| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Freescale GPMI NAND Flash Driver |
| * |
| * Copyright (C) 2010-2015 Freescale Semiconductor, Inc. |
| * Copyright (C) 2008 Embedded Alley Solutions, Inc. |
| */ |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/dma/mxs-dma.h> |
| #include "gpmi-nand.h" |
| #include "gpmi-regs.h" |
| #include "bch-regs.h" |
| |
| /* Resource names for the GPMI NAND driver. */ |
| #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" |
| #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" |
| #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" |
| |
| /* Converts time to clock cycles */ |
| #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period) |
| |
| #define MXS_SET_ADDR 0x4 |
| #define MXS_CLR_ADDR 0x8 |
| /* |
| * Clear the bit and poll it cleared. This is usually called with |
| * a reset address and mask being either SFTRST(bit 31) or CLKGATE |
| * (bit 30). |
| */ |
| static int clear_poll_bit(void __iomem *addr, u32 mask) |
| { |
| int timeout = 0x400; |
| |
| /* clear the bit */ |
| writel(mask, addr + MXS_CLR_ADDR); |
| |
| /* |
| * SFTRST needs 3 GPMI clocks to settle, the reference manual |
| * recommends to wait 1us. |
| */ |
| udelay(1); |
| |
| /* poll the bit becoming clear */ |
| while ((readl(addr) & mask) && --timeout) |
| /* nothing */; |
| |
| return !timeout; |
| } |
| |
| #define MODULE_CLKGATE (1 << 30) |
| #define MODULE_SFTRST (1 << 31) |
| /* |
| * The current mxs_reset_block() will do two things: |
| * [1] enable the module. |
| * [2] reset the module. |
| * |
| * In most of the cases, it's ok. |
| * But in MX23, there is a hardware bug in the BCH block (see erratum #2847). |
| * If you try to soft reset the BCH block, it becomes unusable until |
| * the next hard reset. This case occurs in the NAND boot mode. When the board |
| * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. |
| * So If the driver tries to reset the BCH again, the BCH will not work anymore. |
| * You will see a DMA timeout in this case. The bug has been fixed |
| * in the following chips, such as MX28. |
| * |
| * To avoid this bug, just add a new parameter `just_enable` for |
| * the mxs_reset_block(), and rewrite it here. |
| */ |
| static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) |
| { |
| int ret; |
| int timeout = 0x400; |
| |
| /* clear and poll SFTRST */ |
| ret = clear_poll_bit(reset_addr, MODULE_SFTRST); |
| if (unlikely(ret)) |
| goto error; |
| |
| /* clear CLKGATE */ |
| writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR); |
| |
| if (!just_enable) { |
| /* set SFTRST to reset the block */ |
| writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR); |
| udelay(1); |
| |
| /* poll CLKGATE becoming set */ |
| while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) |
| /* nothing */; |
| if (unlikely(!timeout)) |
| goto error; |
| } |
| |
| /* clear and poll SFTRST */ |
| ret = clear_poll_bit(reset_addr, MODULE_SFTRST); |
| if (unlikely(ret)) |
| goto error; |
| |
| /* clear and poll CLKGATE */ |
| ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); |
| if (unlikely(ret)) |
| goto error; |
| |
| return 0; |
| |
| error: |
| pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); |
| return -ETIMEDOUT; |
| } |
| |
| static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) |
| { |
| struct clk *clk; |
| int ret; |
| int i; |
| |
| for (i = 0; i < GPMI_CLK_MAX; i++) { |
| clk = this->resources.clock[i]; |
| if (!clk) |
| break; |
| |
| if (v) { |
| ret = clk_prepare_enable(clk); |
| if (ret) |
| goto err_clk; |
| } else { |
| clk_disable_unprepare(clk); |
| } |
| } |
| return 0; |
| |
| err_clk: |
| for (; i > 0; i--) |
| clk_disable_unprepare(this->resources.clock[i - 1]); |
| return ret; |
| } |
| |
| static int gpmi_init(struct gpmi_nand_data *this) |
| { |
| struct resources *r = &this->resources; |
| int ret; |
| |
| ret = gpmi_reset_block(r->gpmi_regs, false); |
| if (ret) |
| goto err_out; |
| |
| /* |
| * Reset BCH here, too. We got failures otherwise :( |
| * See later BCH reset for explanation of MX23 and MX28 handling |
| */ |
| ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); |
| if (ret) |
| goto err_out; |
| |
| /* Choose NAND mode. */ |
| writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); |
| |
| /* Set the IRQ polarity. */ |
| writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, |
| r->gpmi_regs + HW_GPMI_CTRL1_SET); |
| |
| /* Disable Write-Protection. */ |
| writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); |
| |
| /* Select BCH ECC. */ |
| writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); |
| |
| /* |
| * Decouple the chip select from dma channel. We use dma0 for all |
| * the chips. |
| */ |
| writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET); |
| |
| return 0; |
| err_out: |
| return ret; |
| } |
| |
| /* This function is very useful. It is called only when the bug occur. */ |
| static void gpmi_dump_info(struct gpmi_nand_data *this) |
| { |
| struct resources *r = &this->resources; |
| struct bch_geometry *geo = &this->bch_geometry; |
| u32 reg; |
| int i; |
| |
| dev_err(this->dev, "Show GPMI registers :\n"); |
| for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { |
| reg = readl(r->gpmi_regs + i * 0x10); |
| dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); |
| } |
| |
| /* start to print out the BCH info */ |
| dev_err(this->dev, "Show BCH registers :\n"); |
| for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { |
| reg = readl(r->bch_regs + i * 0x10); |
| dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); |
| } |
| dev_err(this->dev, "BCH Geometry :\n" |
| "GF length : %u\n" |
| "ECC Strength : %u\n" |
| "Page Size in Bytes : %u\n" |
| "Metadata Size in Bytes : %u\n" |
| "ECC Chunk Size in Bytes: %u\n" |
| "ECC Chunk Count : %u\n" |
| "Payload Size in Bytes : %u\n" |
| "Auxiliary Size in Bytes: %u\n" |
| "Auxiliary Status Offset: %u\n" |
| "Block Mark Byte Offset : %u\n" |
| "Block Mark Bit Offset : %u\n", |
| geo->gf_len, |
| geo->ecc_strength, |
| geo->page_size, |
| geo->metadata_size, |
| geo->ecc_chunk_size, |
| geo->ecc_chunk_count, |
| geo->payload_size, |
| geo->auxiliary_size, |
| geo->auxiliary_status_offset, |
| geo->block_mark_byte_offset, |
| geo->block_mark_bit_offset); |
| } |
| |
| static inline bool gpmi_check_ecc(struct gpmi_nand_data *this) |
| { |
| struct bch_geometry *geo = &this->bch_geometry; |
| |
| /* Do the sanity check. */ |
| if (GPMI_IS_MXS(this)) { |
| /* The mx23/mx28 only support the GF13. */ |
| if (geo->gf_len == 14) |
| return false; |
| } |
| return geo->ecc_strength <= this->devdata->bch_max_ecc_strength; |
| } |
| |
| /* |
| * If we can get the ECC information from the nand chip, we do not |
| * need to calculate them ourselves. |
| * |
| * We may have available oob space in this case. |
| */ |
| static int set_geometry_by_ecc_info(struct gpmi_nand_data *this, |
| unsigned int ecc_strength, |
| unsigned int ecc_step) |
| { |
| struct bch_geometry *geo = &this->bch_geometry; |
| struct nand_chip *chip = &this->nand; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| unsigned int block_mark_bit_offset; |
| |
| switch (ecc_step) { |
| case SZ_512: |
| geo->gf_len = 13; |
| break; |
| case SZ_1K: |
| geo->gf_len = 14; |
| break; |
| default: |
| dev_err(this->dev, |
| "unsupported nand chip. ecc bits : %d, ecc size : %d\n", |
| chip->base.eccreq.strength, |
| chip->base.eccreq.step_size); |
| return -EINVAL; |
| } |
| geo->ecc_chunk_size = ecc_step; |
| geo->ecc_strength = round_up(ecc_strength, 2); |
| if (!gpmi_check_ecc(this)) |
| return -EINVAL; |
| |
| /* Keep the C >= O */ |
| if (geo->ecc_chunk_size < mtd->oobsize) { |
| dev_err(this->dev, |
| "unsupported nand chip. ecc size: %d, oob size : %d\n", |
| ecc_step, mtd->oobsize); |
| return -EINVAL; |
| } |
| |
| /* The default value, see comment in the legacy_set_geometry(). */ |
| geo->metadata_size = 10; |
| |
| geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; |
| |
| /* |
| * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: |
| * |
| * | P | |
| * |<----------------------------------------------------->| |
| * | | |
| * | (Block Mark) | |
| * | P' | | | | |
| * |<-------------------------------------------->| D | | O' | |
| * | |<---->| |<--->| |
| * V V V V V |
| * +---+----------+-+----------+-+----------+-+----------+-+-----+ |
| * | M | data |E| data |E| data |E| data |E| | |
| * +---+----------+-+----------+-+----------+-+----------+-+-----+ |
| * ^ ^ |
| * | O | |
| * |<------------>| |
| * | | |
| * |
| * P : the page size for BCH module. |
| * E : The ECC strength. |
| * G : the length of Galois Field. |
| * N : The chunk count of per page. |
| * M : the metasize of per page. |
| * C : the ecc chunk size, aka the "data" above. |
| * P': the nand chip's page size. |
| * O : the nand chip's oob size. |
| * O': the free oob. |
| * |
| * The formula for P is : |
| * |
| * E * G * N |
| * P = ------------ + P' + M |
| * 8 |
| * |
| * The position of block mark moves forward in the ECC-based view |
| * of page, and the delta is: |
| * |
| * E * G * (N - 1) |
| * D = (---------------- + M) |
| * 8 |
| * |
| * Please see the comment in legacy_set_geometry(). |
| * With the condition C >= O , we still can get same result. |
| * So the bit position of the physical block mark within the ECC-based |
| * view of the page is : |
| * (P' - D) * 8 |
| */ |
| geo->page_size = mtd->writesize + geo->metadata_size + |
| (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; |
| |
| geo->payload_size = mtd->writesize; |
| |
| geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); |
| geo->auxiliary_size = ALIGN(geo->metadata_size, 4) |
| + ALIGN(geo->ecc_chunk_count, 4); |
| |
| if (!this->swap_block_mark) |
| return 0; |
| |
| /* For bit swap. */ |
| block_mark_bit_offset = mtd->writesize * 8 - |
| (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) |
| + geo->metadata_size * 8); |
| |
| geo->block_mark_byte_offset = block_mark_bit_offset / 8; |
| geo->block_mark_bit_offset = block_mark_bit_offset % 8; |
| return 0; |
| } |
| |
| /* |
| * Calculate the ECC strength by hand: |
| * E : The ECC strength. |
| * G : the length of Galois Field. |
| * N : The chunk count of per page. |
| * O : the oobsize of the NAND chip. |
| * M : the metasize of per page. |
| * |
| * The formula is : |
| * E * G * N |
| * ------------ <= (O - M) |
| * 8 |
| * |
| * So, we get E by: |
| * (O - M) * 8 |
| * E <= ------------- |
| * G * N |
| */ |
| static inline int get_ecc_strength(struct gpmi_nand_data *this) |
| { |
| struct bch_geometry *geo = &this->bch_geometry; |
| struct mtd_info *mtd = nand_to_mtd(&this->nand); |
| int ecc_strength; |
| |
| ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) |
| / (geo->gf_len * geo->ecc_chunk_count); |
| |
| /* We need the minor even number. */ |
| return round_down(ecc_strength, 2); |
| } |
| |
| static int legacy_set_geometry(struct gpmi_nand_data *this) |
| { |
| struct bch_geometry *geo = &this->bch_geometry; |
| struct mtd_info *mtd = nand_to_mtd(&this->nand); |
| unsigned int metadata_size; |
| unsigned int status_size; |
| unsigned int block_mark_bit_offset; |
| |
| /* |
| * The size of the metadata can be changed, though we set it to 10 |
