blob: 468a1209833f690a004607c2ff06e51bf2fe4b08 [file] [log] [blame]
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2004-2007 Cavium Networks
* Copyright (C) 2008 Wind River Systems
*/
#include <linux/init.h>
#include <linux/console.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/serial.h>
#include <linux/smp.h>
#include <linux/types.h>
#include <linux/string.h> /* for memset */
#include <linux/tty.h>
#include <linux/time.h>
#include <linux/platform_device.h>
#include <linux/serial_core.h>
#include <linux/serial_8250.h>
#include <asm/processor.h>
#include <asm/reboot.h>
#include <asm/smp-ops.h>
#include <asm/system.h>
#include <asm/irq_cpu.h>
#include <asm/mipsregs.h>
#include <asm/bootinfo.h>
#include <asm/sections.h>
#include <asm/time.h>
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-rnm-defs.h>
#ifdef CONFIG_CAVIUM_DECODE_RSL
extern void cvmx_interrupt_rsl_decode(void);
extern int __cvmx_interrupt_ecc_report_single_bit_errors;
extern void cvmx_interrupt_rsl_enable(void);
#endif
extern struct plat_smp_ops octeon_smp_ops;
#ifdef CONFIG_PCI
extern void pci_console_init(const char *arg);
#endif
#ifdef CONFIG_CAVIUM_RESERVE32
extern uint64_t octeon_reserve32_memory;
#endif
static unsigned long long MAX_MEMORY = 512ull << 20;
struct octeon_boot_descriptor *octeon_boot_desc_ptr;
struct cvmx_bootinfo *octeon_bootinfo;
EXPORT_SYMBOL(octeon_bootinfo);
#ifdef CONFIG_CAVIUM_RESERVE32
uint64_t octeon_reserve32_memory;
EXPORT_SYMBOL(octeon_reserve32_memory);
#endif
static int octeon_uart;
extern asmlinkage void handle_int(void);
extern asmlinkage void plat_irq_dispatch(void);
/**
* Return non zero if we are currently running in the Octeon simulator
*
* Returns
*/
int octeon_is_simulation(void)
{
return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
}
EXPORT_SYMBOL(octeon_is_simulation);
/**
* Return true if Octeon is in PCI Host mode. This means
* Linux can control the PCI bus.
*
* Returns Non zero if Octeon in host mode.
*/
int octeon_is_pci_host(void)
{
#ifdef CONFIG_PCI
return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
#else
return 0;
#endif
}
/**
* Get the clock rate of Octeon
*
* Returns Clock rate in HZ
*/
uint64_t octeon_get_clock_rate(void)
{
if (octeon_is_simulation())
octeon_bootinfo->eclock_hz = 6000000;
return octeon_bootinfo->eclock_hz;
}
EXPORT_SYMBOL(octeon_get_clock_rate);
/**
* Write to the LCD display connected to the bootbus. This display
* exists on most Cavium evaluation boards. If it doesn't exist, then
* this function doesn't do anything.
*
* @s: String to write
*/
void octeon_write_lcd(const char *s)
{
if (octeon_bootinfo->led_display_base_addr) {
void __iomem *lcd_address =
ioremap_nocache(octeon_bootinfo->led_display_base_addr,
8);
int i;
for (i = 0; i < 8; i++, s++) {
if (*s)
iowrite8(*s, lcd_address + i);
else
iowrite8(' ', lcd_address + i);
}
iounmap(lcd_address);
}
}
/**
* Return the console uart passed by the bootloader
*
* Returns uart (0 or 1)
*/
int octeon_get_boot_uart(void)
{
int uart;
#ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
uart = 1;
#else
uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
1 : 0;
#endif
return uart;
}
/**
* Get the coremask Linux was booted on.
