| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright © 2006-2014 Intel Corporation. |
| * |
| * Authors: David Woodhouse <dwmw2@infradead.org>, |
| * Ashok Raj <ashok.raj@intel.com>, |
| * Shaohua Li <shaohua.li@intel.com>, |
| * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>, |
| * Fenghua Yu <fenghua.yu@intel.com> |
| * Joerg Roedel <jroedel@suse.de> |
| */ |
| |
| #define pr_fmt(fmt) "DMAR: " fmt |
| #define dev_fmt(fmt) pr_fmt(fmt) |
| |
| #include <linux/init.h> |
| #include <linux/bitmap.h> |
| #include <linux/debugfs.h> |
| #include <linux/export.h> |
| #include <linux/slab.h> |
| #include <linux/irq.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/pci.h> |
| #include <linux/dmar.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/mempool.h> |
| #include <linux/memory.h> |
| #include <linux/cpu.h> |
| #include <linux/timer.h> |
| #include <linux/io.h> |
| #include <linux/iova.h> |
| #include <linux/iommu.h> |
| #include <linux/intel-iommu.h> |
| #include <linux/syscore_ops.h> |
| #include <linux/tboot.h> |
| #include <linux/dmi.h> |
| #include <linux/pci-ats.h> |
| #include <linux/memblock.h> |
| #include <linux/dma-contiguous.h> |
| #include <linux/dma-direct.h> |
| #include <linux/crash_dump.h> |
| #include <linux/numa.h> |
| #include <linux/swiotlb.h> |
| #include <asm/irq_remapping.h> |
| #include <asm/cacheflush.h> |
| #include <asm/iommu.h> |
| #include <trace/events/intel_iommu.h> |
| |
| #include "../irq_remapping.h" |
| #include "pasid.h" |
| |
| #define ROOT_SIZE VTD_PAGE_SIZE |
| #define CONTEXT_SIZE VTD_PAGE_SIZE |
| |
| #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) |
| #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB) |
| #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) |
| #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e) |
| |
| #define IOAPIC_RANGE_START (0xfee00000) |
| #define IOAPIC_RANGE_END (0xfeefffff) |
| #define IOVA_START_ADDR (0x1000) |
| |
| #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57 |
| |
| #define MAX_AGAW_WIDTH 64 |
| #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT) |
| |
| #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1) |
| #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1) |
| |
| /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR |
| to match. That way, we can use 'unsigned long' for PFNs with impunity. */ |
| #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \ |
| __DOMAIN_MAX_PFN(gaw), (unsigned long)-1)) |
| #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT) |
| |
| /* IO virtual address start page frame number */ |
| #define IOVA_START_PFN (1) |
| |
| #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) |
| |
| /* page table handling */ |
| #define LEVEL_STRIDE (9) |
| #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) |
| |
| /* |
| * This bitmap is used to advertise the page sizes our hardware support |
| * to the IOMMU core, which will then use this information to split |
| * physically contiguous memory regions it is mapping into page sizes |
| * that we support. |
| * |
| * Traditionally the IOMMU core just handed us the mappings directly, |
| * after making sure the size is an order of a 4KiB page and that the |
| * mapping has natural alignment. |
| * |
| * To retain this behavior, we currently advertise that we support |
| * all page sizes that are an order of 4KiB. |
| * |
| * If at some point we'd like to utilize the IOMMU core's new behavior, |
| * we could change this to advertise the real page sizes we support. |
| */ |
| #define INTEL_IOMMU_PGSIZES (~0xFFFUL) |
| |
| static inline int agaw_to_level(int agaw) |
