sync(device, req->i.sector, req->i.size); |
| drbd_report_io_error(device, req); |
| __drbd_chk_io_error(device, DRBD_READ_ERROR); |
| /* fall through. */ |
| case READ_AHEAD_COMPLETED_WITH_ERROR: |
| /* it is legal to fail READA, no __drbd_chk_io_error in that case. */ |
| mod_rq_state(req, m, RQ_LOCAL_PENDING, RQ_LOCAL_COMPLETED); |
| break; |
| |
| case DISCARD_COMPLETED_NOTSUPP: |
| case DISCARD_COMPLETED_WITH_ERROR: |
| /* I'd rather not detach from local disk just because it |
| * failed a REQ_DISCARD. */ |
| mod_rq_state(req, m, RQ_LOCAL_PENDING, RQ_LOCAL_COMPLETED); |
| break; |
| |
| case QUEUE_FOR_NET_READ: |
| /* READ or READA, and |
| * no local disk, |
| * or target area marked as invalid, |
| * or just got an io-error. */ |
| /* from __drbd_make_request |
| * or from bio_endio during read io-error recovery */ |
| |
| /* So we can verify the handle in the answer packet. |
| * Corresponding drbd_remove_request_interval is in |
| * drbd_req_complete() */ |
| D_ASSERT(device, drbd_interval_empty(&req->i)); |
| drbd_insert_interval(&device->read_requests, &req->i); |
| |
| set_bit(UNPLUG_REMOTE, &device->flags); |
| |
| D_ASSERT(device, req->rq_state & RQ_NET_PENDING); |
| D_ASSERT(device, (req->rq_state & RQ_LOCAL_MASK) == 0); |
| mod_rq_state(req, m, 0, RQ_NET_QUEUED); |
| req->w.cb = w_send_read_req; |
| drbd_queue_work(&connection->sender_work, |
| &req->w); |
| break; |
| |
| case QUEUE_FOR_NET_WRITE: |
| /* assert something? */ |
| /* from __drbd_make_request only */ |
| |
| /* Corresponding drbd_remove_request_interval is in |
| * drbd_req_complete() */ |
| D_ASSERT(device, drbd_interval_empty(&req->i)); |
| drbd_insert_interval(&device->write_requests, &req->i); |
| |
| /* NOTE |
| * In case the req ended up on the transfer log before being |
| * queued on the worker, it could lead to this request being |
| * missed during cleanup after connection loss. |
| * So we have to do both operations here, |
| * within the same lock that protects the transfer log. |
| * |
| * _req_add_to_epoch(req); this has to be after the |
| * _maybe_start_new_epoch(req); which happened in |
| * __drbd_make_request, because we now may set the bit |
| * again ourselves to close the current epoch. |
| * |
| * Add req to the (now) current epoch (barrier). */ |
| |
| /* otherwise we may lose an unplug, which may cause some remote |
| * io-scheduler timeout to expire, increasing maximum latency, |
| * hurting performance. */ |
| set_bit(UNPLUG_REMOTE, &device->flags); |
| |
| /* queue work item to send data */ |
| D_ASSERT(device, req->rq_state & RQ_NET_PENDING); |
| mod_rq_state(req, m, 0, RQ_NET_QUEUED|RQ_EXP_BARR_ACK); |
| req->w.cb = w_send_dblock; |
| drbd_queue_work(&connection->sender_work, |
| &req->w); |
| |
| /* close the epoch, in case it outgrew the limit */ |
| rcu_read_lock(); |
| nc = rcu_dereference(connection->net_conf); |
| p = nc->max_epoch_size; |
| rcu_read_unlock(); |
| if (connection->current_tle_writes >= p) |
| start_new_tl_epoch(connection); |
| |
| break; |
| |
| case QUEUE_FOR_SEND_OOS: |
| mod_rq_state(req, m, 0, RQ_NET_QUEUED); |
| req->w.cb = w_send_out_of_sync; |
| drbd_queue_work(&connection->sender_work, |
| &req->w); |
| break; |
| |
| case READ_RETRY_REMOTE_CANCELED: |
| case SEND_CANCELED: |
| case SEND_FAILED: |
| /* real cleanup will be done from tl_clear. just update flags |
| * so it is no longer marked as on the worker queue */ |
| mod_rq_state(req, m, RQ_NET_QUEUED, 0); |
| break; |
| |
| case HANDED_OVER_TO_NETWORK: |
| /* assert something? */ |
| if (bio_data_dir(req->master_bio) == WRITE && |
| !(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK))) { |
| /* this is what is dangerous about protocol A: |
| * pretend it was successfully written on the peer. */ |
| if (req->rq_state & RQ_NET_PENDING) |
| mod_rq_state(req, m, RQ_NET_PENDING, RQ_NET_OK); |
| /* else: neg-ack was faster... */ |
| /* it is still not yet RQ_NET_DONE until the |
| * corresponding epoch barrier got acked as well, |