*
* Returns Core mask
*/
int octeon_get_boot_coremask(void)
{
return octeon_boot_desc_ptr->core_mask;
}
/**
* Check the hardware BIST results for a CPU
*/
void octeon_check_cpu_bist(void)
{
const int coreid = cvmx_get_core_num();
unsigned long long mask;
unsigned long long bist_val;
/* Check BIST results for COP0 registers */
mask = 0x1f00000000ull;
bist_val = read_octeon_c0_icacheerr();
if (bist_val & mask)
pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
coreid, bist_val);
bist_val = read_octeon_c0_dcacheerr();
if (bist_val & 1)
pr_err("Core%d L1 Dcache parity error: "
"CacheErr(dcache) = 0x%llx\n",
coreid, bist_val);
mask = 0xfc00000000000000ull;
bist_val = read_c0_cvmmemctl();
if (bist_val & mask)
pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
coreid, bist_val);
write_octeon_c0_dcacheerr(0);
}
#ifdef CONFIG_CAVIUM_RESERVE32_USE_WIRED_TLB
/**
* Called on every core to setup the wired tlb entry needed
* if CONFIG_CAVIUM_RESERVE32_USE_WIRED_TLB is set.
*
*/
static void octeon_hal_setup_per_cpu_reserved32(void *unused)
{
/*
* The config has selected to wire the reserve32 memory for all
* userspace applications. We need to put a wired TLB entry in for each
* 512MB of reserve32 memory. We only handle double 256MB pages here,
* so reserve32 must be multiple of 512MB.
*/
uint32_t size = CONFIG_CAVIUM_RESERVE32;
uint32_t entrylo0 =
0x7 | ((octeon_reserve32_memory & ((1ul << 40) - 1)) >> 6);
uint32_t entrylo1 = entrylo0 + (256 << 14);
uint32_t entryhi = (0x80000000UL - (CONFIG_CAVIUM_RESERVE32 << 20));
while (size >= 512) {
#if 0
pr_info("CPU%d: Adding double wired TLB entry for 0x%lx\n",
smp_processor_id(), entryhi);
#endif
add_wired_entry(entrylo0, entrylo1, entryhi, PM_256M);
entrylo0 += 512 << 14;
entrylo1 += 512 << 14;
entryhi += 512 << 20;
size -= 512;
}
}
#endif /* CONFIG_CAVIUM_RESERVE32_USE_WIRED_TLB */
/**
* Called to release the named block which was used to made sure
* that nobody used the memory for something else during
* init. Now we'll free it so userspace apps can use this
* memory region with bootmem_alloc.
*
* This function is called only once from prom_free_prom_memory().
*/
void octeon_hal_setup_reserved32(void)
{
#ifdef CONFIG_CAVIUM_RESERVE32_USE_WIRED_TLB
on_each_cpu(octeon_hal_setup_per_cpu_reserved32, NULL, 0, 1);
#endif
}
/**
* Reboot Octeon
*
* @command: Command to pass to the bootloader. Currently ignored.
*/
static void octeon_restart(char *command)
{
/* Disable all watchdogs before soft reset. They don't get cleared */
#ifdef CONFIG_SMP
int cpu;
for_each_online_cpu(cpu)
cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
#else
cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
#endif
mb();
while (1)
cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
}
/**
* Permanently stop a core.
*
* @arg: Ignored.
*/
static void octeon_kill_core(void *arg)
{
mb();
if (octeon_is_simulation()) {
/* The simulator needs the watchdog to stop for dead cores */
cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
/* A break instruction causes the simulator stop a core */
asm volatile ("sync\nbreak");
}
}
/**
* Halt the system
*/
static void octeon_halt(void)
{
smp_call_function(octeon_kill_core, NULL, 0);
switch (octeon_bootinfo->board_type) {
case CVMX_BOARD_TYPE_NAO38:
/* Driving a 1 to GPIO 12 shuts off this board */
cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
break;
default:
octeon_write_lcd("PowerOff");
break;
}
octeon_kill_core(NULL);
}
#if 0
/**
* Platform time init specifics.
* Returns
*/
void __init plat_time_init(void)
{
/* Nothing special here, but we are required to have one */
}
#endif
/**
* Handle all the error condition interrupts that might occur.