| { |
| return agaw + 2; |
| } |
| |
| static inline int agaw_to_width(int agaw) |
| { |
| return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH); |
| } |
| |
| static inline int width_to_agaw(int width) |
| { |
| return DIV_ROUND_UP(width - 30, LEVEL_STRIDE); |
| } |
| |
| static inline unsigned int level_to_offset_bits(int level) |
| { |
| return (level - 1) * LEVEL_STRIDE; |
| } |
| |
| static inline int pfn_level_offset(unsigned long pfn, int level) |
| { |
| return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK; |
| } |
| |
| static inline unsigned long level_mask(int level) |
| { |
| return -1UL << level_to_offset_bits(level); |
| } |
| |
| static inline unsigned long level_size(int level) |
| { |
| return 1UL << level_to_offset_bits(level); |
| } |
| |
| static inline unsigned long align_to_level(unsigned long pfn, int level) |
| { |
| return (pfn + level_size(level) - 1) & level_mask(level); |
| } |
| |
| static inline unsigned long lvl_to_nr_pages(unsigned int lvl) |
| { |
| return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH); |
| } |
| |
| /* VT-d pages must always be _smaller_ than MM pages. Otherwise things |
| are never going to work. */ |
| static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn) |
| { |
| return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT); |
| } |
| |
| static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn) |
| { |
| return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT); |
| } |
| static inline unsigned long page_to_dma_pfn(struct page *pg) |
| { |
| return mm_to_dma_pfn(page_to_pfn(pg)); |
| } |
| static inline unsigned long virt_to_dma_pfn(void *p) |
| { |
| return page_to_dma_pfn(virt_to_page(p)); |
| } |
| |
| /* global iommu list, set NULL for ignored DMAR units */ |
| static struct intel_iommu **g_iommus; |
| |
| static void __init check_tylersburg_isoch(void); |
| static int rwbf_quirk; |
| |
| /* |
| * set to 1 to panic kernel if can't successfully enable VT-d |
| * (used when kernel is launched w/ TXT) |
| */ |
| static int force_on = 0; |
| int intel_iommu_tboot_noforce; |
| static int no_platform_optin; |
| |
| #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) |
| |
| /* |
| * Take a root_entry and return the Lower Context Table Pointer (LCTP) |
| * if marked present. |
| */ |
| static phys_addr_t root_entry_lctp(struct root_entry *re) |
| { |
| if (!(re->lo & 1)) |
| return 0; |
| |
| return re->lo & VTD_PAGE_MASK; |
| } |
| |
| /* |
| * Take a root_entry and return the Upper Context Table Pointer (UCTP) |
| * if marked present. |
| */ |
| static phys_addr_t root_entry_uctp(struct root_entry *re) |
| { |
| if (!(re->hi & 1)) |
| return 0; |
| |
| return re->hi & VTD_PAGE_MASK; |
| } |
| |
| static inline void context_clear_pasid_enable(struct context_entry *context) |
| { |
| context->lo &= ~(1ULL << 11); |
| } |
| |
| static inline bool context_pasid_enabled(struct context_entry *context) |
| { |
| return !!(context->lo & (1ULL << 11)); |
| } |
| |
| static inline void context_set_copied(struct context_entry *context) |
| { |
| context->hi |= (1ull << 3); |
| } |
| |
| static inline bool context_copied(struct context_entry *context) |
| { |
| return !!(context->hi & (1ULL << 3)); |
| } |
| |
| static inline bool __context_present(struct context_entry *context) |
| { |
| return (context->lo & 1); |
| } |
| |
| bool context_present(struct context_entry *context) |
| { |
| return context_pasid_enabled(context) ? |
| __context_present(context) : |
| __context_present(context) && !context_copied(context); |
| } |
| |
| static inline void context_set_present(struct context_entry *context) |