| * bytes now. But it can't be too large, because we have to save |
| * enough space for BCH. |
| */ |
| geo->metadata_size = 10; |
| |
| /* The default for the length of Galois Field. */ |
| geo->gf_len = 13; |
| |
| /* The default for chunk size. */ |
| geo->ecc_chunk_size = 512; |
| while (geo->ecc_chunk_size < mtd->oobsize) { |
| geo->ecc_chunk_size *= 2; /* keep C >= O */ |
| geo->gf_len = 14; |
| } |
| |
| geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; |
| |
| /* We use the same ECC strength for all chunks. */ |
| geo->ecc_strength = get_ecc_strength(this); |
| if (!gpmi_check_ecc(this)) { |
| dev_err(this->dev, |
| "ecc strength: %d cannot be supported by the controller (%d)\n" |
| "try to use minimum ecc strength that NAND chip required\n", |
| geo->ecc_strength, |
| this->devdata->bch_max_ecc_strength); |
| return -EINVAL; |
| } |
| |
| geo->page_size = mtd->writesize + geo->metadata_size + |
| (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; |
| geo->payload_size = mtd->writesize; |
| |
| /* |
| * The auxiliary buffer contains the metadata and the ECC status. The |
| * metadata is padded to the nearest 32-bit boundary. The ECC status |
| * contains one byte for every ECC chunk, and is also padded to the |
| * nearest 32-bit boundary. |
| */ |
| metadata_size = ALIGN(geo->metadata_size, 4); |
| status_size = ALIGN(geo->ecc_chunk_count, 4); |
| |
| geo->auxiliary_size = metadata_size + status_size; |
| geo->auxiliary_status_offset = metadata_size; |
| |
| if (!this->swap_block_mark) |
| return 0; |
| |
| /* |
| * We need to compute the byte and bit offsets of |
| * the physical block mark within the ECC-based view of the page. |
| * |
| * NAND chip with 2K page shows below: |
| * (Block Mark) |
| * | | |
| * | D | |
| * |<---->| |
| * V V |
| * +---+----------+-+----------+-+----------+-+----------+-+ |
| * | M | data |E| data |E| data |E| data |E| |
| * +---+----------+-+----------+-+----------+-+----------+-+ |
| * |
| * The position of block mark moves forward in the ECC-based view |
| * of page, and the delta is: |
| * |
| * E * G * (N - 1) |
| * D = (---------------- + M) |
| * 8 |
| * |
| * With the formula to compute the ECC strength, and the condition |
| * : C >= O (C is the ecc chunk size) |
| * |
| * It's easy to deduce to the following result: |
| * |
| * E * G (O - M) C - M C - M |
| * ----------- <= ------- <= -------- < --------- |
| * 8 N N (N - 1) |
| * |
| * So, we get: |
| * |
| * E * G * (N - 1) |
| * D = (---------------- + M) < C |
| * 8 |
| * |
| * The above inequality means the position of block mark |
| * within the ECC-based view of the page is still in the data chunk, |
| * and it's NOT in the ECC bits of the chunk. |
| * |
| * Use the following to compute the bit position of the |
| * physical block mark within the ECC-based view of the page: |
| * (page_size - D) * 8 |
| * |
| * --Huang Shijie |
| */ |
| block_mark_bit_offset = mtd->writesize * 8 - |
| (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) |
| + geo->metadata_size * 8); |
| |
| geo->block_mark_byte_offset = block_mark_bit_offset / 8; |
| geo->block_mark_bit_offset = block_mark_bit_offset % 8; |
| return 0; |
| } |
| |
| static int common_nfc_set_geometry(struct gpmi_nand_data *this) |
| { |
| struct nand_chip *chip = &this->nand; |
| |
| if (chip->ecc.strength > 0 && chip->ecc.size > 0) |
| return set_geometry_by_ecc_info(this, chip->ecc.strength, |
| chip->ecc.size); |
| |
| if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc")) |
| || legacy_set_geometry(this)) { |
| if (!(chip->base.eccreq.strength > 0 && |
| chip->base.eccreq.step_size > 0)) |
| return -EINVAL; |
| |
| return set_geometry_by_ecc_info(this, |
| chip->base.eccreq.strength, |
| chip->base.eccreq.step_size); |
| } |
| |
| return 0; |
| } |
| |
| /* Configures the geometry for BCH. */ |
| static int bch_set_geometry(struct gpmi_nand_data *this) |
| { |
| struct resources *r = &this->resources; |
| struct bch_geometry *bch_geo = &this->bch_geometry; |
| unsigned int block_count; |
| unsigned int block_size; |
| unsigned int metadata_size; |
| unsigned int ecc_strength; |
| unsigned int page_size; |
| unsigned int gf_len; |
| int ret; |
| |
| ret = common_nfc_set_geometry(this); |
| if (ret) |
| return ret; |
| |
| block_count = bch_geo->ecc_chunk_count - 1; |
| block_size = bch_geo->ecc_chunk_size; |
| metadata_size = bch_geo->metadata_size; |
| ecc_strength = bch_geo->ecc_strength >> 1; |
| page_size = bch_geo->page_size; |
| gf_len = bch_geo->gf_len; |
| |
| ret = pm_runtime_get_sync(this->dev); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this |
| * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. |
| * and MX28. |
| */ |
| ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); |
| if (ret) |
| goto err_out; |
| |
| /* Configure layout 0. */ |
| writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) |
| | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) |
| | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
| | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
| | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this), |
| r->bch_regs + HW_BCH_FLASH0LAYOUT0); |
| |
| writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
| | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
| | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
| | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this), |
| r->bch_regs + HW_BCH_FLASH0LAYOUT1); |
| |
| /* Set *all* chip selects to use layout 0. */ |
| writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); |
| |
| /* Enable interrupts. */ |
| writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, |
| r->bch_regs + HW_BCH_CTRL_SET); |
| |
| ret = 0; |
| err_out: |
| pm_runtime_mark_last_busy(this->dev); |
| pm_runtime_put_autosuspend(this->dev); |
| |
| return ret; |
| } |
| |
| /* |
| * <1> Firstly, we should know what's the GPMI-clock means. |
| * The GPMI-clock is the internal clock in the gpmi nand controller. |
| * If you set 100MHz to gpmi nand controller, the GPMI-clock's period |
| * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. |
| * |
| * <2> Secondly, we should know what's the frequency on the nand chip pins. |
| * The frequency on the nand chip pins is derived from the GPMI-clock. |
| * We can get it from the following equation: |
| * |
| * F = G / (DS + DH) |
| * |
| * F : the frequency on the nand chip pins. |
| * G : the GPMI clock, such as 100MHz. |
| * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP |
| * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD |
| * |
| * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, |
| * the nand EDO(extended Data Out) timing could be applied. |
| * The GPMI implements a feedback read strobe to sample the read data. |
| * The feedback read strobe can be delayed to support the nand EDO timing |
| * where the read strobe may deasserts before the read data is valid, and |
| * read data is valid for some time after read strobe. |
| * |
| * The following figure illustrates some aspects of a NAND Flash read: |
| * |
| * |<---tREA---->| |
| * | | |
| * | | | |
| * |<--tRP-->| | |
| * | | | |
| * __ ___|__________________________________ |
| * RDN \________/ | |
| * | |
| * /---------\ |
| * Read Data --------------< >--------- |
| * \---------/ |
| * | | |
| * |<-D->| |
| * FeedbackRDN ________ ____________ |
| * \___________/ |
| * |
| * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. |
| * |
| * |
| * <4> Now, we begin to describe how to compute the right RDN_DELAY. |
| * |
| * 4.1) From the aspect of the nand chip pins: |
| * Delay = (tREA + C - tRP) {1} |
| * |
| * tREA : the maximum read access time. |
| * C : a constant to adjust the delay. default is 4000ps. |
| * tRP : the read pulse width, which is exactly: |
| * tRP = (GPMI-clock-period) * DATA_SETUP |
| * |
| * 4.2) From the aspect of the GPMI nand controller: |
| * Delay = RDN_DELAY * 0.125 * RP {2} |
| * |
| * RP : the DLL reference period. |
| * if (GPMI-clock-period > DLL_THRETHOLD) |
| * RP = GPMI-clock-period / 2; |
| * else |
| * RP = GPMI-clock-period; |
| * |
| * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period |
| * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD |
| * is 16000ps, but in mx6q, we use 12000ps. |
| * |
| * 4.3) since {1} equals {2}, we get: |
| * |
| * (tREA + 4000 - tRP) * 8 |
| * RDN_DELAY = ----------------------- {3} |
| * RP |
| */ |
| static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this, |
| const struct nand_sdr_timings *sdr) |
| { |
| struct gpmi_nfc_hardware_timing *hw = &this->hw; |
| unsigned int dll_threshold_ps = this->devdata->max_chain_delay; |
| unsigned int period_ps, reference_period_ps; |
| unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles; |
| unsigned int tRP_ps; |
| bool use_half_period; |
| int sample_delay_ps, sample_delay_factor; |
| u16 busy_timeout_cycles; |
| u8 wrn_dly_sel; |
| |
| if (sdr->tRC_min >= 30000) { |
| /* ONFI non-EDO modes [0-3] */ |
| hw->clk_rate = 22000000; |
| wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; |
| } else if (sdr->tRC_min >= 25000) { |
| /* ONFI EDO mode 4 */ |
| hw->clk_rate = 80000000; |
| wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; |
| } else { |
| /* ONFI EDO mode 5 */ |
| hw->clk_rate = 100000000; |
| wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; |
| } |
| |
| /* SDR core timings are given in picoseconds */ |
| period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate); |
| |
| addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps); |
| data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps); |
| data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps); |
| busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps); |
| |
| hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) | |
| BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) | |
| BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles); |
| hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096); |
| |
| /* |
| * Derive NFC ideal delay from {3}: |
| * |
| * (tREA + 4000 - tRP) * 8 |
| * RDN_DELAY = ----------------------- |
| * RP |
| */ |
| if (period_ps > dll_threshold_ps) { |
| use_half_period = true; |
| reference_period_ps = period_ps / 2; |
| } else { |
| use_half_period = false; |
| reference_period_ps = period_ps; |
| } |
| |
| tRP_ps = data_setup_cycles * period_ps; |
| sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8; |
| if (sample_delay_ps > 0) |
| sample_delay_factor = sample_delay_ps / reference_period_ps; |
| else |
| sample_delay_factor = 0; |
| |
| hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel); |
| if (sample_delay_factor) |
| hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) | |
| BM_GPMI_CTRL1_DLL_ENABLE | |
| (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0); |
| } |
| |
| static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this) |
| { |
| struct gpmi_nfc_hardware_timing *hw = &this->hw; |
| struct resources *r = &this->resources; |
| void __iomem *gpmi_regs = r->gpmi_regs; |
| unsigned int dll_wait_time_us; |
| |
| clk_set_rate(r->clock[0], hw->clk_rate); |
| |
| writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0); |
| writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1); |
| |
| /* |
| * Clear several CTRL1 fields, DLL must be disabled when setting |
| * RDN_DELAY or HALF_PERIOD. |
| */ |
| writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR); |
| writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET); |
| |
| /* Wait 64 clock cycles before using the GPMI after enabling the DLL */ |
| dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64; |
| if (!dll_wait_time_us) |
| dll_wait_time_us = 1; |
| |
| /* Wait for the DLL to settle. */ |
| udelay(dll_wait_time_us); |
| } |
| |
| static int gpmi_setup_data_interface(struct nand_chip *chip, int chipnr, |
| const struct nand_data_interface *conf) |
| { |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| const struct nand_sdr_timings *sdr; |
| |
| /* Retrieve required NAND timings */ |
| sdr = nand_get_sdr_timings(conf); |
| if (IS_ERR(sdr)) |
| return PTR_ERR(sdr); |
| |
| /* Only MX6 GPMI controller can reach EDO timings */ |
| if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this)) |
| return -ENOTSUPP; |
| |
| /* Stop here if this call was just a check */ |
| if (chipnr < 0) |
| return 0; |
| |
| /* Do the actual derivation of the controller timings */ |
| gpmi_nfc_compute_timings(this, sdr); |
| |
| this->hw.must_apply_timings = true; |
| |
| return 0; |
| } |
| |
| /* Clears a BCH interrupt. */ |
| static void gpmi_clear_bch(struct gpmi_nand_data *this) |
| { |
| struct resources *r = &this->resources; |
| writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); |
| } |
| |
| /* Returns the Ready/Busy status of the given chip. */ |
| static int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip) |
| { |
| struct resources *r = &this->resources; |
| uint32_t mask = 0; |
| uint32_t reg = 0; |
| |
| if (GPMI_IS_MX23(this)) { |
| mask = MX23_BM_GPMI_DEBUG_READY0 << chip; |
| reg = readl(r->gpmi_regs + HW_GPMI_DEBUG); |
| } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) { |
| /* |
| * In the imx6, all the ready/busy pins are bound |
| * together. So we only need to check chip 0. |
| */ |
| if (GPMI_IS_MX6(this)) |
| chip = 0; |
| |
| /* MX28 shares the same R/B register as MX6Q. */ |
| mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip); |
| reg = readl(r->gpmi_regs + HW_GPMI_STAT); |
| } else |
| dev_err(this->dev, "unknown arch.\n"); |
| return reg & mask; |
| } |
| |
| static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) |
| { |
| /* We use the DMA channel 0 to access all the nand chips. */ |
| return this->dma_chans[0]; |
| } |
| |
| /* This will be called after the DMA operation is finished. */ |
| static void dma_irq_callback(void *param) |
| { |
| struct gpmi_nand_data *this = param; |
| struct completion *dma_c = &this->dma_done; |
| |
| complete(dma_c); |
| } |
| |
| static int start_dma_without_bch_irq(struct gpmi_nand_data *this, |
| struct dma_async_tx_descriptor *desc) |
| { |
| struct completion *dma_c = &this->dma_done; |
| unsigned long timeout; |
| |
| init_completion(dma_c); |
| |
| desc->callback = dma_irq_callback; |
| desc->callback_param = this; |
| dmaengine_submit(desc); |
| dma_async_issue_pending(get_dma_chan(this)); |
| |
| /* Wait for the interrupt from the DMA block. */ |
| timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000)); |
| if (!timeout) { |
| dev_err(this->dev, "DMA timeout, last DMA\n"); |
| gpmi_dump_info(this); |
| return -ETIMEDOUT; |
| } |
| return 0; |
| } |
| |
| static irqreturn_t bch_irq(int irq, void *cookie) |
| { |
| struct gpmi_nand_data *this = cookie; |
| |
| gpmi_clear_bch(this); |
| complete(&this->bch_done); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * This function is used in BCH reading or BCH writing pages. |
| * It will wait for the BCH interrupt as long as ONE second. |
| * Actually, we must wait for two interrupts : |
| * [1] firstly the DMA interrupt and |
| * [2] secondly the BCH interrupt. |
| */ |
| static int start_dma_with_bch_irq(struct gpmi_nand_data *this, |
| struct dma_async_tx_descriptor *desc) |
| { |
| struct completion *bch_c = &this->bch_done; |
| unsigned long timeout; |
| |
| /* Prepare to receive an interrupt from the BCH block. */ |
| init_completion(bch_c); |
| |
| /* start the DMA */ |
| start_dma_without_bch_irq(this, desc); |
| |
| /* Wait for the interrupt from the BCH block. */ |
| timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000)); |
| if (!timeout) { |
| dev_err(this->dev, "BCH timeout\n"); |
| gpmi_dump_info(this); |
| return -ETIMEDOUT; |
| } |
| return 0; |
| } |
| |
| static int gpmi_send_command(struct gpmi_nand_data *this) |
| { |
| struct dma_chan *channel = get_dma_chan(this); |
| struct dma_async_tx_descriptor *desc; |
| struct scatterlist *sgl; |
| int chip = this->current_chip; |
| int ret; |
| u32 pio[3]; |
| |
| /* [1] send out the PIO words */ |
| pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) |
| | BM_GPMI_CTRL0_WORD_LENGTH |
| | BF_GPMI_CTRL0_CS(chip, this) |
| | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) |
| | BM_GPMI_CTRL0_ADDRESS_INCREMENT |
| | BF_GPMI_CTRL0_XFER_COUNT(this->command_length); |
| pio[1] = pio[2] = 0; |
| desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), |
| DMA_TRANS_NONE, 0); |
| if (!desc) |
| return -EINVAL; |
| |
| /* [2] send out the COMMAND + ADDRESS string stored in @buffer */ |
| sgl = &this->cmd_sgl; |
| |
| sg_init_one(sgl, this->cmd_buffer, this->command_length); |
| dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE); |
| desc = dmaengine_prep_slave_sg(channel, |
| sgl, 1, DMA_MEM_TO_DEV, DMA_CTRL_ACK); |
| if (!desc) |
| return -EINVAL; |
| |
| /* [3] submit the DMA */ |
| ret = start_dma_without_bch_irq(this, desc); |
| |
| dma_unmap_sg(this->dev, sgl, 1, DMA_TO_DEVICE); |
| |
| return ret; |
| } |
| |
| /* Can we use the upper's buffer directly for DMA? */ |
| static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, |
| int len, enum dma_data_direction dr) |
| { |
| struct scatterlist *sgl = &this->data_sgl; |
| int ret; |
| |
| /* first try to map the upper buffer directly */ |
| if (virt_addr_valid(buf) && !object_is_on_stack(buf)) { |
| sg_init_one(sgl, buf, len); |
| ret = dma_map_sg(this->dev, sgl, 1, dr); |
| if (ret == 0) |
| goto map_fail; |
| |
| return true; |
| } |
| |
| map_fail: |
| /* We have to use our own DMA buffer. */ |
| sg_init_one(sgl, this->data_buffer_dma, len); |
| |
| if (dr == DMA_TO_DEVICE) |
| memcpy(this->data_buffer_dma, buf, len); |
| |
| dma_map_sg(this->dev, sgl, 1, dr); |
| |
| return false; |
| } |
| |
| static int gpmi_send_data(struct gpmi_nand_data *this, const void *buf, int len) |
| { |
| struct dma_async_tx_descriptor *desc; |
| struct dma_chan *channel = get_dma_chan(this); |
| int chip = this->current_chip; |
| int ret; |
| uint32_t command_mode; |
| uint32_t address; |
| u32 pio[2]; |
| |
| /* [1] PIO */ |
| command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; |
| address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; |
| |
| pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
| | BM_GPMI_CTRL0_WORD_LENGTH |
| | BF_GPMI_CTRL0_CS(chip, this) |
| | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| | BF_GPMI_CTRL0_ADDRESS(address) |
| | BF_GPMI_CTRL0_XFER_COUNT(len); |
| pio[1] = 0; |
| desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), |
| DMA_TRANS_NONE, 0); |
| if (!desc) |
| return -EINVAL; |
| |
| /* [2] send DMA request */ |
| prepare_data_dma(this, buf, len, DMA_TO_DEVICE); |
| desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, |
| 1, DMA_MEM_TO_DEV, DMA_CTRL_ACK); |
| if (!desc) |
| return -EINVAL; |
| |
| /* [3] submit the DMA */ |
| ret = start_dma_without_bch_irq(this, desc); |
| |
| dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE); |
| |
| return ret; |
| } |
| |
| static int gpmi_read_data(struct gpmi_nand_data *this, void *buf, int len) |
| { |
| struct dma_async_tx_descriptor *desc; |
| struct dma_chan *channel = get_dma_chan(this); |
| int chip = this->current_chip; |
| int ret; |
| u32 pio[2]; |
| bool direct; |
| |
| /* [1] : send PIO */ |
| pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) |
| | BM_GPMI_CTRL0_WORD_LENGTH |
| | BF_GPMI_CTRL0_CS(chip, this) |
| | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) |
| | BF_GPMI_CTRL0_XFER_COUNT(len); |
| pio[1] = 0; |
| desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), |
| DMA_TRANS_NONE, 0); |
| if (!desc) |
| return -EINVAL; |
| |
| /* [2] : send DMA request */ |
| direct = prepare_data_dma(this, buf, len, DMA_FROM_DEVICE); |
| desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, |
| 1, DMA_DEV_TO_MEM, DMA_CTRL_ACK); |
| if (!desc) |
| return -EINVAL; |
| |
| /* [3] : submit the DMA */ |
| |
| ret = start_dma_without_bch_irq(this, desc); |
| |
| dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE); |
| if (!direct) |
| memcpy(buf, this->data_buffer_dma, len); |
| |
| return ret; |
| } |
| |
| static int gpmi_send_page(struct gpmi_nand_data *this, dma_addr_t payload, |
| dma_addr_t auxiliary) |
| { |
| struct bch_geometry *geo = &this->bch_geometry; |
| uint32_t command_mode; |
| uint32_t address; |
| uint32_t ecc_command; |
| uint32_t buffer_mask; |
| struct dma_async_tx_descriptor *desc; |
| struct dma_chan *channel = get_dma_chan(this); |
| int chip = this->current_chip; |
| u32 pio[6]; |
| |
| /* A DMA descriptor that does an ECC page read. */ |
| command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; |
| address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; |
| ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE; |
| buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | |
| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; |
| |
| pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
| | BM_GPMI_CTRL0_WORD_LENGTH |
| | BF_GPMI_CTRL0_CS(chip, this) |
| | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| | BF_GPMI_CTRL0_ADDRESS(address) |
| | BF_GPMI_CTRL0_XFER_COUNT(0); |
| pio[1] = 0; |
| pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC |
| | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) |
| | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); |
| pio[3] = geo->page_size; |
| pio[4] = payload; |
| pio[5] = auxiliary; |
| |
| desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), |
| DMA_TRANS_NONE, DMA_CTRL_ACK); |
| if (!desc) |
| return -EINVAL; |
| |
| return start_dma_with_bch_irq(this, desc); |
| } |
| |
| static int gpmi_read_page(struct gpmi_nand_data *this, dma_addr_t payload, |
| dma_addr_t auxiliary) |
| { |
| struct bch_geometry *geo = &this->bch_geometry; |
| uint32_t command_mode; |
| uint32_t address; |
| uint32_t ecc_command; |
| uint32_t buffer_mask; |
| struct dma_async_tx_descriptor *desc; |
| struct dma_chan *channel = get_dma_chan(this); |
| int chip = this->current_chip; |
| u32 pio[6]; |
| |
| /* [1] Wait for the chip to report ready. */ |
| command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; |
| address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; |
| |
| pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
| | BM_GPMI_CTRL0_WORD_LENGTH |
| | BF_GPMI_CTRL0_CS(chip, this) |
| | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| | BF_GPMI_CTRL0_ADDRESS(address) |