| * so we know what to dirty on connection loss */ |
| } |
| mod_rq_state(req, m, RQ_NET_QUEUED, RQ_NET_SENT); |
| break; |
| |
| case OOS_HANDED_TO_NETWORK: |
| /* Was not set PENDING, no longer QUEUED, so is now DONE |
| * as far as this connection is concerned. */ |
| mod_rq_state(req, m, RQ_NET_QUEUED, RQ_NET_DONE); |
| break; |
| |
| case CONNECTION_LOST_WHILE_PENDING: |
| /* transfer log cleanup after connection loss */ |
| mod_rq_state(req, m, |
| RQ_NET_OK|RQ_NET_PENDING|RQ_COMPLETION_SUSP, |
| RQ_NET_DONE); |
| break; |
| |
| case CONFLICT_RESOLVED: |
| /* for superseded conflicting writes of multiple primaries, |
| * there is no need to keep anything in the tl, potential |
| * node crashes are covered by the activity log. |
| * |
| * If this request had been marked as RQ_POSTPONED before, |
| * it will actually not be completed, but "restarted", |
| * resubmitted from the retry worker context. */ |
| D_ASSERT(device, req->rq_state & RQ_NET_PENDING); |
| D_ASSERT(device, req->rq_state & RQ_EXP_WRITE_ACK); |
| mod_rq_state(req, m, RQ_NET_PENDING, RQ_NET_DONE|RQ_NET_OK); |
| break; |
| |
| case WRITE_ACKED_BY_PEER_AND_SIS: |
| req->rq_state |= RQ_NET_SIS; |
| case WRITE_ACKED_BY_PEER: |
| /* Normal operation protocol C: successfully written on peer. |
| * During resync, even in protocol != C, |
| * we requested an explicit write ack anyways. |
| * Which means we cannot even assert anything here. |
| * Nothing more to do here. |
| * We want to keep the tl in place for all protocols, to cater |
| * for volatile write-back caches on lower level devices. */ |
| goto ack_common; |
| case RECV_ACKED_BY_PEER: |
| D_ASSERT(device, req->rq_state & RQ_EXP_RECEIVE_ACK); |
| /* protocol B; pretends to be successfully written on peer. |
| * see also notes above in HANDED_OVER_TO_NETWORK about |
| * protocol != C */ |
| ack_common: |
| mod_rq_state(req, m, RQ_NET_PENDING, RQ_NET_OK); |
| break; |
| |
| case POSTPONE_WRITE: |
| D_ASSERT(device, req->rq_state & RQ_EXP_WRITE_ACK); |
| /* If this node has already detected the write conflict, the |
| * worker will be waiting on misc_wait. Wake it up once this |
| * request has completed locally. |
| */ |
| D_ASSERT(device, req->rq_state & RQ_NET_PENDING); |
| req->rq_state |= RQ_POSTPONED; |
| if (req->i.waiting) |
| wake_up(&device->misc_wait); |
| /* Do not clear RQ_NET_PENDING. This request will make further |
| * progress via restart_conflicting_writes() or |
| * fail_postponed_requests(). Hopefully. */ |
| break; |
| |
| case NEG_ACKED: |
| mod_rq_state(req, m, RQ_NET_OK|RQ_NET_PENDING, 0); |
| break; |
| |
| case FAIL_FROZEN_DISK_IO: |
| if (!(req->rq_state & RQ_LOCAL_COMPLETED)) |
| break; |
| mod_rq_state(req, m, RQ_COMPLETION_SUSP, 0); |
| break; |
| |
| case RESTART_FROZEN_DISK_IO: |
| if (!(req->rq_state & RQ_LOCAL_COMPLETED)) |
| break; |
| |
| mod_rq_state(req, m, |
| RQ_COMPLETION_SUSP|RQ_LOCAL_COMPLETED, |
| RQ_LOCAL_PENDING); |
| |
| rv = MR_READ; |
| if (bio_data_dir(req->master_bio) == WRITE) |
| rv = MR_WRITE; |
| |
| get_ldev(device); /* always succeeds in this call path */ |
| req->w.cb = w_restart_disk_io; |
| drbd_queue_work(&connection->sender_work, |
| &req->w); |
| break; |
| |
| case RESEND: |
| /* Simply complete (local only) READs. */ |
| if (!(req->rq_state & RQ_WRITE) && !req->w.cb) { |
| mod_rq_state(req, m, RQ_COMPLETION_SUSP, 0); |
| break; |
| } |
| |
| /* If RQ_NET_OK is already set, we got a P_WRITE_ACK or P_RECV_ACK |
| before the connection loss (B&C only); only P_BARRIER_ACK |
| (or the local completion?) was missing when we suspended. |
| Throwing them out of the TL here by pretending we got a BARRIER_ACK. |
| During connection handshake, we ensure that the peer was not rebooted. */ |
| if (!(req->rq_state & RQ_NET_OK)) { |
| /* FIXME could this possibly be a req->dw.cb == w_send_out_of_sync? |
| * in that case we must not set RQ_NET_PENDING. */ |
| |
| mod_rq_state(req, m, RQ_COMPLETION_SUSP, RQ_NET_QUEUED|RQ_NET_PENDING); |
| if (req->w.cb) { |