| { |
| context->lo |= 1; |
| } |
| |
| static inline void context_set_fault_enable(struct context_entry *context) |
| { |
| context->lo &= (((u64)-1) << 2) | 1; |
| } |
| |
| static inline void context_set_translation_type(struct context_entry *context, |
| unsigned long value) |
| { |
| context->lo &= (((u64)-1) << 4) | 3; |
| context->lo |= (value & 3) << 2; |
| } |
| |
| static inline void context_set_address_root(struct context_entry *context, |
| unsigned long value) |
| { |
| context->lo &= ~VTD_PAGE_MASK; |
| context->lo |= value & VTD_PAGE_MASK; |
| } |
| |
| static inline void context_set_address_width(struct context_entry *context, |
| unsigned long value) |
| { |
| context->hi |= value & 7; |
| } |
| |
| static inline void context_set_domain_id(struct context_entry *context, |
| unsigned long value) |
| { |
| context->hi |= (value & ((1 << 16) - 1)) << 8; |
| } |
| |
| static inline int context_domain_id(struct context_entry *c) |
| { |
| return((c->hi >> 8) & 0xffff); |
| } |
| |
| static inline void context_clear_entry(struct context_entry *context) |
| { |
| context->lo = 0; |
| context->hi = 0; |
| } |
| |
| /* |
| * This domain is a statically identity mapping domain. |
| * 1. This domain creats a static 1:1 mapping to all usable memory. |
| * 2. It maps to each iommu if successful. |
| * 3. Each iommu mapps to this domain if successful. |
| */ |
| static struct dmar_domain *si_domain; |
| static int hw_pass_through = 1; |
| |
| #define for_each_domain_iommu(idx, domain) \ |
| for (idx = 0; idx < g_num_of_iommus; idx++) \ |
| if (domain->iommu_refcnt[idx]) |
| |
| struct dmar_rmrr_unit { |
| struct list_head list; /* list of rmrr units */ |
| struct acpi_dmar_header *hdr; /* ACPI header */ |
| u64 base_address; /* reserved base address*/ |
| u64 end_address; /* reserved end address */ |
| struct dmar_dev_scope *devices; /* target devices */ |
| int devices_cnt; /* target device count */ |
| }; |
| |
| struct dmar_atsr_unit { |
| struct list_head list; /* list of ATSR units */ |
| struct acpi_dmar_header *hdr; /* ACPI header */ |
| struct dmar_dev_scope *devices; /* target devices */ |
| int devices_cnt; /* target device count */ |
| u8 include_all:1; /* include all ports */ |
| }; |
| |
| static LIST_HEAD(dmar_atsr_units); |
| static LIST_HEAD(dmar_rmrr_units); |
| |
| #define for_each_rmrr_units(rmrr) \ |
| list_for_each_entry(rmrr, &dmar_rmrr_units, list) |
| |
| /* bitmap for indexing intel_iommus */ |
| static int g_num_of_iommus; |
| |
| static void domain_exit(struct dmar_domain *domain); |
| static void domain_remove_dev_info(struct dmar_domain *domain); |
| static void dmar_remove_one_dev_info(struct device *dev); |
| static void __dmar_remove_one_dev_info(struct device_domain_info *info); |
| static int intel_iommu_attach_device(struct iommu_domain *domain, |
| struct device *dev); |
| static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, |
| dma_addr_t iova); |
| |
| #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON |
| int dmar_disabled = 0; |
| #else |
| int dmar_disabled = 1; |
| #endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */ |
| |
| #ifdef CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON |
| int intel_iommu_sm = 1; |
| #else |
| int intel_iommu_sm; |
| #endif /* CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */ |
| |
| int intel_iommu_enabled = 0; |
| EXPORT_SYMBOL_GPL(intel_iommu_enabled); |
| |
| static int dmar_map_gfx = 1; |
| static int dmar_forcedac; |
| static int intel_iommu_strict; |
| static int intel_iommu_superpage = 1; |
| static int iommu_identity_mapping; |