*
*/
#ifdef CONFIG_CAVIUM_DECODE_RSL
static irqreturn_t octeon_rlm_interrupt(int cpl, void *dev_id)
{
cvmx_interrupt_rsl_decode();
return IRQ_HANDLED;
}
#endif
/**
* Return a string representing the system type
*
* Returns
*/
const char *octeon_board_type_string(void)
{
static char name[80];
sprintf(name, "%s (%s)",
cvmx_board_type_to_string(octeon_bootinfo->board_type),
octeon_model_get_string(read_c0_prid()));
return name;
}
const char *get_system_type(void)
__attribute__ ((alias("octeon_board_type_string")));
void octeon_user_io_init(void)
{
union octeon_cvmemctl cvmmemctl;
union cvmx_iob_fau_timeout fau_timeout;
union cvmx_pow_nw_tim nm_tim;
uint64_t cvmctl;
/* Get the current settings for CP0_CVMMEMCTL_REG */
cvmmemctl.u64 = read_c0_cvmmemctl();
/* R/W If set, marked write-buffer entries time out the same
* as as other entries; if clear, marked write-buffer entries
* use the maximum timeout. */
cvmmemctl.s.dismarkwblongto = 1;
/* R/W If set, a merged store does not clear the write-buffer
* entry timeout state. */
cvmmemctl.s.dismrgclrwbto = 0;
/* R/W Two bits that are the MSBs of the resultant CVMSEG LM
* word location for an IOBDMA. The other 8 bits come from the
* SCRADDR field of the IOBDMA. */
cvmmemctl.s.iobdmascrmsb = 0;
/* R/W If set, SYNCWS and SYNCS only order marked stores; if
* clear, SYNCWS and SYNCS only order unmarked
* stores. SYNCWSMARKED has no effect when DISSYNCWS is
* set. */
cvmmemctl.s.syncwsmarked = 0;
/* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
cvmmemctl.s.dissyncws = 0;
/* R/W If set, no stall happens on write buffer full. */
if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
cvmmemctl.s.diswbfst = 1;
else
cvmmemctl.s.diswbfst = 0;
/* R/W If set (and SX set), supervisor-level loads/stores can
* use XKPHYS addresses with <48>==0 */
cvmmemctl.s.xkmemenas = 0;
/* R/W If set (and UX set), user-level loads/stores can use
* XKPHYS addresses with VA<48>==0 */
cvmmemctl.s.xkmemenau = 0;
/* R/W If set (and SX set), supervisor-level loads/stores can
* use XKPHYS addresses with VA<48>==1 */
cvmmemctl.s.xkioenas = 0;
/* R/W If set (and UX set), user-level loads/stores can use
* XKPHYS addresses with VA<48>==1 */
cvmmemctl.s.xkioenau = 0;
/* R/W If set, all stores act as SYNCW (NOMERGE must be set
* when this is set) RW, reset to 0. */
cvmmemctl.s.allsyncw = 0;
/* R/W If set, no stores merge, and all stores reach the
* coherent bus in order. */
cvmmemctl.s.nomerge = 0;
/* R/W Selects the bit in the counter used for DID time-outs 0
* = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
* between 1x and 2x this interval. For example, with
* DIDTTO=3, expiration interval is between 16K and 32K. */
cvmmemctl.s.didtto = 0;
/* R/W If set, the (mem) CSR clock never turns off. */
cvmmemctl.s.csrckalwys = 0;
/* R/W If set, mclk never turns off. */
cvmmemctl.s.mclkalwys = 0;
/* R/W Selects the bit in the counter used for write buffer
* flush time-outs (WBFLT+11) is the bit position in an
* internal counter used to determine expiration. The write
* buffer expires between 1x and 2x this interval. For
* example, with WBFLT = 0, a write buffer expires between 2K
* and 4K cycles after the write buffer entry is allocated. */
cvmmemctl.s.wbfltime = 0;
/* R/W If set, do not put Istream in the L2 cache. */
cvmmemctl.s.istrnol2 = 0;
/* R/W The write buffer threshold. */
cvmmemctl.s.wbthresh = 10;
/* R/W If set, CVMSEG is available for loads/stores in
* kernel/debug mode. */
#if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
cvmmemctl.s.cvmsegenak = 1;
#else
cvmmemctl.s.cvmsegenak = 0;
#endif
/* R/W If set, CVMSEG is available for loads/stores in
* supervisor mode. */
cvmmemctl.s.cvmsegenas = 0;
/* R/W If set, CVMSEG is available for loads/stores in user
* mode. */
cvmmemctl.s.cvmsegenau = 0;
/* R/W Size of local memory in cache blocks, 54 (6912 bytes)
* is max legal value. */
cvmmemctl.s.lmemsz = CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE;
if (smp_processor_id() == 0)
pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
write_c0_cvmmemctl(cvmmemctl.u64);
/* Move the performance counter interrupts to IRQ 6 */