| /* w.cb expected to be w_send_dblock, or w_send_read_req */ |
| drbd_queue_work(&connection->sender_work, |
| &req->w); |
| rv = req->rq_state & RQ_WRITE ? MR_WRITE : MR_READ; |
| } /* else: FIXME can this happen? */ |
| break; |
| } |
| /* else, fall through to BARRIER_ACKED */ |
| |
| case BARRIER_ACKED: |
| /* barrier ack for READ requests does not make sense */ |
| if (!(req->rq_state & RQ_WRITE)) |
| break; |
| |
| if (req->rq_state & RQ_NET_PENDING) { |
| /* barrier came in before all requests were acked. |
| * this is bad, because if the connection is lost now, |
| * we won't be able to clean them up... */ |
| drbd_err(device, "FIXME (BARRIER_ACKED but pending)\n"); |
| } |
| /* Allowed to complete requests, even while suspended. |
| * As this is called for all requests within a matching epoch, |
| * we need to filter, and only set RQ_NET_DONE for those that |
| * have actually been on the wire. */ |
| mod_rq_state(req, m, RQ_COMPLETION_SUSP, |
| (req->rq_state & RQ_NET_MASK) ? RQ_NET_DONE : 0); |
| break; |
| |
| case DATA_RECEIVED: |
| D_ASSERT(device, req->rq_state & RQ_NET_PENDING); |
| mod_rq_state(req, m, RQ_NET_PENDING, RQ_NET_OK|RQ_NET_DONE); |
| break; |
| |
| case QUEUE_AS_DRBD_BARRIER: |
| start_new_tl_epoch(connection); |
| mod_rq_state(req, m, 0, RQ_NET_OK|RQ_NET_DONE); |
| break; |
| }; |
| |
| return rv; |
| } |
| |
| /* we may do a local read if: |
| * - we are consistent (of course), |
| * - or we are generally inconsistent, |
| * BUT we are still/already IN SYNC for this area. |
| * since size may be bigger than BM_BLOCK_SIZE, |
| * we may need to check several bits. |
| */ |
| static bool drbd_may_do_local_read(struct drbd_device *device, sector_t sector, int size) |
| { |
| unsigned long sbnr, ebnr; |
| sector_t esector, nr_sectors; |
| |
| if (device->state.disk == D_UP_TO_DATE) |
| return true; |
| if (device->state.disk != D_INCONSISTENT) |
| return false; |
| esector = sector + (size >> 9) - 1; |
| nr_sectors = drbd_get_capacity(device->this_bdev); |
| D_ASSERT(device, sector < nr_sectors); |
| D_ASSERT(device, esector < nr_sectors); |
| |
| sbnr = BM_SECT_TO_BIT(sector); |
| ebnr = BM_SECT_TO_BIT(esector); |
| |
| return drbd_bm_count_bits(device, sbnr, ebnr) == 0; |
| } |
| |
| static bool remote_due_to_read_balancing(struct drbd_device *device, sector_t sector, |
| enum drbd_read_balancing rbm) |
| { |
| struct backing_dev_info *bdi; |
| int stripe_shift; |
| |
| switch (rbm) { |
| case RB_CONGESTED_REMOTE: |
| bdi = &device->ldev->backing_bdev->bd_disk->queue->backing_dev_info; |
| return bdi_read_congested(bdi); |
| case RB_LEAST_PENDING: |
| return atomic_read(&device->local_cnt) > |
| atomic_read(&device->ap_pending_cnt) + atomic_read(&device->rs_pending_cnt); |
| case RB_32K_STRIPING: /* stripe_shift = 15 */ |
| case RB_64K_STRIPING: |
| case RB_128K_STRIPING: |
| case RB_256K_STRIPING: |
| case RB_512K_STRIPING: |
| case RB_1M_STRIPING: /* stripe_shift = 20 */ |
| stripe_shift = (rbm - RB_32K_STRIPING + 15); |
| return (sector >> (stripe_shift - 9)) & 1; |
| case RB_ROUND_ROBIN: |
| return test_and_change_bit(READ_BALANCE_RR, &device->flags); |
| case RB_PREFER_REMOTE: |
| return true; |
| case RB_PREFER_LOCAL: |
| default: |
| return false; |
| } |
| } |
| |
| /* |
| * complete_conflicting_writes - wait for any conflicting write requests |
| * |
| * The write_requests tree contains all active write requests which we |
| * currently know about. Wait for any requests to complete which conflict with |
| * the new one. |
| * |
| * Only way out: remove the conflicting intervals from the tree. |
| */ |
| static void complete_conflicting_writes(struct drbd_request *req) |
| { |
| DEFINE_WAIT(wait); |
| struct drbd_device *device = req->device; |
| struct drbd_interval *i; |
| sector_t sector = req->i.sector; |
| int size = req->i.size; |
| |
| i = drbd_find_overlap(&device->write_requests, sector, size); |
| if (!i) |
| return; |
| |
| for (;;) { |
| prepare_to_wait(&device->misc_wait, &wait, TASK_UNINTERRUPTIBLE); |