| static int intel_no_bounce; |
| static int iommu_skip_te_disable; |
| |
| #define IDENTMAP_GFX 2 |
| #define IDENTMAP_AZALIA 4 |
| |
| int intel_iommu_gfx_mapped; |
| EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped); |
| |
| #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1)) |
| #define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2)) |
| struct device_domain_info *get_domain_info(struct device *dev) |
| { |
| struct device_domain_info *info; |
| |
| if (!dev) |
| return NULL; |
| |
| info = dev_iommu_priv_get(dev); |
| if (unlikely(info == DUMMY_DEVICE_DOMAIN_INFO || |
| info == DEFER_DEVICE_DOMAIN_INFO)) |
| return NULL; |
| |
| return info; |
| } |
| |
| DEFINE_SPINLOCK(device_domain_lock); |
| static LIST_HEAD(device_domain_list); |
| |
| #define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) && \ |
| to_pci_dev(d)->untrusted) |
| |
| /* |
| * Iterate over elements in device_domain_list and call the specified |
| * callback @fn against each element. |
| */ |
| int for_each_device_domain(int (*fn)(struct device_domain_info *info, |
| void *data), void *data) |
| { |
| int ret = 0; |
| unsigned long flags; |
| struct device_domain_info *info; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| list_for_each_entry(info, &device_domain_list, global) { |
| ret = fn(info, data); |
| if (ret) { |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| return ret; |
| } |
| } |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| return 0; |
| } |
| |
| const struct iommu_ops intel_iommu_ops; |
| |
| static bool translation_pre_enabled(struct intel_iommu *iommu) |
| { |
| return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED); |
| } |
| |
| static void clear_translation_pre_enabled(struct intel_iommu *iommu) |
| { |
| iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED; |
| } |
| |
| static void init_translation_status(struct intel_iommu *iommu) |
| { |
| u32 gsts; |
| |
| gsts = readl(iommu->reg + DMAR_GSTS_REG); |
| if (gsts & DMA_GSTS_TES) |
| iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED; |
| } |
| |
| static int __init intel_iommu_setup(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| while (*str) { |
| if (!strncmp(str, "on", 2)) { |
| dmar_disabled = 0; |
| pr_info("IOMMU enabled\n"); |
| } else if (!strncmp(str, "off", 3)) { |
| dmar_disabled = 1; |
| no_platform_optin = 1; |
| pr_info("IOMMU disabled\n"); |
| } else if (!strncmp(str, "igfx_off", 8)) { |
| dmar_map_gfx = 0; |
| pr_info("Disable GFX device mapping\n"); |
| } else if (!strncmp(str, "forcedac", 8)) { |
| pr_info("Forcing DAC for PCI devices\n"); |
| dmar_forcedac = 1; |
| } else if (!strncmp(str, "strict", 6)) { |
| pr_info("Disable batched IOTLB flush\n"); |
| intel_iommu_strict = 1; |
| } else if (!strncmp(str, "sp_off", 6)) { |
| pr_info("Disable supported super page\n"); |
| intel_iommu_superpage = 0; |
| } else if (!strncmp(str, "sm_on", 5)) { |
| pr_info("Intel-IOMMU: scalable mode supported\n"); |
| intel_iommu_sm = 1; |
| } else if (!strncmp(str, "tboot_noforce", 13)) { |
| pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n"); |
| intel_iommu_tboot_noforce = 1; |
| } else if (!strncmp(str, "nobounce", 8)) { |
| pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n"); |
| intel_no_bounce = 1; |
| } |
| |
| str += strcspn(str, ","); |
| while (*str == ',') |
| str++; |
| } |
| return 0; |
| } |
| __setup("intel_iommu=", intel_iommu_setup); |
| |
| static struct kmem_cache *iommu_domain_cache; |
| static struct kmem_cache *iommu_devinfo_cache; |
| |
| static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did) |
| { |