| | BF_GPMI_CTRL0_XFER_COUNT(0); |
| pio[1] = 0; |
| desc = mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE, 0); |
| if (!desc) |
| return -EINVAL; |
| |
| /* [2] Enable the BCH block and read. */ |
| command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; |
| address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; |
| ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE; |
| buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
| | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; |
| |
| pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
| | BM_GPMI_CTRL0_WORD_LENGTH |
| | BF_GPMI_CTRL0_CS(chip, this) |
| | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| | BF_GPMI_CTRL0_ADDRESS(address) |
| | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); |
| |
| pio[1] = 0; |
| pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC |
| | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) |
| | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); |
| pio[3] = geo->page_size; |
| pio[4] = payload; |
| pio[5] = auxiliary; |
| desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), |
| DMA_TRANS_NONE, DMA_CTRL_ACK); |
| if (!desc) |
| return -EINVAL; |
| |
| /* [3] Disable the BCH block */ |
| command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; |
| address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; |
| |
| pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
| | BM_GPMI_CTRL0_WORD_LENGTH |
| | BF_GPMI_CTRL0_CS(chip, this) |
| | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) |
| | BF_GPMI_CTRL0_ADDRESS(address) |
| | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); |
| pio[1] = 0; |
| pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */ |
| desc = mxs_dmaengine_prep_pio(channel, pio, 3, DMA_TRANS_NONE, |
| DMA_CTRL_ACK); |
| if (!desc) |
| return -EINVAL; |
| |
| /* [4] submit the DMA */ |
| return start_dma_with_bch_irq(this, desc); |
| } |
| |
| /** |
| * gpmi_copy_bits - copy bits from one memory region to another |
| * @dst: destination buffer |
| * @dst_bit_off: bit offset we're starting to write at |
| * @src: source buffer |
| * @src_bit_off: bit offset we're starting to read from |
| * @nbits: number of bits to copy |
| * |
| * This functions copies bits from one memory region to another, and is used by |
| * the GPMI driver to copy ECC sections which are not guaranteed to be byte |
| * aligned. |
| * |
| * src and dst should not overlap. |
| * |
| */ |
| static void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, const u8 *src, |
| size_t src_bit_off, size_t nbits) |
| { |
| size_t i; |
| size_t nbytes; |
| u32 src_buffer = 0; |
| size_t bits_in_src_buffer = 0; |
| |
| if (!nbits) |
| return; |
| |
| /* |
| * Move src and dst pointers to the closest byte pointer and store bit |
| * offsets within a byte. |
| */ |
| src += src_bit_off / 8; |
| src_bit_off %= 8; |
| |
| dst += dst_bit_off / 8; |
| dst_bit_off %= 8; |
| |
| /* |
| * Initialize the src_buffer value with bits available in the first |
| * byte of data so that we end up with a byte aligned src pointer. |
| */ |
| if (src_bit_off) { |
| src_buffer = src[0] >> src_bit_off; |
| if (nbits >= (8 - src_bit_off)) { |
| bits_in_src_buffer += 8 - src_bit_off; |
| } else { |
| src_buffer &= GENMASK(nbits - 1, 0); |
| bits_in_src_buffer += nbits; |
| } |
| nbits -= bits_in_src_buffer; |
| src++; |
| } |
| |
| /* Calculate the number of bytes that can be copied from src to dst. */ |
| nbytes = nbits / 8; |
| |
| /* Try to align dst to a byte boundary. */ |
| if (dst_bit_off) { |
| if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) { |
| src_buffer |= src[0] << bits_in_src_buffer; |
| bits_in_src_buffer += 8; |
| src++; |
| nbytes--; |
| } |
| |
| if (bits_in_src_buffer >= (8 - dst_bit_off)) { |
| dst[0] &= GENMASK(dst_bit_off - 1, 0); |
| dst[0] |= src_buffer << dst_bit_off; |
| src_buffer >>= (8 - dst_bit_off); |
| bits_in_src_buffer -= (8 - dst_bit_off); |
| dst_bit_off = 0; |
| dst++; |
| if (bits_in_src_buffer > 7) { |
| bits_in_src_buffer -= 8; |
| dst[0] = src_buffer; |
| dst++; |
| src_buffer >>= 8; |
| } |
| } |
| } |
| |
| if (!bits_in_src_buffer && !dst_bit_off) { |
| /* |
| * Both src and dst pointers are byte aligned, thus we can |
| * just use the optimized memcpy function. |
| */ |
| if (nbytes) |
| memcpy(dst, src, nbytes); |
| } else { |
| /* |
| * src buffer is not byte aligned, hence we have to copy each |
| * src byte to the src_buffer variable before extracting a byte |
| * to store in dst. |
| */ |
| for (i = 0; i < nbytes; i++) { |
| src_buffer |= src[i] << bits_in_src_buffer; |
| dst[i] = src_buffer; |
| src_buffer >>= 8; |
| } |
| } |
| /* Update dst and src pointers */ |
| dst += nbytes; |
| src += nbytes; |
| |
| /* |
| * nbits is the number of remaining bits. It should not exceed 8 as |
| * we've already copied as much bytes as possible. |
| */ |
| nbits %= 8; |
| |
| /* |
| * If there's no more bits to copy to the destination and src buffer |
| * was already byte aligned, then we're done. |
| */ |
| if (!nbits && !bits_in_src_buffer) |
| return; |
| |
| /* Copy the remaining bits to src_buffer */ |
| if (nbits) |
| src_buffer |= (*src & GENMASK(nbits - 1, 0)) << |
| bits_in_src_buffer; |
| bits_in_src_buffer += nbits; |
| |
| /* |
| * In case there were not enough bits to get a byte aligned dst buffer |
| * prepare the src_buffer variable to match the dst organization (shift |
| * src_buffer by dst_bit_off and retrieve the least significant bits |
| * from dst). |
| */ |
| if (dst_bit_off) |
| src_buffer = (src_buffer << dst_bit_off) | |
| (*dst & GENMASK(dst_bit_off - 1, 0)); |
| bits_in_src_buffer += dst_bit_off; |
| |
| /* |
| * Keep most significant bits from dst if we end up with an unaligned |
| * number of bits. |
| */ |
| nbytes = bits_in_src_buffer / 8; |
| if (bits_in_src_buffer % 8) { |
| src_buffer |= (dst[nbytes] & |
| GENMASK(7, bits_in_src_buffer % 8)) << |
| (nbytes * 8); |
| nbytes++; |
| } |
| |
| /* Copy the remaining bytes to dst */ |
| for (i = 0; i < nbytes; i++) { |
| dst[i] = src_buffer; |
| src_buffer >>= 8; |
| } |
| } |
| |
| /* add our owner bbt descriptor */ |
| static uint8_t scan_ff_pattern[] = { 0xff }; |
| static struct nand_bbt_descr gpmi_bbt_descr = { |
| .options = 0, |
| .offs = 0, |
| .len = 1, |
| .pattern = scan_ff_pattern |
| }; |
| |
| /* |
| * We may change the layout if we can get the ECC info from the datasheet, |
| * else we will use all the (page + OOB). |
| */ |
| static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| struct bch_geometry *geo = &this->bch_geometry; |
| |
| if (section) |
| return -ERANGE; |
| |
| oobregion->offset = 0; |
| oobregion->length = geo->page_size - mtd->writesize; |
| |
| return 0; |
| } |
| |
| static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| struct bch_geometry *geo = &this->bch_geometry; |
| |
| if (section) |
| return -ERANGE; |
| |
| /* The available oob size we have. */ |
| if (geo->page_size < mtd->writesize + mtd->oobsize) { |
| oobregion->offset = geo->page_size - mtd->writesize; |
| oobregion->length = mtd->oobsize - oobregion->offset; |
| } |
| |
| return 0; |
| } |
| |
| static const char * const gpmi_clks_for_mx2x[] = { |
| "gpmi_io", |
| }; |
| |
| static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { |
| .ecc = gpmi_ooblayout_ecc, |
| .free = gpmi_ooblayout_free, |
| }; |
| |
| static const struct gpmi_devdata gpmi_devdata_imx23 = { |
| .type = IS_MX23, |
| .bch_max_ecc_strength = 20, |
| .max_chain_delay = 16000, |
| .clks = gpmi_clks_for_mx2x, |
| .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), |
| }; |
| |
| static const struct gpmi_devdata gpmi_devdata_imx28 = { |
| .type = IS_MX28, |
| .bch_max_ecc_strength = 20, |
| .max_chain_delay = 16000, |
| .clks = gpmi_clks_for_mx2x, |
| .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), |
| }; |
| |
| static const char * const gpmi_clks_for_mx6[] = { |
| "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", |
| }; |
| |
| static const struct gpmi_devdata gpmi_devdata_imx6q = { |
| .type = IS_MX6Q, |
| .bch_max_ecc_strength = 40, |
| .max_chain_delay = 12000, |
| .clks = gpmi_clks_for_mx6, |
| .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), |
| }; |
| |
| static const struct gpmi_devdata gpmi_devdata_imx6sx = { |
| .type = IS_MX6SX, |
| .bch_max_ecc_strength = 62, |
| .max_chain_delay = 12000, |
| .clks = gpmi_clks_for_mx6, |
| .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), |
| }; |
| |
| static const char * const gpmi_clks_for_mx7d[] = { |
| "gpmi_io", "gpmi_bch_apb", |
| }; |
| |
| static const struct gpmi_devdata gpmi_devdata_imx7d = { |
| .type = IS_MX7D, |
| .bch_max_ecc_strength = 62, |
| .max_chain_delay = 12000, |
| .clks = gpmi_clks_for_mx7d, |
| .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), |
| }; |
| |
| static int acquire_register_block(struct gpmi_nand_data *this, |
| const char *res_name) |
| { |
| struct platform_device *pdev = this->pdev; |
| struct resources *res = &this->resources; |
| struct resource *r; |
| void __iomem *p; |
| |
| r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); |
| p = devm_ioremap_resource(&pdev->dev, r); |
| if (IS_ERR(p)) |
| return PTR_ERR(p); |
| |
| if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) |
| res->gpmi_regs = p; |
| else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) |
| res->bch_regs = p; |
| else |
| dev_err(this->dev, "unknown resource name : %s\n", res_name); |
| |
| return 0; |
| } |
| |
| static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) |
| { |
| struct platform_device *pdev = this->pdev; |
| const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; |
| struct resource *r; |
| int err; |
| |
| r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); |
| if (!r) { |
| dev_err(this->dev, "Can't get resource for %s\n", res_name); |
| return -ENODEV; |
| } |
| |
| err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this); |
| if (err) |
| dev_err(this->dev, "error requesting BCH IRQ\n"); |
| |
| return err; |
| } |
| |
| static void release_dma_channels(struct gpmi_nand_data *this) |
| { |
| unsigned int i; |
| for (i = 0; i < DMA_CHANS; i++) |
| if (this->dma_chans[i]) { |
| dma_release_channel(this->dma_chans[i]); |
| this->dma_chans[i] = NULL; |
| } |
| } |
| |
| static int acquire_dma_channels(struct gpmi_nand_data *this) |
| { |
| struct platform_device *pdev = this->pdev; |
| struct dma_chan *dma_chan; |
| |
| /* request dma channel */ |
| dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx"); |
| if (!dma_chan) { |
| dev_err(this->dev, "Failed to request DMA channel.\n"); |
| goto acquire_err; |
| } |
| |
| this->dma_chans[0] = dma_chan; |
| return 0; |
| |
| acquire_err: |
| release_dma_channels(this); |
| return -EINVAL; |
| } |
| |
| static int gpmi_get_clks(struct gpmi_nand_data *this) |
| { |
| struct resources *r = &this->resources; |
| struct clk *clk; |
| int err, i; |
| |
| for (i = 0; i < this->devdata->clks_count; i++) { |
| clk = devm_clk_get(this->dev, this->devdata->clks[i]); |
| if (IS_ERR(clk)) { |
| err = PTR_ERR(clk); |
| goto err_clock; |
| } |
| |
| r->clock[i] = clk; |
| } |
| |
| if (GPMI_IS_MX6(this)) |
| /* |
| * Set the default value for the gpmi clock. |