| i = drbd_find_overlap(&device->write_requests, sector, size); |
| if (!i) |
| break; |
| /* Indicate to wake up device->misc_wait on progress. */ |
| i->waiting = true; |
| spin_unlock_irq(&device->resource->req_lock); |
| schedule(); |
| spin_lock_irq(&device->resource->req_lock); |
| } |
| finish_wait(&device->misc_wait, &wait); |
| } |
| |
| /* called within req_lock and rcu_read_lock() */ |
| static void maybe_pull_ahead(struct drbd_device *device) |
| { |
| struct drbd_connection *connection = first_peer_device(device)->connection; |
| struct net_conf *nc; |
| bool congested = false; |
| enum drbd_on_congestion on_congestion; |
| |
| rcu_read_lock(); |
| nc = rcu_dereference(connection->net_conf); |
| on_congestion = nc ? nc->on_congestion : OC_BLOCK; |
| rcu_read_unlock(); |
| if (on_congestion == OC_BLOCK || |
| connection->agreed_pro_version < 96) |
| return; |
| |
| if (on_congestion == OC_PULL_AHEAD && device->state.conn == C_AHEAD) |
| return; /* nothing to do ... */ |
| |
| /* If I don't even have good local storage, we can not reasonably try |
| * to pull ahead of the peer. We also need the local reference to make |
| * sure device->act_log is there. |
| */ |
| if (!get_ldev_if_state(device, D_UP_TO_DATE)) |
| return; |
| |
| if (nc->cong_fill && |
| atomic_read(&device->ap_in_flight) >= nc->cong_fill) { |
| drbd_info(device, "Congestion-fill threshold reached\n"); |
| congested = true; |
| } |
| |
| if (device->act_log->used >= nc->cong_extents) { |
| drbd_info(device, "Congestion-extents threshold reached\n"); |
| congested = true; |
| } |
| |
| if (congested) { |
| /* start a new epoch for non-mirrored writes */ |
| start_new_tl_epoch(first_peer_device(device)->connection); |
| |
| if (on_congestion == OC_PULL_AHEAD) |
| _drbd_set_state(_NS(device, conn, C_AHEAD), 0, NULL); |
| else /*nc->on_congestion == OC_DISCONNECT */ |
| _drbd_set_state(_NS(device, conn, C_DISCONNECTING), 0, NULL); |
| } |
| put_ldev(device); |
| } |
| |
| /* If this returns false, and req->private_bio is still set, |
| * this should be submitted locally. |
| * |
| * If it returns false, but req->private_bio is not set, |
| * we do not have access to good data :( |
| * |
| * Otherwise, this destroys req->private_bio, if any, |
| * and returns true. |
| */ |
| static bool do_remote_read(struct drbd_request *req) |
| { |
| struct drbd_device *device = req->device; |
| enum drbd_read_balancing rbm; |
| |
| if (req->private_bio) { |
| if (!drbd_may_do_local_read(device, |
| req->i.sector, req->i.size)) { |
| bio_put(req->private_bio); |
| req->private_bio = NULL; |
| put_ldev(device); |
| } |
| } |
| |
| if (device->state.pdsk != D_UP_TO_DATE) |
| return false; |
| |
| if (req->private_bio == NULL) |
| return true; |
| |
| /* TODO: improve read balancing decisions, take into account drbd |
| * protocol, pending requests etc. */ |
| |
| rcu_read_lock(); |
| rbm = rcu_dereference(device->ldev->disk_conf)->read_balancing; |
| rcu_read_unlock(); |
| |
| if (rbm == RB_PREFER_LOCAL && req->private_bio) |
| return false; /* submit locally */ |
| |
| if (remote_due_to_read_balancing(device, req->i.sector, rbm)) { |
| if (req->private_bio) { |
| bio_put(req->private_bio); |
| req->private_bio = NULL; |
| put_ldev(device); |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* returns number of connections (== 1, for drbd 8.4) |
| * expected to actually write this data, |
| * which does NOT include those that we are L_AHEAD for. */ |
| static int drbd_process_write_request(struct drbd_request *req) |
| { |
| struct drbd_device *device = req->device; |
| int remote, send_oos; |
| |
| remote = drbd_should_do_remote(device->state); |
| send_oos = drbd_should_send_out_of_sync(device->state); |
| |
| /* Need to replicate writes. Unless it is an empty flush, |
| * which is better mapped to a DRBD P_BARRIER packet, |
| * also for drbd wire protocol compatibility reasons. |
| * If this was a flush, just start a new epoch. |
| * Unless the current epoch was empty anyways, or we are not currently |