cvmctl = read_c0_cvmctl();
cvmctl &= ~(7 << 7);
cvmctl |= 6 << 7;
write_c0_cvmctl(cvmctl);
/* Set a default for the hardware timeouts */
fau_timeout.u64 = 0;
fau_timeout.s.tout_val = 0xfff;
/* Disable tagwait FAU timeout */
fau_timeout.s.tout_enb = 0;
cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
nm_tim.u64 = 0;
/* 4096 cycles */
nm_tim.s.nw_tim = 3;
cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
write_octeon_c0_icacheerr(0);
write_c0_derraddr1(0);
}
/**
* Early entry point for arch setup
*/
void __init prom_init(void)
{
struct cvmx_sysinfo *sysinfo;
const int coreid = cvmx_get_core_num();
int i;
int argc;
struct uart_port octeon_port;
#ifdef CONFIG_CAVIUM_RESERVE32
int64_t addr = -1;
#endif
/*
* The bootloader passes a pointer to the boot descriptor in
* $a3, this is available as fw_arg3.
*/
octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
octeon_bootinfo =
cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
/*
* Only enable the LED controller if we're running on a CN38XX, CN58XX,
* or CN56XX. The CN30XX and CN31XX don't have an LED controller.
*/
if (!octeon_is_simulation() &&
octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
cvmx_write_csr(CVMX_LED_EN, 0);
cvmx_write_csr(CVMX_LED_PRT, 0);
cvmx_write_csr(CVMX_LED_DBG, 0);
cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
cvmx_write_csr(CVMX_LED_EN, 1);
}
#ifdef CONFIG_CAVIUM_RESERVE32
/*
* We need to temporarily allocate all memory in the reserve32
* region. This makes sure the kernel doesn't allocate this
* memory when it is getting memory from the
* bootloader. Later, after the memory allocations are
* complete, the reserve32 will be freed.
*/
#ifdef CONFIG_CAVIUM_RESERVE32_USE_WIRED_TLB
if (CONFIG_CAVIUM_RESERVE32 & 0x1ff)
pr_err("CAVIUM_RESERVE32 isn't a multiple of 512MB. "
"This is required if CAVIUM_RESERVE32_USE_WIRED_TLB "
"is set\n");
else
addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
0, 0, 512 << 20,
"CAVIUM_RESERVE32", 0);
#else
/*
* Allocate memory for RESERVED32 aligned on 2MB boundary. This
* is in case we later use hugetlb entries with it.
*/
addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
0, 0, 2 << 20,
"CAVIUM_RESERVE32", 0);
#endif
if (addr < 0)
pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
else
octeon_reserve32_memory = addr;
#endif
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
pr_info("Skipping L2 locking due to reduced L2 cache size\n");
} else {
uint32_t ebase = read_c0_ebase() & 0x3ffff000;
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
/* TLB refill */
cvmx_l2c_lock_mem_region(ebase, 0x100);
#endif
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
/* General exception */
cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
#endif
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
/* Interrupt handler */
cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
#endif
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
#endif
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
#endif
}
#endif
sysinfo = cvmx_sysinfo_get();
memset(sysinfo, 0, sizeof(*sysinfo));
sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
sysinfo->phy_mem_desc_ptr =
cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr);
sysinfo->core_mask = octeon_bootinfo->core_mask;
sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
sysinfo->board_type = octeon_bootinfo->board_type;
sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
sizeof(sysinfo->mac_addr_base));
sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
memcpy(sysinfo->board_serial_number,
octeon_bootinfo->board_serial_number,
sizeof(sysinfo->board_serial_number));
sysinfo->compact_flash_common_base_addr =
octeon_bootinfo->compact_flash_common_base_addr;
sysinfo->compact_flash_attribute_base_addr =
octeon_bootinfo->compact_flash_attribute_base_addr;
sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
octeon_check_cpu_bist();
octeon_uart = octeon_get_boot_uart();
/*
* Disable All CIU Interrupts. The ones we need will be
* enabled later. Read the SUM register so we know the write
* completed.