| * |
| * If you want to use the ONFI nand which is in the |
| * Synchronous Mode, you should change the clock as you need. |
| */ |
| clk_set_rate(r->clock[0], 22000000); |
| |
| return 0; |
| |
| err_clock: |
| dev_dbg(this->dev, "failed in finding the clocks.\n"); |
| return err; |
| } |
| |
| static int acquire_resources(struct gpmi_nand_data *this) |
| { |
| int ret; |
| |
| ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); |
| if (ret) |
| goto exit_regs; |
| |
| ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); |
| if (ret) |
| goto exit_regs; |
| |
| ret = acquire_bch_irq(this, bch_irq); |
| if (ret) |
| goto exit_regs; |
| |
| ret = acquire_dma_channels(this); |
| if (ret) |
| goto exit_regs; |
| |
| ret = gpmi_get_clks(this); |
| if (ret) |
| goto exit_clock; |
| return 0; |
| |
| exit_clock: |
| release_dma_channels(this); |
| exit_regs: |
| return ret; |
| } |
| |
| static void release_resources(struct gpmi_nand_data *this) |
| { |
| release_dma_channels(this); |
| } |
| |
| static int send_page_prepare(struct gpmi_nand_data *this, |
| const void *source, unsigned length, |
| void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, |
| const void **use_virt, dma_addr_t *use_phys) |
| { |
| struct device *dev = this->dev; |
| |
| if (virt_addr_valid(source)) { |
| dma_addr_t source_phys; |
| |
| source_phys = dma_map_single(dev, (void *)source, length, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(dev, source_phys)) { |
| if (alt_size < length) { |
| dev_err(dev, "Alternate buffer is too small\n"); |
| return -ENOMEM; |
| } |
| goto map_failed; |
| } |
| *use_virt = source; |
| *use_phys = source_phys; |
| return 0; |
| } |
| map_failed: |
| /* |
| * Copy the content of the source buffer into the alternate |
| * buffer and set up the return values accordingly. |
| */ |
| memcpy(alt_virt, source, length); |
| |
| *use_virt = alt_virt; |
| *use_phys = alt_phys; |
| return 0; |
| } |
| |
| static void send_page_end(struct gpmi_nand_data *this, |
| const void *source, unsigned length, |
| void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, |
| const void *used_virt, dma_addr_t used_phys) |
| { |
| struct device *dev = this->dev; |
| if (used_virt == source) |
| dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE); |
| } |
| |
| static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) |
| { |
| struct device *dev = this->dev; |
| |
| if (this->payload_virt && virt_addr_valid(this->payload_virt)) |
| dma_free_coherent(dev, this->page_buffer_size, |
| this->payload_virt, |
| this->payload_phys); |
| kfree(this->cmd_buffer); |
| kfree(this->data_buffer_dma); |
| kfree(this->raw_buffer); |
| |
| this->cmd_buffer = NULL; |
| this->data_buffer_dma = NULL; |
| this->raw_buffer = NULL; |
| this->page_buffer_size = 0; |
| } |
| |
| /* Allocate the DMA buffers */ |
| static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) |
| { |
| struct bch_geometry *geo = &this->bch_geometry; |
| struct device *dev = this->dev; |
| struct mtd_info *mtd = nand_to_mtd(&this->nand); |
| |
| /* [1] Allocate a command buffer. PAGE_SIZE is enough. */ |
| this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL); |
| if (this->cmd_buffer == NULL) |
| goto error_alloc; |
| |
| /* |
| * [2] Allocate a read/write data buffer. |
| * The gpmi_alloc_dma_buffer can be called twice. |
| * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer |
| * is called before the NAND identification; and we allocate a |
| * buffer of the real NAND page size when the gpmi_alloc_dma_buffer |
| * is called after. |
| */ |
| this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, |
| GFP_DMA | GFP_KERNEL); |
| if (this->data_buffer_dma == NULL) |
| goto error_alloc; |
| |
| /* |
| * [3] Allocate the page buffer. |
| * |
| * Both the payload buffer and the auxiliary buffer must appear on |
| * 32-bit boundaries. We presume the size of the payload buffer is a |
| * power of two and is much larger than four, which guarantees the |
| * auxiliary buffer will appear on a 32-bit boundary. |
| */ |
| this->page_buffer_size = geo->payload_size + geo->auxiliary_size; |
| this->payload_virt = dma_alloc_coherent(dev, this->page_buffer_size, |
| &this->payload_phys, GFP_DMA); |
| if (!this->payload_virt) |
| goto error_alloc; |
| |
| this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); |
| if (!this->raw_buffer) |
| goto error_alloc; |
| |
| /* Slice up the page buffer. */ |
| this->auxiliary_virt = this->payload_virt + geo->payload_size; |
| this->auxiliary_phys = this->payload_phys + geo->payload_size; |
| return 0; |
| |
| error_alloc: |
| gpmi_free_dma_buffer(this); |
| return -ENOMEM; |
| } |
| |
| static void gpmi_cmd_ctrl(struct nand_chip *chip, int data, unsigned int ctrl) |
| { |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| int ret; |
| |
| /* |
| * Every operation begins with a command byte and a series of zero or |
| * more address bytes. These are distinguished by either the Address |
| * Latch Enable (ALE) or Command Latch Enable (CLE) signals being |
| * asserted. When MTD is ready to execute the command, it will deassert |
| * both latch enables. |
| * |
| * Rather than run a separate DMA operation for every single byte, we |
| * queue them up and run a single DMA operation for the entire series |
| * of command and data bytes. NAND_CMD_NONE means the END of the queue. |
| */ |
| if ((ctrl & (NAND_ALE | NAND_CLE))) { |
| if (data != NAND_CMD_NONE) |
| this->cmd_buffer[this->command_length++] = data; |
| return; |
| } |
| |
| if (!this->command_length) |
| return; |
| |
| ret = gpmi_send_command(this); |
| if (ret) |
| dev_err(this->dev, "Chip: %u, Error %d\n", |
| this->current_chip, ret); |
| |
| this->command_length = 0; |
| } |
| |
| static int gpmi_dev_ready(struct nand_chip *chip) |
| { |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| |
| return gpmi_is_ready(this, this->current_chip); |
| } |
| |
| static void gpmi_select_chip(struct nand_chip *chip, int chipnr) |
| { |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| int ret; |
| |
| /* |
| * For power consumption matters, disable/enable the clock each time a |
| * die is selected/unselected. |
| */ |
| if (this->current_chip < 0 && chipnr >= 0) { |
| ret = pm_runtime_get_sync(this->dev); |
| if (ret < 0) |
| dev_err(this->dev, "Failed to enable the clock\n"); |
| } else if (this->current_chip >= 0 && chipnr < 0) { |
| pm_runtime_mark_last_busy(this->dev); |
| pm_runtime_put_autosuspend(this->dev); |
| } |
| |
| /* |
| * This driver currently supports only one NAND chip. Plus, dies share |
| * the same configuration. So once timings have been applied on the |
| * controller side, they will not change anymore. When the time will |
| * come, the check on must_apply_timings will have to be dropped. |
| */ |
| if (chipnr >= 0 && this->hw.must_apply_timings) { |
| this->hw.must_apply_timings = false; |
| gpmi_nfc_apply_timings(this); |
| } |
| |
| this->current_chip = chipnr; |
| } |
| |
| static void gpmi_read_buf(struct nand_chip *chip, uint8_t *buf, int len) |
| { |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| |
| dev_dbg(this->dev, "len is %d\n", len); |
| |
| gpmi_read_data(this, buf, len); |
| } |
| |
| static void gpmi_write_buf(struct nand_chip *chip, const uint8_t *buf, int len) |
| { |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| |
| dev_dbg(this->dev, "len is %d\n", len); |
| |
| gpmi_send_data(this, buf, len); |
| } |
| |
| static uint8_t gpmi_read_byte(struct nand_chip *chip) |
| { |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| uint8_t *buf = this->data_buffer_dma; |
| |
| gpmi_read_buf(chip, buf, 1); |
| return buf[0]; |
| } |
| |
| /* |
| * Handles block mark swapping. |
| * It can be called in swapping the block mark, or swapping it back, |
| * because the the operations are the same. |
| */ |
| static void block_mark_swapping(struct gpmi_nand_data *this, |
| void *payload, void *auxiliary) |
| { |
| struct bch_geometry *nfc_geo = &this->bch_geometry; |
| unsigned char *p; |
| unsigned char *a; |
| unsigned int bit; |
| unsigned char mask; |
| unsigned char from_data; |
| unsigned char from_oob; |
| |
| if (!this->swap_block_mark) |
| return; |
| |
| /* |
| * If control arrives here, we're swapping. Make some convenience |
| * variables. |
| */ |
| bit = nfc_geo->block_mark_bit_offset; |
| p = payload + nfc_geo->block_mark_byte_offset; |
| a = auxiliary; |
| |
| /* |
| * Get the byte from the data area that overlays the block mark. Since |
| * the ECC engine applies its own view to the bits in the page, the |
| * physical block mark won't (in general) appear on a byte boundary in |
| * the data. |
| */ |
| from_data = (p[0] >> bit) | (p[1] << (8 - bit)); |
| |
| /* Get the byte from the OOB. */ |
| from_oob = a[0]; |
| |
| /* Swap them. */ |
| a[0] = from_data; |
| |
| mask = (0x1 << bit) - 1; |
| p[0] = (p[0] & mask) | (from_oob << bit); |
| |
| mask = ~0 << bit; |
| p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); |
| } |
| |
| static int gpmi_ecc_read_page_data(struct nand_chip *chip, uint8_t *buf) |
| { |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| struct bch_geometry *nfc_geo = &this->bch_geometry; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| dma_addr_t payload_phys; |
| unsigned int i; |
| unsigned char *status; |
| unsigned int max_bitflips = 0; |
| int ret; |
| bool direct = false; |
| |
| payload_phys = this->payload_phys; |
| |
| if (virt_addr_valid(buf)) { |
| dma_addr_t dest_phys; |
| |
| dest_phys = dma_map_single(this->dev, buf, nfc_geo->payload_size, |
| DMA_FROM_DEVICE); |
| if (!dma_mapping_error(this->dev, dest_phys)) { |
| payload_phys = dest_phys; |
| direct = true; |
| } |
| } |
| |
| /* go! */ |
| ret = gpmi_read_page(this, payload_phys, this->auxiliary_phys); |
| |
| if (direct) |
| dma_unmap_single(this->dev, payload_phys, nfc_geo->payload_size, |
| DMA_FROM_DEVICE); |
| |
| if (ret) { |
| dev_err(this->dev, "Error in ECC-based read: %d\n", ret); |
| return ret; |
| } |
| |
| /* Loop over status bytes, accumulating ECC status. */ |
| status = this->auxiliary_virt + nfc_geo->auxiliary_status_offset; |
| |
| if (!direct) |
| memcpy(buf, this->payload_virt, nfc_geo->payload_size); |
| |
| for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) { |
| if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) |
| continue; |
| |
| if (*status == STATUS_UNCORRECTABLE) { |
| int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; |
| u8 *eccbuf = this->raw_buffer; |
| int offset, bitoffset; |
| int eccbytes; |
| int flips; |
| |
| /* Read ECC bytes into our internal raw_buffer */ |
| offset = nfc_geo->metadata_size * 8; |
| offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1); |
| offset -= eccbits; |
| bitoffset = offset % 8; |
| eccbytes = DIV_ROUND_UP(offset + eccbits, 8); |
| offset /= 8; |
| eccbytes -= offset; |
| nand_change_read_column_op(chip, offset, eccbuf, |
| eccbytes, false); |
| |
| /* |
| * ECC data are not byte aligned and we may have |
| * in-band data in the first and last byte of |
| * eccbuf. Set non-eccbits to one so that |
| * nand_check_erased_ecc_chunk() does not count them |
| * as bitflips. |
| */ |
| if (bitoffset) |