| * replicating, in which case there is no point. */ |
| if (unlikely(req->i.size == 0)) { |
| /* The only size==0 bios we expect are empty flushes. */ |
| D_ASSERT(device, req->master_bio->bi_rw & REQ_FLUSH); |
| if (remote) |
| _req_mod(req, QUEUE_AS_DRBD_BARRIER); |
| return remote; |
| } |
| |
| if (!remote && !send_oos) |
| return 0; |
| |
| D_ASSERT(device, !(remote && send_oos)); |
| |
| if (remote) { |
| _req_mod(req, TO_BE_SENT); |
| _req_mod(req, QUEUE_FOR_NET_WRITE); |
| } else if (drbd_set_out_of_sync(device, req->i.sector, req->i.size)) |
| _req_mod(req, QUEUE_FOR_SEND_OOS); |
| |
| return remote; |
| } |
| |
| static void |
| drbd_submit_req_private_bio(struct drbd_request *req) |
| { |
| struct drbd_device *device = req->device; |
| struct bio *bio = req->private_bio; |
| const int rw = bio_rw(bio); |
| |
| bio->bi_bdev = device->ldev->backing_bdev; |
| |
| /* State may have changed since we grabbed our reference on the |
| * ->ldev member. Double check, and short-circuit to endio. |
| * In case the last activity log transaction failed to get on |
| * stable storage, and this is a WRITE, we may not even submit |
| * this bio. */ |
| if (get_ldev(device)) { |
| if (drbd_insert_fault(device, |
| rw == WRITE ? DRBD_FAULT_DT_WR |
| : rw == READ ? DRBD_FAULT_DT_RD |
| : DRBD_FAULT_DT_RA)) |
| bio_endio(bio, -EIO); |
| else |
| generic_make_request(bio); |
| put_ldev(device); |
| } else |
| bio_endio(bio, -EIO); |
| } |
| |
| static void drbd_queue_write(struct drbd_device *device, struct drbd_request *req) |
| { |
| spin_lock(&device->submit.lock); |
| list_add_tail(&req->tl_requests, &device->submit.writes); |
| spin_unlock(&device->submit.lock); |
| queue_work(device->submit.wq, &device->submit.worker); |
| } |
| |
| /* returns the new drbd_request pointer, if the caller is expected to |
| * drbd_send_and_submit() it (to save latency), or NULL if we queued the |
| * request on the submitter thread. |
| * Returns ERR_PTR(-ENOMEM) if we cannot allocate a drbd_request. |
| */ |
| static struct drbd_request * |
| drbd_request_prepare(struct drbd_device *device, struct bio *bio, unsigned long start_time) |
| { |
| const int rw = bio_data_dir(bio); |
| struct drbd_request *req; |
| |
| /* allocate outside of all locks; */ |
| req = drbd_req_new(device, bio); |
| if (!req) { |
| dec_ap_bio(device); |
| /* only pass the error to the upper layers. |
| * if user cannot handle io errors, that's not our business. */ |
| drbd_err(device, "could not kmalloc() req\n"); |
| bio_endio(bio, -ENOMEM); |
| return ERR_PTR(-ENOMEM); |
| } |
| req->start_time = start_time; |
| |
| if (!get_ldev(device)) { |
| bio_put(req->private_bio); |
| req->private_bio = NULL; |
| } |
| |
| /* Update disk stats */ |
| _drbd_start_io_acct(device, req); |
| |
| if (rw == WRITE && req->private_bio && req->i.size |
| && !test_bit(AL_SUSPENDED, &device->flags)) { |
| if (!drbd_al_begin_io_fastpath(device, &req->i)) { |
| drbd_queue_write(device, req); |
| return NULL; |
| } |
| req->rq_state |= RQ_IN_ACT_LOG; |
| } |
| |
| return req; |
| } |
| |
| static void drbd_send_and_submit(struct drbd_device *device, struct drbd_request *req) |
| { |
| struct drbd_resource *resource = device->resource; |
| const int rw = bio_rw(req->master_bio); |
| struct bio_and_error m = { NULL, }; |
| bool no_remote = false; |
| bool submit_private_bio = false; |
| |
| spin_lock_irq(&resource->req_lock); |
| if (rw == WRITE) { |
| /* This may temporarily give up the req_lock, |
| * but will re-aquire it before it returns here. |
| * Needs to be before the check on drbd_suspended() */ |
| complete_conflicting_writes(req); |
| /* no more giving up req_lock from now on! */ |
| |
| /* check for congestion, and potentially stop sending |
| * full data updates, but start sending "dirty bits" only. */ |
| maybe_pull_ahead(device); |
| } |
| |
| |
| if (drbd_suspended(device)) { |
| /* push back and retry: */ |
| req->rq_state |= RQ_POSTPONED; |
| if (req->private_bio) { |
| bio_put(req->private_bio); |