*/
cvmx_write_csr(CVMX_CIU_INTX_EN0((coreid * 2)), 0);
cvmx_write_csr(CVMX_CIU_INTX_EN0((coreid * 2 + 1)), 0);
cvmx_write_csr(CVMX_CIU_INTX_EN1((coreid * 2)), 0);
cvmx_write_csr(CVMX_CIU_INTX_EN1((coreid * 2 + 1)), 0);
cvmx_read_csr(CVMX_CIU_INTX_SUM0((coreid * 2)));
#ifdef CONFIG_SMP
octeon_write_lcd("LinuxSMP");
#else
octeon_write_lcd("Linux");
#endif
#ifdef CONFIG_CAVIUM_GDB
/*
* When debugging the linux kernel, force the cores to enter
* the debug exception handler to break in.
*/
if (octeon_get_boot_debug_flag()) {
cvmx_write_csr(CVMX_CIU_DINT, 1 << cvmx_get_core_num());
cvmx_read_csr(CVMX_CIU_DINT);
}
#endif
/*
* BIST should always be enabled when doing a soft reset. L2
* Cache locking for instance is not cleared unless BIST is
* enabled. Unfortunately due to a chip errata G-200 for
* Cn38XX and CN31XX, BIST msut be disabled on these parts.
*/
if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
OCTEON_IS_MODEL(OCTEON_CN31XX))
cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
else
cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
/* Default to 64MB in the simulator to speed things up */
if (octeon_is_simulation())
MAX_MEMORY = 64ull << 20;
arcs_cmdline[0] = 0;
argc = octeon_boot_desc_ptr->argc;
for (i = 0; i < argc; i++) {
const char *arg =
cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
if ((strncmp(arg, "MEM=", 4) == 0) ||
(strncmp(arg, "mem=", 4) == 0)) {
sscanf(arg + 4, "%llu", &MAX_MEMORY);
MAX_MEMORY <<= 20;
if (MAX_MEMORY == 0)
MAX_MEMORY = 32ull << 30;
} else if (strcmp(arg, "ecc_verbose") == 0) {
#ifdef CONFIG_CAVIUM_REPORT_SINGLE_BIT_ECC
__cvmx_interrupt_ecc_report_single_bit_errors = 1;
pr_notice("Reporting of single bit ECC errors is "
"turned on\n");
#endif
} else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
sizeof(arcs_cmdline) - 1) {
strcat(arcs_cmdline, " ");
strcat(arcs_cmdline, arg);
}
}
if (strstr(arcs_cmdline, "console=") == NULL) {
#ifdef CONFIG_GDB_CONSOLE
strcat(arcs_cmdline, " console=gdb");
#else
#ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
strcat(arcs_cmdline, " console=ttyS0,115200");
#else
if (octeon_uart == 1)
strcat(arcs_cmdline, " console=ttyS1,115200");
else
strcat(arcs_cmdline, " console=ttyS0,115200");
#endif
#endif
}
if (octeon_is_simulation()) {
/*
* The simulator uses a mtdram device pre filled with
* the filesystem. Also specify the calibration delay
* to avoid calculating it every time.
*/
strcat(arcs_cmdline, " rw root=1f00"
" lpj=60176 slram=root,0x40000000,+1073741824");
}
mips_hpt_frequency = octeon_get_clock_rate();
octeon_init_cvmcount();
_machine_restart = octeon_restart;
_machine_halt = octeon_halt;
memset(&octeon_port, 0, sizeof(octeon_port));
/*
* For early_serial_setup we don't set the port type or
* UPF_FIXED_TYPE.