| eccbuf[0] |= GENMASK(bitoffset - 1, 0); |
| |
| bitoffset = (bitoffset + eccbits) % 8; |
| if (bitoffset) |
| eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset); |
| |
| /* |
| * The ECC hardware has an uncorrectable ECC status |
| * code in case we have bitflips in an erased page. As |
| * nothing was written into this subpage the ECC is |
| * obviously wrong and we can not trust it. We assume |
| * at this point that we are reading an erased page and |
| * try to correct the bitflips in buffer up to |
| * ecc_strength bitflips. If this is a page with random |
| * data, we exceed this number of bitflips and have a |
| * ECC failure. Otherwise we use the corrected buffer. |
| */ |
| if (i == 0) { |
| /* The first block includes metadata */ |
| flips = nand_check_erased_ecc_chunk( |
| buf + i * nfc_geo->ecc_chunk_size, |
| nfc_geo->ecc_chunk_size, |
| eccbuf, eccbytes, |
| this->auxiliary_virt, |
| nfc_geo->metadata_size, |
| nfc_geo->ecc_strength); |
| } else { |
| flips = nand_check_erased_ecc_chunk( |
| buf + i * nfc_geo->ecc_chunk_size, |
| nfc_geo->ecc_chunk_size, |
| eccbuf, eccbytes, |
| NULL, 0, |
| nfc_geo->ecc_strength); |
| } |
| |
| if (flips > 0) { |
| max_bitflips = max_t(unsigned int, max_bitflips, |
| flips); |
| mtd->ecc_stats.corrected += flips; |
| continue; |
| } |
| |
| mtd->ecc_stats.failed++; |
| continue; |
| } |
| |
| mtd->ecc_stats.corrected += *status; |
| max_bitflips = max_t(unsigned int, max_bitflips, *status); |
| } |
| |
| /* handle the block mark swapping */ |
| block_mark_swapping(this, buf, this->auxiliary_virt); |
| |
| return max_bitflips; |
| } |
| |
| static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret; |
| |
| nand_read_page_op(chip, page, 0, NULL, 0); |
| |
| ret = gpmi_ecc_read_page_data(chip, buf); |
| if (ret < 0) |
| return ret; |
| |
| if (oob_required) { |
| /* |
| * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() |
| * for details about our policy for delivering the OOB. |
| * |
| * We fill the caller's buffer with set bits, and then copy the |
| * block mark to th caller's buffer. Note that, if block mark |
| * swapping was necessary, it has already been done, so we can |
| * rely on the first byte of the auxiliary buffer to contain |
| * the block mark. |
| */ |
| memset(chip->oob_poi, ~0, mtd->oobsize); |
| chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0]; |
| } |
| |
| return ret; |
| } |
| |
| /* Fake a virtual small page for the subpage read */ |
| static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs, |
| uint32_t len, uint8_t *buf, int page) |
| { |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| void __iomem *bch_regs = this->resources.bch_regs; |
| struct bch_geometry old_geo = this->bch_geometry; |
| struct bch_geometry *geo = &this->bch_geometry; |
| int size = chip->ecc.size; /* ECC chunk size */ |
| int meta, n, page_size; |
| u32 r1_old, r2_old, r1_new, r2_new; |
| unsigned int max_bitflips; |
| int first, last, marker_pos; |
| int ecc_parity_size; |
| int col = 0; |
| int old_swap_block_mark = this->swap_block_mark; |
| |
| /* The size of ECC parity */ |
| ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; |
| |
| /* Align it with the chunk size */ |
| first = offs / size; |
| last = (offs + len - 1) / size; |
| |
| if (this->swap_block_mark) { |
| /* |
| * Find the chunk which contains the Block Marker. |
| * If this chunk is in the range of [first, last], |
| * we have to read out the whole page. |
| * Why? since we had swapped the data at the position of Block |
| * Marker to the metadata which is bound with the chunk 0. |
| */ |
| marker_pos = geo->block_mark_byte_offset / size; |
| if (last >= marker_pos && first <= marker_pos) { |
| dev_dbg(this->dev, |
| "page:%d, first:%d, last:%d, marker at:%d\n", |
| page, first, last, marker_pos); |
| return gpmi_ecc_read_page(chip, buf, 0, page); |
| } |
| } |
| |
| meta = geo->metadata_size; |
| if (first) { |
| col = meta + (size + ecc_parity_size) * first; |
| meta = 0; |
| buf = buf + first * size; |
| } |
| |
| nand_read_page_op(chip, page, col, NULL, 0); |
| |
| /* Save the old environment */ |
| r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0); |
| r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1); |
| |
| /* change the BCH registers and bch_geometry{} */ |
| n = last - first + 1; |
| page_size = meta + (size + ecc_parity_size) * n; |
| |
| r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS | |
| BM_BCH_FLASH0LAYOUT0_META_SIZE); |
| r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) |
| | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta); |
| writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0); |
| |
| r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE; |
| r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size); |
| writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1); |
| |
| geo->ecc_chunk_count = n; |
| geo->payload_size = n * size; |
| geo->page_size = page_size; |
| geo->auxiliary_status_offset = ALIGN(meta, 4); |
| |
| dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", |
| page, offs, len, col, first, n, page_size); |
| |
| /* Read the subpage now */ |
| this->swap_block_mark = false; |
| max_bitflips = gpmi_ecc_read_page_data(chip, buf); |
| |
| /* Restore */ |
| writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0); |
| writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1); |
| this->bch_geometry = old_geo; |
| this->swap_block_mark = old_swap_block_mark; |
| |
| return max_bitflips; |
| } |
| |
| static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| struct bch_geometry *nfc_geo = &this->bch_geometry; |
| const void *payload_virt; |
| dma_addr_t payload_phys; |
| const void *auxiliary_virt; |
| dma_addr_t auxiliary_phys; |
| int ret; |
| |
| dev_dbg(this->dev, "ecc write page.\n"); |
| |
| nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| |
| if (this->swap_block_mark) { |
| /* |
| * If control arrives here, we're doing block mark swapping. |
| * Since we can't modify the caller's buffers, we must copy them |
| * into our own. |
| */ |
| memcpy(this->payload_virt, buf, mtd->writesize); |
| payload_virt = this->payload_virt; |
| payload_phys = this->payload_phys; |
| |
| memcpy(this->auxiliary_virt, chip->oob_poi, |
| nfc_geo->auxiliary_size); |
| auxiliary_virt = this->auxiliary_virt; |
| auxiliary_phys = this->auxiliary_phys; |
| |
| /* Handle block mark swapping. */ |
| block_mark_swapping(this, |
| (void *)payload_virt, (void *)auxiliary_virt); |
| } else { |
| /* |
| * If control arrives here, we're not doing block mark swapping, |
| * so we can to try and use the caller's buffers. |
| */ |
| ret = send_page_prepare(this, |
| buf, mtd->writesize, |
| this->payload_virt, this->payload_phys, |
| nfc_geo->payload_size, |
| &payload_virt, &payload_phys); |
| if (ret) { |
| dev_err(this->dev, "Inadequate payload DMA buffer\n"); |
| return 0; |
| } |
| |
| ret = send_page_prepare(this, |
| chip->oob_poi, mtd->oobsize, |
| this->auxiliary_virt, this->auxiliary_phys, |
| nfc_geo->auxiliary_size, |
| &auxiliary_virt, &auxiliary_phys); |
| if (ret) { |
| dev_err(this->dev, "Inadequate auxiliary DMA buffer\n"); |
| goto exit_auxiliary; |
| } |
| } |
| |
| /* Ask the NFC. */ |
| ret = gpmi_send_page(this, payload_phys, auxiliary_phys); |
| if (ret) |
| dev_err(this->dev, "Error in ECC-based write: %d\n", ret); |
| |
| if (!this->swap_block_mark) { |
| send_page_end(this, chip->oob_poi, mtd->oobsize, |
| this->auxiliary_virt, this->auxiliary_phys, |
| nfc_geo->auxiliary_size, |
| auxiliary_virt, auxiliary_phys); |
| exit_auxiliary: |
| send_page_end(this, buf, mtd->writesize, |
| this->payload_virt, this->payload_phys, |
| nfc_geo->payload_size, |
| payload_virt, payload_phys); |
| } |
| |
| if (ret) |
| return ret; |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| /* |
| * There are several places in this driver where we have to handle the OOB and |
| * block marks. This is the function where things are the most complicated, so |
| * this is where we try to explain it all. All the other places refer back to |
| * here. |
| * |
| * These are the rules, in order of decreasing importance: |
| * |
| * 1) Nothing the caller does can be allowed to imperil the block mark. |
| * |
| * 2) In read operations, the first byte of the OOB we return must reflect the |
| * true state of the block mark, no matter where that block mark appears in |
| * the physical page. |
| * |
| * 3) ECC-based read operations return an OOB full of set bits (since we never |
| * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads |
| * return). |
| * |
| * 4) "Raw" read operations return a direct view of the physical bytes in the |
| * page, using the conventional definition of which bytes are data and which |
| * are OOB. This gives the caller a way to see the actual, physical bytes |
| * in the page, without the distortions applied by our ECC engine. |
| * |
| * |
| * What we do for this specific read operation depends on two questions: |
| * |
| * 1) Are we doing a "raw" read, or an ECC-based read? |
| * |
| * 2) Are we using block mark swapping or transcription? |
| * |
| * There are four cases, illustrated by the following Karnaugh map: |
| * |
| * | Raw | ECC-based | |
| * -------------+-------------------------+-------------------------+ |
| * | Read the conventional | | |
| * | OOB at the end of the | | |
| * Swapping | page and return it. It | | |
| * | contains exactly what | | |
| * | we want. | Read the block mark and | |
| * -------------+-------------------------+ return it in a buffer | |
| * | Read the conventional | full of set bits. | |
| * | OOB at the end of the | | |
| * | page and also the block | | |
| * Transcribing | mark in the metadata. | | |
| * | Copy the block mark | | |
| * | into the first byte of | | |
| * | the OOB. | | |
| * -------------+-------------------------+-------------------------+ |
| * |
| * Note that we break rule #4 in the Transcribing/Raw case because we're not |
| * giving an accurate view of the actual, physical bytes in the page (we're |
| * overwriting the block mark). That's OK because it's more important to follow |
| * rule #2. |
| * |
| * It turns out that knowing whether we want an "ECC-based" or "raw" read is not |
| * easy. When reading a page, for example, the NAND Flash MTD code calls our |
| * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an |
| * ECC-based or raw view of the page is implicit in which function it calls |
| * (there is a similar pair of ECC-based/raw functions for writing). |
| */ |
| static int gpmi_ecc_read_oob(struct nand_chip *chip, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| int ret; |
| |
| dev_dbg(this->dev, "page number is %d\n", page); |
| /* clear the OOB buffer */ |
| memset(chip->oob_poi, ~0, mtd->oobsize); |
| |
| /* Read out the conventional OOB. */ |
| ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi, |
| mtd->oobsize); |
| if (ret) |
| return ret; |
| |
| /* |
| * Now, we want to make sure the block mark is correct. In the |
| * non-transcribing case (!GPMI_IS_MX23()), we already have it. |
| * Otherwise, we need to explicitly read it. |
| */ |
| if (GPMI_IS_MX23(this)) { |
| /* Read the block mark into the first byte of the OOB buffer. */ |
| ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int gpmi_ecc_write_oob(struct nand_chip *chip, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct mtd_oob_region of = { }; |
| |
| /* Do we have available oob area? */ |
| mtd_ooblayout_free(mtd, 0, &of); |
| if (!of.length) |
| return -EPERM; |
| |
| if (!nand_is_slc(chip)) |
| return -EPERM; |
| |
| return nand_prog_page_op(chip, page, mtd->writesize + of.offset, |
| chip->oob_poi + of.offset, of.length); |
| } |
| |
| /* |
| * This function reads a NAND page without involving the ECC engine (no HW |
| * ECC correction). |
| * The tricky part in the GPMI/BCH controller is that it stores ECC bits |
| * inline (interleaved with payload DATA), and do not align data chunk on |
| * byte boundaries. |
| * We thus need to take care moving the payload data and ECC bits stored in the |
| * page into the provided buffers, which is why we're using gpmi_copy_bits. |
| * |
| * See set_geometry_by_ecc_info inline comments to have a full description |
| * of the layout used by the GPMI controller. |
| */ |
| static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| struct bch_geometry *nfc_geo = &this->bch_geometry; |
| int eccsize = nfc_geo->ecc_chunk_size; |
| int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; |
| u8 *tmp_buf = this->raw_buffer; |
| size_t src_bit_off; |
| size_t oob_bit_off; |
| size_t oob_byte_off; |
| uint8_t *oob = chip->oob_poi; |
| int step; |
| |
| nand_read_page_op(chip, page, 0, tmp_buf, |
| mtd->writesize + mtd->oobsize); |
| |
| /* |
| * If required, swap the bad block marker and the data stored in the |
| * metadata section, so that we don't wrongly consider a block as bad. |
| * |
| * See the layout description for a detailed explanation on why this |
| * is needed. |
| */ |
| if (this->swap_block_mark) |
| swap(tmp_buf[0], tmp_buf[mtd->writesize]); |
| |
| /* |
| * Copy the metadata section into the oob buffer (this section is |
| * guaranteed to be aligned on a byte boundary). |
| */ |
| if (oob_required) |
| memcpy(oob, tmp_buf, nfc_geo->metadata_size); |
| |
| oob_bit_off = nfc_geo->metadata_size * 8; |
| src_bit_off = oob_bit_off; |
| |
| /* Extract interleaved payload data and ECC bits */ |
| for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { |
| if (buf) |
| gpmi_copy_bits(buf, step * eccsize * 8, |
| tmp_buf, src_bit_off, |
| eccsize * 8); |
| src_bit_off += eccsize * 8; |
| |
| /* Align last ECC block to align a byte boundary */ |
| if (step == nfc_geo->ecc_chunk_count - 1 && |
| (oob_bit_off + eccbits) % 8) |
| eccbits += 8 - ((oob_bit_off + eccbits) % 8); |
| |
| if (oob_required) |
| gpmi_copy_bits(oob, oob_bit_off, |
| tmp_buf, src_bit_off, |
| eccbits); |
| |
| src_bit_off += eccbits; |
| oob_bit_off += eccbits; |
| } |
| |
| if (oob_required) { |
| oob_byte_off = oob_bit_off / 8; |
| |
| if (oob_byte_off < mtd->oobsize) |
| memcpy(oob + oob_byte_off, |
| tmp_buf + mtd->writesize + oob_byte_off, |
| mtd->oobsize - oob_byte_off); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This function writes a NAND page without involving the ECC engine (no HW |
| * ECC generation). |
| * The tricky part in the GPMI/BCH controller is that it stores ECC bits |
| * inline (interleaved with payload DATA), and do not align data chunk on |
| * byte boundaries. |
| * We thus need to take care moving the OOB area at the right place in the |
| * final page, which is why we're using gpmi_copy_bits. |
| * |
| * See set_geometry_by_ecc_info inline comments to have a full description |
| * of the layout used by the GPMI controller. |
| */ |
| static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| struct bch_geometry *nfc_geo = &this->bch_geometry; |
| int eccsize = nfc_geo->ecc_chunk_size; |
| int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; |
| u8 *tmp_buf = this->raw_buffer; |
| uint8_t *oob = chip->oob_poi; |
| size_t dst_bit_off; |
| size_t oob_bit_off; |
| size_t oob_byte_off; |
| int step; |
| |
| /* |
| * Initialize all bits to 1 in case we don't have a buffer for the |
| * payload or oob data in order to leave unspecified bits of data |
| * to their initial state. |
| */ |
| if (!buf || !oob_required) |
| memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize); |
| |
| /* |
| * First copy the metadata section (stored in oob buffer) at the |
| * beginning of the page, as imposed by the GPMI layout. |
| */ |
| memcpy(tmp_buf, oob, nfc_geo->metadata_size); |
| oob_bit_off = nfc_geo->metadata_size * 8; |
| dst_bit_off = oob_bit_off; |
| |
| /* Interleave payload data and ECC bits */ |
| for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { |
| if (buf) |
| gpmi_copy_bits(tmp_buf, dst_bit_off, |
| buf, step * eccsize * 8, eccsize * 8); |
| dst_bit_off += eccsize * 8; |
| |
| /* Align last ECC block to align a byte boundary */ |
| if (step == nfc_geo->ecc_chunk_count - 1 && |
| (oob_bit_off + eccbits) % 8) |
| eccbits += 8 - ((oob_bit_off + eccbits) % 8); |
| |
| if (oob_required) |
| gpmi_copy_bits(tmp_buf, dst_bit_off, |
| oob, oob_bit_off, eccbits); |
| |
| dst_bit_off += eccbits; |
| oob_bit_off += eccbits; |
| } |
| |
| oob_byte_off = oob_bit_off / 8; |
| |
| if (oob_required && oob_byte_off < mtd->oobsize) |
| memcpy(tmp_buf + mtd->writesize + oob_byte_off, |
| oob + oob_byte_off, mtd->oobsize - oob_byte_off); |
| |
| /* |
| * If required, swap the bad block marker and the first byte of the |
| * metadata section, so that we don't modify the bad block marker. |
| * |
| * See the layout description for a detailed explanation on why this |
| * is needed. |
| */ |
| if (this->swap_block_mark) |
| swap(tmp_buf[0], tmp_buf[mtd->writesize]); |
| |
| return nand_prog_page_op(chip, page, 0, tmp_buf, |
| mtd->writesize + mtd->oobsize); |
| } |
| |
| static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page) |
| { |
| return gpmi_ecc_read_page_raw(chip, NULL, 1, page); |
| } |
| |
| static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page) |
| { |
| return gpmi_ecc_write_page_raw(chip, NULL, 1, page); |
| } |
| |
| static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| int ret = 0; |
| uint8_t *block_mark; |
| int column, page, chipnr; |
| |
| chipnr = (int)(ofs >> chip->chip_shift); |
| nand_select_target(chip, chipnr); |
| |
| column = !GPMI_IS_MX23(this) ? mtd->writesize : 0; |
| |
| /* Write the block mark. */ |
| block_mark = this->data_buffer_dma; |
| block_mark[0] = 0; /* bad block marker */ |
| |
| /* Shift to get page */ |
| page = (int)(ofs >> chip->page_shift); |
| |
| ret = nand_prog_page_op(chip, page, column, block_mark, 1); |
| |
| nand_deselect_target(chip); |
| |
| return ret; |
| } |
| |
| static int nand_boot_set_geometry(struct gpmi_nand_data *this) |
| { |
| struct boot_rom_geometry *geometry = &this->rom_geometry; |
| |
| /* |
| * Set the boot block stride size. |
| * |
| * In principle, we should be reading this from the OTP bits, since |
| * that's where the ROM is going to get it. In fact, we don't have any |
| * way to read the OTP bits, so we go with the default and hope for the |
| * best. |
| */ |
| geometry->stride_size_in_pages = 64; |
| |
| /* |
| * Set the search area stride exponent. |
| * |
| * In principle, we should be reading this from the OTP bits, since |
| * that's where the ROM is going to get it. In fact, we don't have any |
| * way to read the OTP bits, so we go with the default and hope for the |
| * best. |
| */ |
| geometry->search_area_stride_exponent = 2; |
| return 0; |
| } |
| |
| static const char *fingerprint = "STMP"; |
| static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) |
| { |
| struct boot_rom_geometry *rom_geo = &this->rom_geometry; |
| struct device *dev = this->dev; |
| struct nand_chip *chip = &this->nand; |
| unsigned int search_area_size_in_strides; |
| unsigned int stride; |
| unsigned int page; |
| u8 *buffer = nand_get_data_buf(chip); |
| int found_an_ncb_fingerprint = false; |
| int ret; |
| |
| /* Compute the number of strides in a search area. */ |
| search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; |
| |
| nand_select_target(chip, 0); |
| |
| /* |
| * Loop through the first search area, looking for the NCB fingerprint. |
| */ |
| dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); |
| |
| for (stride = 0; stride < search_area_size_in_strides; stride++) { |
| /* Compute the page addresses. */ |
| page = stride * rom_geo->stride_size_in_pages; |
| |
| dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); |
| |
| /* |
| * Read the NCB fingerprint. The fingerprint is four bytes long |
| * and starts in the 12th byte of the page. |
| */ |
| ret = nand_read_page_op(chip, page, 12, buffer, |
| strlen(fingerprint)); |
| if (ret) |
| continue; |
| |
| /* Look for the fingerprint. */ |
| if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { |
| found_an_ncb_fingerprint = true; |
| break; |
| } |
| |
| } |
| |
| nand_deselect_target(chip); |
| |
| if (found_an_ncb_fingerprint) |
| dev_dbg(dev, "\tFound a fingerprint\n"); |
| else |
| dev_dbg(dev, "\tNo fingerprint found\n"); |
| return found_an_ncb_fingerprint; |
| } |
| |
| /* Writes a transcription stamp. */ |
| static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) |
| { |
| struct device *dev = this->dev; |
| struct boot_rom_geometry *rom_geo = &this->rom_geometry; |
| struct nand_chip *chip = &this->nand; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| unsigned int block_size_in_pages; |
| unsigned int search_area_size_in_strides; |
| unsigned int search_area_size_in_pages; |
| unsigned int search_area_size_in_blocks; |
| unsigned int block; |
| unsigned int stride; |
| unsigned int page; |
| u8 *buffer = nand_get_data_buf(chip); |
| int status; |
| |
| /* Compute the search area geometry. */ |
| block_size_in_pages = mtd->erasesize / mtd->writesize; |
| search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; |
| search_area_size_in_pages = search_area_size_in_strides * |
| rom_geo->stride_size_in_pages; |
| search_area_size_in_blocks = |
| (search_area_size_in_pages + (block_size_in_pages - 1)) / |
| block_size_in_pages; |
| |
| dev_dbg(dev, "Search Area Geometry :\n"); |
| dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); |
| dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); |
| dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); |
| |
| nand_select_target(chip, 0); |
| |
| /* Loop over blocks in the first search area, erasing them. */ |
| dev_dbg(dev, "Erasing the search area...\n"); |
| |
| for (block = 0; block < search_area_size_in_blocks; block++) { |
| /* Erase this block. */ |
| dev_dbg(dev, "\tErasing block 0x%x\n", block); |
| status = nand_erase_op(chip, block); |
| if (status) |
| dev_err(dev, "[%s] Erase failed.\n", __func__); |
| } |
| |
| /* Write the NCB fingerprint into the page buffer. */ |
| memset(buffer, ~0, mtd->writesize); |
| memcpy(buffer + 12, fingerprint, strlen(fingerprint)); |
| |
| /* Loop through the first search area, writing NCB fingerprints. */ |
| dev_dbg(dev, "Writing NCB fingerprints...\n"); |
| for (stride = 0; stride < search_area_size_in_strides; stride++) { |
| /* Compute the page addresses. */ |
| page = stride * rom_geo->stride_size_in_pages; |
| |