| req->private_bio = NULL; |
| put_ldev(device); |
| } |
| goto out; |
| } |
| |
| /* We fail READ/READA early, if we can not serve it. |
| * We must do this before req is registered on any lists. |
| * Otherwise, drbd_req_complete() will queue failed READ for retry. */ |
| if (rw != WRITE) { |
| if (!do_remote_read(req) && !req->private_bio) |
| goto nodata; |
| } |
| |
| /* which transfer log epoch does this belong to? */ |
| req->epoch = atomic_read(&first_peer_device(device)->connection->current_tle_nr); |
| |
| /* no point in adding empty flushes to the transfer log, |
| * they are mapped to drbd barriers already. */ |
| if (likely(req->i.size!=0)) { |
| if (rw == WRITE) |
| first_peer_device(device)->connection->current_tle_writes++; |
| |
| list_add_tail(&req->tl_requests, &first_peer_device(device)->connection->transfer_log); |
| } |
| |
| if (rw == WRITE) { |
| if (!drbd_process_write_request(req)) |
| no_remote = true; |
| } else { |
| /* We either have a private_bio, or we can read from remote. |
| * Otherwise we had done the goto nodata above. */ |
| if (req->private_bio == NULL) { |
| _req_mod(req, TO_BE_SENT); |
| _req_mod(req, QUEUE_FOR_NET_READ); |
| } else |
| no_remote = true; |
| } |
| |
| if (req->private_bio) { |
| /* needs to be marked within the same spinlock */ |
| _req_mod(req, TO_BE_SUBMITTED); |
| /* but we need to give up the spinlock to submit */ |
| submit_private_bio = true; |
| } else if (no_remote) { |
| nodata: |
| if (__ratelimit(&drbd_ratelimit_state)) |
| drbd_err(device, "IO ERROR: neither local nor remote data, sector %llu+%u\n", |
| (unsigned long long)req->i.sector, req->i.size >> 9); |
| /* A write may have been queued for send_oos, however. |
| * So we can not simply free it, we must go through drbd_req_put_completion_ref() */ |
| } |
| |
| out: |
| if (drbd_req_put_completion_ref(req, &m, 1)) |
| kref_put(&req->kref, drbd_req_destroy); |
| spin_unlock_irq(&resource->req_lock); |
| |
| /* Even though above is a kref_put(), this is safe. |
| * As long as we still need to submit our private bio, |
| * we hold a completion ref, and the request cannot disappear. |
| * If however this request did not even have a private bio to submit |
| * (e.g. remote read), req may already be invalid now. |
| * That's why we cannot check on req->private_bio. */ |
| if (submit_private_bio) |
| drbd_submit_req_private_bio(req); |
| if (m.bio) |
| complete_master_bio(device, &m); |
| } |
| |
| void __drbd_make_request(struct drbd_device *device, struct bio *bio, unsigned long start_time) |
| { |
| struct drbd_request *req = drbd_request_prepare(device, bio, start_time); |
| if (IS_ERR_OR_NULL(req)) |
| return; |
| drbd_send_and_submit(device, req); |
| } |
| |
| static void submit_fast_path(struct drbd_device *device, struct list_head *incoming) |
| { |
| struct drbd_request *req, *tmp; |
| list_for_each_entry_safe(req, tmp, incoming, tl_requests) { |
| const int rw = bio_data_dir(req->master_bio); |
| |
| if (rw == WRITE /* rw != WRITE should not even end up here! */ |
| && req->private_bio && req->i.size |
| && !test_bit(AL_SUSPENDED, &device->flags)) { |
| if (!drbd_al_begin_io_fastpath(device, &req->i)) |
| continue; |
| |
| req->rq_state |= RQ_IN_ACT_LOG; |
| } |
| |
| list_del_init(&req->tl_requests); |
| drbd_send_and_submit(device, req); |
| } |
| } |
| |
| static bool prepare_al_transaction_nonblock(struct drbd_device *device, |
| struct list_head *incoming, |
| struct list_head *pending) |
| { |
| struct drbd_request *req, *tmp; |
| int wake = 0; |
| int err; |
| |
| spin_lock_irq(&device->al_lock); |
| list_for_each_entry_safe(req, tmp, incoming, tl_requests) { |
| err = drbd_al_begin_io_nonblock(device, &req->i); |
| if (err == -EBUSY) |
| wake = 1; |
| if (err) |
| continue; |
| req->rq_state |= RQ_IN_ACT_LOG; |
| list_move_tail(&req->tl_requests, pending); |
| } |
| spin_unlock_irq(&device->al_lock); |
| if (wake) |
| wake_up(&device->al_wait); |
| |
| return !list_empty(pending); |
| } |
| |