| struct dmar_domain **domains; |
| int idx = did >> 8; |
| |
| domains = iommu->domains[idx]; |
| if (!domains) |
| return NULL; |
| |
| return domains[did & 0xff]; |
| } |
| |
| static void set_iommu_domain(struct intel_iommu *iommu, u16 did, |
| struct dmar_domain *domain) |
| { |
| struct dmar_domain **domains; |
| int idx = did >> 8; |
| |
| if (!iommu->domains[idx]) { |
| size_t size = 256 * sizeof(struct dmar_domain *); |
| iommu->domains[idx] = kzalloc(size, GFP_ATOMIC); |
| } |
| |
| domains = iommu->domains[idx]; |
| if (WARN_ON(!domains)) |
| return; |
| else |
| domains[did & 0xff] = domain; |
| } |
| |
| void *alloc_pgtable_page(int node) |
| { |
| struct page *page; |
| void *vaddr = NULL; |
| |
| page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0); |
| if (page) |
| vaddr = page_address(page); |
| return vaddr; |
| } |
| |
| void free_pgtable_page(void *vaddr) |
| { |
| free_page((unsigned long)vaddr); |
| } |
| |
| static inline void *alloc_domain_mem(void) |
| { |
| return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC); |
| } |
| |
| static void free_domain_mem(void *vaddr) |
| { |
| kmem_cache_free(iommu_domain_cache, vaddr); |
| } |
| |
| static inline void * alloc_devinfo_mem(void) |
| { |
| return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC); |
| } |
| |
| static inline void free_devinfo_mem(void *vaddr) |
| { |
| kmem_cache_free(iommu_devinfo_cache, vaddr); |
| } |
| |
| static inline int domain_type_is_si(struct dmar_domain *domain) |
| { |
| return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY; |
| } |
| |
| static inline bool domain_use_first_level(struct dmar_domain *domain) |
| { |
| return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL; |
| } |
| |
| static inline int domain_pfn_supported(struct dmar_domain *domain, |
| unsigned long pfn) |
| { |
| int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; |
| |
| return !(addr_width < BITS_PER_LONG && pfn >> addr_width); |
| } |
| |
| static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw) |
| { |
| unsigned long sagaw; |
| int agaw = -1; |
| |
| sagaw = cap_sagaw(iommu->cap); |
| for (agaw = width_to_agaw(max_gaw); |
| agaw >= 0; agaw--) { |
| if (test_bit(agaw, &sagaw)) |
| break; |
| } |
| |
| return agaw; |
| } |
| |
| /* |
| * Calculate max SAGAW for each iommu. |
| */ |
| int iommu_calculate_max_sagaw(struct intel_iommu *iommu) |
| { |
| return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH); |
| } |
| |
| /* |
| * calculate agaw for each iommu. |
| * "SAGAW" may be different across iommus, use a default agaw, and |
| * get a supported less agaw for iommus that don't support the default agaw. |
| */ |
| int iommu_calculate_agaw(struct intel_iommu *iommu) |
| { |
| return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH); |
| } |
| |
| /* This functionin only returns single iommu in a domain */ |
| struct intel_iommu *domain_get_iommu(struct dmar_domain *domain) |
| { |
| int iommu_id; |
| |
| /* si_domain and vm domain should not get here. */ |
| if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA)) |
| return NULL; |
| |
| for_each_domain_iommu(iommu_id, domain) |
| break; |
| |
| if (iommu_id < 0 || iommu_id >= g_num_of_iommus) |
| return NULL; |
| |
| return g_iommus[iommu_id]; |
| } |
| |
| static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu) |
| { |
| return sm_supported(iommu) ? |
| ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap); |
| } |
| |
| static void domain_update_iommu_coherency(struct dmar_domain *domain) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| bool found = false; |
| int i; |
| |