*/
octeon_port.flags = ASYNC_SKIP_TEST | UPF_SHARE_IRQ;
octeon_port.iotype = UPIO_MEM;
/* I/O addresses are every 8 bytes */
octeon_port.regshift = 3;
/* Clock rate of the chip */
octeon_port.uartclk = mips_hpt_frequency;
octeon_port.fifosize = 64;
octeon_port.mapbase = 0x0001180000000800ull + (1024 * octeon_uart);
octeon_port.membase = cvmx_phys_to_ptr(octeon_port.mapbase);
octeon_port.serial_in = octeon_serial_in;
octeon_port.serial_out = octeon_serial_out;
#ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
octeon_port.line = 0;
#else
octeon_port.line = octeon_uart;
#endif
octeon_port.irq = 42 + octeon_uart;
early_serial_setup(&octeon_port);
octeon_user_io_init();
register_smp_ops(&octeon_smp_ops);
}
void __init plat_mem_setup(void)
{
uint64_t mem_alloc_size;
uint64_t total;
int64_t memory;
total = 0;
/* First add the init memory we will be returning. */
memory = __pa_symbol(&__init_begin) & PAGE_MASK;
mem_alloc_size = (__pa_symbol(&__init_end) & PAGE_MASK) - memory;
if (mem_alloc_size > 0) {
add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
total += mem_alloc_size;
}
/*
* The Mips memory init uses the first memory location for
* some memory vectors. When SPARSEMEM is in use, it doesn't
* verify that the size is big enough for the final
* vectors. Making the smallest chuck 4MB seems to be enough
* to consistantly work.
*/
mem_alloc_size = 4 << 20;
if (mem_alloc_size > MAX_MEMORY)
mem_alloc_size = MAX_MEMORY;
/*
* When allocating memory, we want incrementing addresses from
* bootmem_alloc so the code in add_memory_region can merge
* regions next to each other.
*/
cvmx_bootmem_lock();
while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
&& (total < MAX_MEMORY)) {
#if defined(CONFIG_64BIT) || defined(CONFIG_64BIT_PHYS_ADDR)
memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
__pa_symbol(&__init_end), -1,
0x100000,
CVMX_BOOTMEM_FLAG_NO_LOCKING);
#elif defined(CONFIG_HIGHMEM)
memory = cvmx_bootmem_phy_alloc(mem_alloc_size, 0, 1ull << 31,
0x100000,
CVMX_BOOTMEM_FLAG_NO_LOCKING);
#else
memory = cvmx_bootmem_phy_alloc(mem_alloc_size, 0, 512 << 20,
0x100000,
CVMX_BOOTMEM_FLAG_NO_LOCKING);
#endif
if (memory >= 0) {
/*
* This function automatically merges address
* regions next to each other if they are
* received in incrementing order.
*/
add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
total += mem_alloc_size;
} else {
break;
}
}
cvmx_bootmem_unlock();
#ifdef CONFIG_CAVIUM_RESERVE32
/*
* Now that we've allocated the kernel memory it is safe to
* free the reserved region. We free it here so that builtin
* drivers can use the memory.