| /* Write the first page of the current stride. */ |
| dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); |
| |
| status = chip->ecc.write_page_raw(chip, buffer, 0, page); |
| if (status) |
| dev_err(dev, "[%s] Write failed.\n", __func__); |
| } |
| |
| nand_deselect_target(chip); |
| |
| return 0; |
| } |
| |
| static int mx23_boot_init(struct gpmi_nand_data *this) |
| { |
| struct device *dev = this->dev; |
| struct nand_chip *chip = &this->nand; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| unsigned int block_count; |
| unsigned int block; |
| int chipnr; |
| int page; |
| loff_t byte; |
| uint8_t block_mark; |
| int ret = 0; |
| |
| /* |
| * If control arrives here, we can't use block mark swapping, which |
| * means we're forced to use transcription. First, scan for the |
| * transcription stamp. If we find it, then we don't have to do |
| * anything -- the block marks are already transcribed. |
| */ |
| if (mx23_check_transcription_stamp(this)) |
| return 0; |
| |
| /* |
| * If control arrives here, we couldn't find a transcription stamp, so |
| * so we presume the block marks are in the conventional location. |
| */ |
| dev_dbg(dev, "Transcribing bad block marks...\n"); |
| |
| /* Compute the number of blocks in the entire medium. */ |
| block_count = nanddev_eraseblocks_per_target(&chip->base); |
| |
| /* |
| * Loop over all the blocks in the medium, transcribing block marks as |
| * we go. |
| */ |
| for (block = 0; block < block_count; block++) { |
| /* |
| * Compute the chip, page and byte addresses for this block's |
| * conventional mark. |
| */ |
| chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); |
| page = block << (chip->phys_erase_shift - chip->page_shift); |
| byte = block << chip->phys_erase_shift; |
| |
| /* Send the command to read the conventional block mark. */ |
| nand_select_target(chip, chipnr); |
| ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark, |
| 1); |
| nand_deselect_target(chip); |
| |
| if (ret) |
| continue; |
| |
| /* |
| * Check if the block is marked bad. If so, we need to mark it |
| * again, but this time the result will be a mark in the |
| * location where we transcribe block marks. |
| */ |
| if (block_mark != 0xff) { |
| dev_dbg(dev, "Transcribing mark in block %u\n", block); |
| ret = chip->legacy.block_markbad(chip, byte); |
| if (ret) |
| dev_err(dev, |
| "Failed to mark block bad with ret %d\n", |
| ret); |
| } |
| } |
| |
| /* Write the stamp that indicates we've transcribed the block marks. */ |
| mx23_write_transcription_stamp(this); |
| return 0; |
| } |
| |
| static int nand_boot_init(struct gpmi_nand_data *this) |
| { |
| nand_boot_set_geometry(this); |
| |
| /* This is ROM arch-specific initilization before the BBT scanning. */ |
| if (GPMI_IS_MX23(this)) |
| return mx23_boot_init(this); |
| return 0; |
| } |
| |
| static int gpmi_set_geometry(struct gpmi_nand_data *this) |
| { |
| int ret; |
| |
| /* Free the temporary DMA memory for reading ID. */ |
| gpmi_free_dma_buffer(this); |
| |
| /* Set up the NFC geometry which is used by BCH. */ |
| ret = bch_set_geometry(this); |
| if (ret) { |
| dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); |
| return ret; |
| } |
| |
| /* Alloc the new DMA buffers according to the pagesize and oobsize */ |
| return gpmi_alloc_dma_buffer(this); |
| } |
| |
| static int gpmi_init_last(struct gpmi_nand_data *this) |
| { |
| struct nand_chip *chip = &this->nand; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| struct bch_geometry *bch_geo = &this->bch_geometry; |
| int ret; |
| |
| /* Set up the medium geometry */ |
| ret = gpmi_set_geometry(this); |
| if (ret) |
| return ret; |
| |
| /* Init the nand_ecc_ctrl{} */ |
| ecc->read_page = gpmi_ecc_read_page; |
| ecc->write_page = gpmi_ecc_write_page; |
| ecc->read_oob = gpmi_ecc_read_oob; |
| ecc->write_oob = gpmi_ecc_write_oob; |
| ecc->read_page_raw = gpmi_ecc_read_page_raw; |
| ecc->write_page_raw = gpmi_ecc_write_page_raw; |
| ecc->read_oob_raw = gpmi_ecc_read_oob_raw; |
| ecc->write_oob_raw = gpmi_ecc_write_oob_raw; |
| ecc->mode = NAND_ECC_HW; |
| ecc->size = bch_geo->ecc_chunk_size; |
| ecc->strength = bch_geo->ecc_strength; |
| mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops); |
| |
| /* |
| * We only enable the subpage read when: |
| * (1) the chip is imx6, and |
| * (2) the size of the ECC parity is byte aligned. |
| */ |
| if (GPMI_IS_MX6(this) && |
| ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { |
| ecc->read_subpage = gpmi_ecc_read_subpage; |
| chip->options |= NAND_SUBPAGE_READ; |
| } |
| |
| return 0; |
| } |
| |
| static int gpmi_nand_attach_chip(struct nand_chip *chip) |
| { |
| struct gpmi_nand_data *this = nand_get_controller_data(chip); |
| int ret; |
| |
| if (chip->bbt_options & NAND_BBT_USE_FLASH) { |
| chip->bbt_options |= NAND_BBT_NO_OOB; |
| |
| if (of_property_read_bool(this->dev->of_node, |
| "fsl,no-blockmark-swap")) |
| this->swap_block_mark = false; |
| } |
| dev_dbg(this->dev, "Blockmark swapping %sabled\n", |
| this->swap_block_mark ? "en" : "dis"); |
| |
| ret = gpmi_init_last(this); |
| if (ret) |
| return ret; |
| |
| chip->options |= NAND_SKIP_BBTSCAN; |
| |
| return 0; |
| } |
| |
| static const struct nand_controller_ops gpmi_nand_controller_ops = { |
| .attach_chip = gpmi_nand_attach_chip, |
| .setup_data_interface = gpmi_setup_data_interface, |
| }; |
| |
| static int gpmi_nand_init(struct gpmi_nand_data *this) |
| { |
| struct nand_chip *chip = &this->nand; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret; |
| |
| /* init current chip */ |
| this->current_chip = -1; |
| |
| /* init the MTD data structures */ |
| mtd->name = "gpmi-nand"; |
| mtd->dev.parent = this->dev; |
| |
| /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ |
| nand_set_controller_data(chip, this); |
| nand_set_flash_node(chip, this->pdev->dev.of_node); |
| chip->legacy.select_chip = gpmi_select_chip; |
| chip->legacy.cmd_ctrl = gpmi_cmd_ctrl; |
| chip->legacy.dev_ready = gpmi_dev_ready; |
| chip->legacy.read_byte = gpmi_read_byte; |
| chip->legacy.read_buf = gpmi_read_buf; |
| chip->legacy.write_buf = gpmi_write_buf; |
| chip->badblock_pattern = &gpmi_bbt_descr; |
| chip->legacy.block_markbad = gpmi_block_markbad; |
| chip->options |= NAND_NO_SUBPAGE_WRITE; |
| |
| /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ |
| this->swap_block_mark = !GPMI_IS_MX23(this); |
| |
| /* |
| * Allocate a temporary DMA buffer for reading ID in the |
| * nand_scan_ident(). |
| */ |
| this->bch_geometry.payload_size = 1024; |
| this->bch_geometry.auxiliary_size = 128; |
| ret = gpmi_alloc_dma_buffer(this); |
| if (ret) |
| goto err_out; |
| |
| chip->legacy.dummy_controller.ops = &gpmi_nand_controller_ops; |
| ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1); |
| if (ret) |
| goto err_out; |
| |
| ret = nand_boot_init(this); |
| if (ret) |
| goto err_nand_cleanup; |
| ret = nand_create_bbt(chip); |
| if (ret) |
| goto err_nand_cleanup; |
| |
| ret = mtd_device_register(mtd, NULL, 0); |
| if (ret) |
| goto err_nand_cleanup; |
| return 0; |
| |
| err_nand_cleanup: |
| nand_cleanup(chip); |
| err_out: |
| gpmi_free_dma_buffer(this); |
| return ret; |
| } |
| |
| static const struct of_device_id gpmi_nand_id_table[] = { |
| { |
| .compatible = "fsl,imx23-gpmi-nand", |
| .data = &gpmi_devdata_imx23, |
| }, { |
| .compatible = "fsl,imx28-gpmi-nand", |
| .data = &gpmi_devdata_imx28, |
| }, { |
| .compatible = "fsl,imx6q-gpmi-nand", |
| .data = &gpmi_devdata_imx6q, |
| }, { |
| .compatible = "fsl,imx6sx-gpmi-nand", |
| .data = &gpmi_devdata_imx6sx, |
| }, { |
| .compatible = "fsl,imx7d-gpmi-nand", |
| .data = &gpmi_devdata_imx7d, |
| }, {} |
| }; |
| MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); |
| |
| static int gpmi_nand_probe(struct platform_device *pdev) |
| { |
| struct gpmi_nand_data *this; |
| const struct of_device_id *of_id; |
| int ret; |
| |
| this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); |
| if (!this) |
| return -ENOMEM; |
| |
| of_id = of_match_device(gpmi_nand_id_table, &pdev->dev); |
| if (of_id) { |
| this->devdata = of_id->data; |
| } else { |
| dev_err(&pdev->dev, "Failed to find the right device id.\n"); |
| return -ENODEV; |
| } |
| |
| platform_set_drvdata(pdev, this); |
| this->pdev = pdev; |
| this->dev = &pdev->dev; |
| |
| ret = acquire_resources(this); |
| if (ret) |
| goto exit_acquire_resources; |
| |
| ret = __gpmi_enable_clk(this, true); |
| if (ret) |
| goto exit_nfc_init; |
| |
| pm_runtime_set_autosuspend_delay(&pdev->dev, 500); |
| pm_runtime_use_autosuspend(&pdev->dev); |
| pm_runtime_set_active(&pdev->dev); |
| pm_runtime_enable(&pdev->dev); |
| pm_runtime_get_sync(&pdev->dev); |
| |
| ret = gpmi_init(this); |
| if (ret) |
| goto exit_nfc_init; |
| |
| ret = gpmi_nand_init(this); |
| if (ret) |
| goto exit_nfc_init; |
| |
| pm_runtime_mark_last_busy(&pdev->dev); |
| pm_runtime_put_autosuspend(&pdev->dev); |
| |
| dev_info(this->dev, "driver registered.\n"); |
| |
| return 0; |
| |
| exit_nfc_init: |
| pm_runtime_put(&pdev->dev); |
| pm_runtime_disable(&pdev->dev); |
| release_resources(this); |
| exit_acquire_resources: |
| |
| return ret; |
| } |
| |
| static int gpmi_nand_remove(struct platform_device *pdev) |
| { |
| struct gpmi_nand_data *this = platform_get_drvdata(pdev); |
| |
| pm_runtime_put_sync(&pdev->dev); |
| pm_runtime_disable(&pdev->dev); |
| |
| nand_release(&this->nand); |
| gpmi_free_dma_buffer(this); |
| release_resources(this); |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int gpmi_pm_suspend(struct device *dev) |
| { |
| struct gpmi_nand_data *this = dev_get_drvdata(dev); |
| |
| release_dma_channels(this); |
| return 0; |
| } |
| |
| static int gpmi_pm_resume(struct device *dev) |
| { |
| struct gpmi_nand_data *this = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = acquire_dma_channels(this); |
| if (ret < 0) |
| return ret; |
| |
| /* re-init the GPMI registers */ |
| ret = gpmi_init(this); |
| if (ret) { |
| dev_err(this->dev, "Error setting GPMI : %d\n", ret); |
| return ret; |
| } |
| |
| /* re-init the BCH registers */ |
| ret = bch_set_geometry(this); |
| if (ret) { |
| dev_err(this->dev, "Error setting BCH : %d\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| #endif /* CONFIG_PM_SLEEP */ |
| |
| static int __maybe_unused gpmi_runtime_suspend(struct device *dev) |
| { |
| struct gpmi_nand_data *this = dev_get_drvdata(dev); |
| |
| return __gpmi_enable_clk(this, false); |
| } |
| |
| static int __maybe_unused gpmi_runtime_resume(struct device *dev) |
| { |
| struct gpmi_nand_data *this = dev_get_drvdata(dev); |
| |
| return __gpmi_enable_clk(this, true); |
| } |
| |
| static const struct dev_pm_ops gpmi_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume) |
| SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL) |
| }; |
| |
| static struct platform_driver gpmi_nand_driver = { |
| .driver = { |
| .name = "gpmi-nand", |
| .pm = &gpmi_pm_ops, |
| .of_match_table = gpmi_nand_id_table, |
| }, |
| .probe = gpmi_nand_probe, |
| .remove = gpmi_nand_remove, |
| }; |
| module_platform_driver(gpmi_nand_driver); |
| |
| MODULE_AUTHOR("Freescale Semiconductor, Inc."); |
| MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); |
| MODULE_LICENSE("GPL"); |