| domain->iommu_coherency = 1; |
| |
| for_each_domain_iommu(i, domain) { |
| found = true; |
| if (!iommu_paging_structure_coherency(g_iommus[i])) { |
| domain->iommu_coherency = 0; |
| break; |
| } |
| } |
| if (found) |
| return; |
| |
| /* No hardware attached; use lowest common denominator */ |
| rcu_read_lock(); |
| for_each_active_iommu(iommu, drhd) { |
| if (!iommu_paging_structure_coherency(iommu)) { |
| domain->iommu_coherency = 0; |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| } |
| |
| static int domain_update_iommu_snooping(struct intel_iommu *skip) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| int ret = 1; |
| |
| rcu_read_lock(); |
| for_each_active_iommu(iommu, drhd) { |
| if (iommu != skip) { |
| if (!ecap_sc_support(iommu->ecap)) { |
| ret = 0; |
| break; |
| } |
| } |
| } |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static int domain_update_iommu_superpage(struct dmar_domain *domain, |
| struct intel_iommu *skip) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| int mask = 0x3; |
| |
| if (!intel_iommu_superpage) { |
| return 0; |
| } |
| |
| /* set iommu_superpage to the smallest common denominator */ |
| rcu_read_lock(); |
| for_each_active_iommu(iommu, drhd) { |
| if (iommu != skip) { |
| if (domain && domain_use_first_level(domain)) { |
| if (!cap_fl1gp_support(iommu->cap)) |
| mask = 0x1; |
| } else { |
| mask &= cap_super_page_val(iommu->cap); |
| } |
| |
| if (!mask) |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| |
| return fls(mask); |
| } |
| |
| /* Some capabilities may be different across iommus */ |
| static void domain_update_iommu_cap(struct dmar_domain *domain) |
| { |
| domain_update_iommu_coherency(domain); |
| domain->iommu_snooping = domain_update_iommu_snooping(NULL); |
| domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL); |
| } |
| |
| struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus, |
| u8 devfn, int alloc) |
| { |
| struct root_entry *root = &iommu->root_entry[bus]; |
| struct context_entry *context; |
| u64 *entry; |
| |
| entry = &root->lo; |
| if (sm_supported(iommu)) { |
| if (devfn >= 0x80) { |
| devfn -= 0x80; |
| entry = &root->hi; |
| } |
| devfn *= 2; |
| } |
| if (*entry & 1) |
| context = phys_to_virt(*entry & VTD_PAGE_MASK); |
| else { |
| unsigned long phy_addr; |
| if (!alloc) |
| return NULL; |
| |
| context = alloc_pgtable_page(iommu->node); |
| if (!context) |
| return NULL; |
| |
| __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); |
| phy_addr = virt_to_phys((void *)context); |
| *entry = phy_addr | 1; |
| __iommu_flush_cache(iommu, entry, sizeof(*entry)); |
| } |
| return &context[devfn]; |
| } |
| |
| static int iommu_dummy(struct device *dev) |
| { |
| return dev_iommu_priv_get(dev) == DUMMY_DEVICE_DOMAIN_INFO; |
| } |
| |
| static bool attach_deferred(struct device *dev) |
| { |
| return dev_iommu_priv_get(dev) == DEFER_DEVICE_DOMAIN_INFO; |
| } |
| |
| /** |
| * is_downstream_to_pci_bridge - test if a device belongs to the PCI |
| * sub-hierarchy of a candidate PCI-PCI bridge |
| * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy |
| * @bridge: the candidate PCI-PCI bridge |
| * |
| * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false. |
| */ |
| static bool |
| is_downstream_to_pci_bridge(struct device *dev, struct device *bridge) |
| { |
| struct pci_dev *pdev, *pbridge; |
| |
| if (!dev_is_pci(dev) || !dev_is_pci(bridge)) |
| return false; |
| |
| pdev = to_pci_dev(dev); |
| pbridge = to_pci_dev(bridge); |
| |
| if (pbridge->subordinate && |
| pbridge->subordinate->number <= pdev->bus->number && |