| void do_submit(struct work_struct *ws) |
| { |
| struct drbd_device *device = container_of(ws, struct drbd_device, submit.worker); |
| LIST_HEAD(incoming); |
| LIST_HEAD(pending); |
| struct drbd_request *req, *tmp; |
| |
| for (;;) { |
| spin_lock(&device->submit.lock); |
| list_splice_tail_init(&device->submit.writes, &incoming); |
| spin_unlock(&device->submit.lock); |
| |
| submit_fast_path(device, &incoming); |
| if (list_empty(&incoming)) |
| break; |
| |
| skip_fast_path: |
| wait_event(device->al_wait, prepare_al_transaction_nonblock(device, &incoming, &pending)); |
| /* Maybe more was queued, while we prepared the transaction? |
| * Try to stuff them into this transaction as well. |
| * Be strictly non-blocking here, no wait_event, we already |
| * have something to commit. |
| * Stop if we don't make any more progres. |
| */ |
| for (;;) { |
| LIST_HEAD(more_pending); |
| LIST_HEAD(more_incoming); |
| bool made_progress; |
| |
| /* It is ok to look outside the lock, |
| * it's only an optimization anyways */ |
| if (list_empty(&device->submit.writes)) |
| break; |
| |
| spin_lock(&device->submit.lock); |
| list_splice_tail_init(&device->submit.writes, &more_incoming); |
| spin_unlock(&device->submit.lock); |
| |
| if (list_empty(&more_incoming)) |
| break; |
| |
| made_progress = prepare_al_transaction_nonblock(device, &more_incoming, &more_pending); |
| |
| list_splice_tail_init(&more_pending, &pending); |
| list_splice_tail_init(&more_incoming, &incoming); |
| |
| if (!made_progress) |
| break; |
| } |
| drbd_al_begin_io_commit(device); |
| |
| list_for_each_entry_safe(req, tmp, &pending, tl_requests) { |
| list_del_init(&req->tl_requests); |
| drbd_send_and_submit(device, req); |
| } |
| |
| /* If all currently hot activity log extents are kept busy by |
| * incoming requests, we still must not totally starve new |
| * requests to cold extents. In that case, prepare one request |
| * in blocking mode. */ |
| list_for_each_entry_safe(req, tmp, &incoming, tl_requests) { |
| list_del_init(&req->tl_requests); |
| req->rq_state |= RQ_IN_ACT_LOG; |
| if (!drbd_al_begin_io_prepare(device, &req->i)) { |
| /* Corresponding extent was hot after all? */ |
| drbd_send_and_submit(device, req); |
| } else { |
| /* Found a request to a cold extent. |
| * Put on "pending" list, |
| * and try to cumulate with more. */ |
| list_add(&req->tl_requests, &pending); |
| goto skip_fast_path; |
| } |
| } |
| } |
| } |
| |
| void drbd_make_request(struct request_queue *q, struct bio *bio) |
| { |
| struct drbd_device *device = (struct drbd_device *) q->queuedata; |
| unsigned long start_time; |
| |
| start_time = jiffies; |
| |
| /* |
| * what we "blindly" assume: |
| */ |
| D_ASSERT(device, IS_ALIGNED(bio->bi_iter.bi_size, 512)); |
| |
| inc_ap_bio(device); |
| __drbd_make_request(device, bio, start_time); |
| } |
| |
| /* This is called by bio_add_page(). |
| * |
| * q->max_hw_sectors and other global limits are already enforced there. |
| * |
| * We need to call down to our lower level device, |
| * in case it has special restrictions. |
| * |
| * We also may need to enforce configured max-bio-bvecs limits. |
| * |
| * As long as the BIO is empty we have to allow at least one bvec, |
| * regardless of size and offset, so no need to ask lower levels. |
| */ |
| int drbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bvm, struct bio_vec *bvec) |
| { |
| struct drbd_device *device = (struct drbd_device *) q->queuedata; |
| unsigned int bio_size = bvm->bi_size; |
| int limit = DRBD_MAX_BIO_SIZE; |
| int backing_limit; |
| |
| if (bio_size && get_ldev(device)) { |
| unsigned int max_hw_sectors = queue_max_hw_sectors(q); |
| struct request_queue * const b = |
| device->ldev->backing_bdev->bd_disk->queue; |
| if (b->merge_bvec_fn) { |
| backing_limit = b->merge_bvec_fn(b, bvm, bvec); |
| limit = min(limit, backing_limit); |
| } |
| put_ldev(device); |
| if ((limit >> 9) > max_hw_sectors) |
| limit = max_hw_sectors << 9; |
| } |
| return limit; |
| } |