*/
if (octeon_reserve32_memory)
cvmx_bootmem_free_named("CAVIUM_RESERVE32");
#endif /* CONFIG_CAVIUM_RESERVE32 */
if (total == 0)
panic("Unable to allocate memory from "
"cvmx_bootmem_phy_alloc\n");
}
int prom_putchar(char c)
{
uint64_t lsrval;
/* Spin until there is room */
do {
lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
} while ((lsrval & 0x20) == 0);
/* Write the byte */
cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c);
return 1;
}
void prom_free_prom_memory(void)
{
#ifdef CONFIG_CAVIUM_DECODE_RSL
cvmx_interrupt_rsl_enable();
/* Add an interrupt handler for general failures. */
if (request_irq(OCTEON_IRQ_RML, octeon_rlm_interrupt, IRQF_SHARED,
"RML/RSL", octeon_rlm_interrupt)) {
panic("Unable to request_irq(OCTEON_IRQ_RML)\n");
}
#endif
/* This call is here so that it is performed after any TLB
initializations. It needs to be after these in case the
CONFIG_CAVIUM_RESERVE32_USE_WIRED_TLB option is set */
octeon_hal_setup_reserved32();
}
static struct octeon_cf_data octeon_cf_data;
static int __init octeon_cf_device_init(void)
{
union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
unsigned long base_ptr, region_base, region_size;
struct platform_device *pd;
struct resource cf_resources[3];
unsigned int num_resources;
int i;
int ret = 0;
/* Setup octeon-cf platform device if present. */
base_ptr = 0;
if (octeon_bootinfo->major_version == 1
&& octeon_bootinfo->minor_version >= 1) {
if (octeon_bootinfo->compact_flash_common_base_addr)
base_ptr =
octeon_bootinfo->compact_flash_common_base_addr;
} else {
base_ptr = 0x1d000800;
}
if (!base_ptr)
return ret;
/* Find CS0 region. */
for (i = 0; i < 8; i++) {
mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(i));
region_base = mio_boot_reg_cfg.s.base << 16;
region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
&& base_ptr < region_base + region_size)
break;
}
if (i >= 7) {
/* i and i + 1 are CS0 and CS1, both must be less than 8. */
goto out;
}
octeon_cf_data.base_region = i;
octeon_cf_data.is16bit = mio_boot_reg_cfg.s.width;
octeon_cf_data.base_region_bias = base_ptr - region_base;
memset(cf_resources, 0, sizeof(cf_resources));
num_resources = 0;
cf_resources[num_resources].flags = IORESOURCE_MEM;
cf_resources[num_resources].start = region_base;
cf_resources[num_resources].end = region_base + region_size - 1;
num_resources++;
if (!(base_ptr & 0xfffful)) {
/*
* Boot loader signals availability of DMA (true_ide
* mode) by setting low order bits of base_ptr to
* zero.
*/
/* Asume that CS1 immediately follows. */
mio_boot_reg_cfg.u64 =
cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(i + 1));
region_base = mio_boot_reg_cfg.s.base << 16;
region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
if (!mio_boot_reg_cfg.s.en)
goto out;
cf_resources[num_resources].flags = IORESOURCE_MEM;
cf_resources[num_resources].start = region_base;
cf_resources[num_resources].end = region_base + region_size - 1;
num_resources++;
octeon_cf_data.dma_engine = 0;
cf_resources[num_resources].flags = IORESOURCE_IRQ;
cf_resources[num_resources].start = OCTEON_IRQ_BOOTDMA;
cf_resources[num_resources].end = OCTEON_IRQ_BOOTDMA;
num_resources++;
} else {
octeon_cf_data.dma_engine = -1;
}
pd = platform_device_alloc("pata_octeon_cf", -1);
if (!pd) {
ret = -ENOMEM;
goto out;
}
pd->dev.platform_data = &octeon_cf_data;
ret = platform_device_add_resources(pd, cf_resources, num_resources);
if (ret)
goto fail;
ret = platform_device_add(pd);
if (ret)
goto fail;
return ret;
fail:
platform_device_put(pd);
out:
return ret;
}
device_initcall(octeon_cf_device_init);
/* Octeon Random Number Generator. */
static int __init octeon_rng_device_init(void)
{
struct platform_device *pd;
int ret = 0;
struct resource rng_resources[] = {
{
.flags = IORESOURCE_MEM,
.start = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
.end = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
}, {
.flags = IORESOURCE_MEM,
.start = cvmx_build_io_address(8, 0),
.end = cvmx_build_io_address(8, 0) + 0x7
}
};
pd = platform_device_alloc("octeon_rng", -1);
if (!pd) {
ret = -ENOMEM;
goto out;
}
ret = platform_device_add_resources(pd, rng_resources,
ARRAY_SIZE(rng_resources));
if (ret)
goto fail;
ret = platform_device_add(pd);
if (ret)
goto fail;
return ret;
fail:
platform_device_put(pd);
out:
return ret;
}
device_initcall(octeon_rng_device_init);