| |
| static void find_oldest_requests( |
| struct drbd_connection *connection, |
| struct drbd_device *device, |
| struct drbd_request **oldest_req_waiting_for_peer, |
| struct drbd_request **oldest_req_waiting_for_disk) |
| { |
| struct drbd_request *r; |
| *oldest_req_waiting_for_peer = NULL; |
| *oldest_req_waiting_for_disk = NULL; |
| list_for_each_entry(r, &connection->transfer_log, tl_requests) { |
| const unsigned s = r->rq_state; |
| if (!*oldest_req_waiting_for_peer |
| && ((s & RQ_NET_MASK) && !(s & RQ_NET_DONE))) |
| *oldest_req_waiting_for_peer = r; |
| |
| if (!*oldest_req_waiting_for_disk |
| && (s & RQ_LOCAL_PENDING) && r->device == device) |
| *oldest_req_waiting_for_disk = r; |
| |
| if (*oldest_req_waiting_for_peer && *oldest_req_waiting_for_disk) |
| break; |
| } |
| } |
| |
| void request_timer_fn(unsigned long data) |
| { |
| struct drbd_device *device = (struct drbd_device *) data; |
| struct drbd_connection *connection = first_peer_device(device)->connection; |
| struct drbd_request *req_disk, *req_peer; /* oldest request */ |
| struct net_conf *nc; |
| unsigned long ent = 0, dt = 0, et, nt; /* effective timeout = ko_count * timeout */ |
| unsigned long now; |
| |
| rcu_read_lock(); |
| nc = rcu_dereference(connection->net_conf); |
| if (nc && device->state.conn >= C_WF_REPORT_PARAMS) |
| ent = nc->timeout * HZ/10 * nc->ko_count; |
| |
| if (get_ldev(device)) { /* implicit state.disk >= D_INCONSISTENT */ |
| dt = rcu_dereference(device->ldev->disk_conf)->disk_timeout * HZ / 10; |
| put_ldev(device); |
| } |
| rcu_read_unlock(); |
| |
| et = min_not_zero(dt, ent); |
| |
| if (!et) |
| return; /* Recurring timer stopped */ |
| |
| now = jiffies; |
| |
| spin_lock_irq(&device->resource->req_lock); |
| find_oldest_requests(connection, device, &req_peer, &req_disk); |
| if (req_peer == NULL && req_disk == NULL) { |
| spin_unlock_irq(&device->resource->req_lock); |
| mod_timer(&device->request_timer, now + et); |
| return; |
| } |
| |
| /* The request is considered timed out, if |
| * - we have some effective timeout from the configuration, |
| * with above state restrictions applied, |
| * - the oldest request is waiting for a response from the network |
| * resp. the local disk, |
| * - the oldest request is in fact older than the effective timeout, |
| * - the connection was established (resp. disk was attached) |
| * for longer than the timeout already. |
| * Note that for 32bit jiffies and very stable connections/disks, |
| * we may have a wrap around, which is catched by |
| * !time_in_range(now, last_..._jif, last_..._jif + timeout). |
| * |
| * Side effect: once per 32bit wrap-around interval, which means every |
| * ~198 days with 250 HZ, we have a window where the timeout would need |
| * to expire twice (worst case) to become effective. Good enough. |
| */ |
| if (ent && req_peer && |
| time_after(now, req_peer->start_time + ent) && |
| !time_in_range(now, connection->last_reconnect_jif, connection->last_reconnect_jif + ent)) { |
| drbd_warn(device, "Remote failed to finish a request within ko-count * timeout\n"); |
| _drbd_set_state(_NS(device, conn, C_TIMEOUT), CS_VERBOSE | CS_HARD, NULL); |
| } |
| if (dt && req_disk && |
| time_after(now, req_disk->start_time + dt) && |
| !time_in_range(now, device->last_reattach_jif, device->last_reattach_jif + dt)) { |
| drbd_warn(device, "Local backing device failed to meet the disk-timeout\n"); |
| __drbd_chk_io_error(device, DRBD_FORCE_DETACH); |
| } |
| |
| /* Reschedule timer for the nearest not already expired timeout. |
| * Fallback to now + min(effective network timeout, disk timeout). */ |
| ent = (ent && req_peer && time_before(now, req_peer->start_time + ent)) |
| ? req_peer->start_time + ent : now + et; |
| dt = (dt && req_disk && time_before(now, req_disk->start_time + dt)) |
| ? req_disk->start_time + dt : now + et; |
| nt = time_before(ent, dt) ? ent : dt; |
| spin_unlock_irq(&connection->resource->req_lock); |
| mod_timer(&device->request_timer, nt); |
| } |