| pbridge->subordinate->busn_res.end >= pdev->bus->number) |
| return true; |
| |
| return false; |
| } |
| |
| struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn) |
| { |
| struct dmar_drhd_unit *drhd = NULL; |
| struct pci_dev *pdev = NULL; |
| struct intel_iommu *iommu; |
| struct device *tmp; |
| u16 segment = 0; |
| int i; |
| |
| if (!dev || iommu_dummy(dev)) |
| return NULL; |
| |
| if (dev_is_pci(dev)) { |
| struct pci_dev *pf_pdev; |
| |
| pdev = pci_real_dma_dev(to_pci_dev(dev)); |
| |
| /* VFs aren't listed in scope tables; we need to look up |
| * the PF instead to find the IOMMU. */ |
| pf_pdev = pci_physfn(pdev); |
| dev = &pf_pdev->dev; |
| segment = pci_domain_nr(pdev->bus); |
| } else if (has_acpi_companion(dev)) |
| dev = &ACPI_COMPANION(dev)->dev; |
| |
| rcu_read_lock(); |
| for_each_active_iommu(iommu, drhd) { |
| if (pdev && segment != drhd->segment) |
| continue; |
| |
| for_each_active_dev_scope(drhd->devices, |
| drhd->devices_cnt, i, tmp) { |
| if (tmp == dev) { |
| /* For a VF use its original BDF# not that of the PF |
| * which we used for the IOMMU lookup. Strictly speaking |
| * we could do this for all PCI devices; we only need to |
| * get the BDF# from the scope table for ACPI matches. */ |
| if (pdev && pdev->is_virtfn) |
| goto got_pdev; |
| |
| if (bus && devfn) { |
| *bus = drhd->devices[i].bus; |
| *devfn = drhd->devices[i].devfn; |
| } |
| goto out; |
| } |
| |
| if (is_downstream_to_pci_bridge(dev, tmp)) |
| goto got_pdev; |
| } |
| |
| if (pdev && drhd->include_all) { |
| got_pdev: |
| if (bus && devfn) { |
| *bus = pdev->bus->number; |
| *devfn = pdev->devfn; |
| } |
| goto out; |
| } |
| } |
| iommu = NULL; |
| out: |
| rcu_read_unlock(); |
| |
| return iommu; |
| } |
| |
| static void domain_flush_cache(struct dmar_domain *domain, |
| void *addr, int size) |
| { |
| if (!domain->iommu_coherency) |
| clflush_cache_range(addr, size); |
| } |
| |
| static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) |
| { |
| struct context_entry *context; |
| int ret = 0; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| context = iommu_context_addr(iommu, bus, devfn, 0); |
| if (context) |
| ret = context_present(context); |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| return ret; |
| } |
| |
| static void free_context_table(struct intel_iommu *iommu) |
| { |
| int i; |
| unsigned long flags; |
| struct context_entry *context; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| if (!iommu->root_entry) { |
| goto out; |
| } |
| for (i = 0; i < ROOT_ENTRY_NR; i++) { |
| context = iommu_context_addr(iommu, i, 0, 0); |
| if (context) |
| free_pgtable_page(context); |
| |
| if (!sm_supported(iommu)) |
| continue; |
| |
| context = iommu_context_addr(iommu, i, 0x80, 0); |
| if (context) |
| free_pgtable_page(context); |
| |
| } |
| free_pgtable_page(iommu->root_entry); |
| iommu->root_entry = NULL; |
| out: |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| } |
| |
| static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain, |
| unsigned long pfn, int *target_level) |
| { |
| struct dma_pte *parent, *pte; |
| int level = agaw_to_level(domain->agaw); |
| int offset; |
| |
| BUG_ON(!domain->pgd); |
| |
| if (!domain_pfn_supported(domain, pfn)) |
| /* Address beyond IOMMU's addressing capabilities. */ |
| return NULL; |
| |
| parent = domain->pgd; |
| |
| while (1) { |
| void *tmp_page; |
| |
| offset = pfn_level_offset(pfn, level); |
| pte = &parent[offset]; |
| if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte))) |
| break; |
| if (level == *target_level) |
| break; |
| |
| if (!dma_pte_present(pte)) { |
| uint64_t pteval; |
| |
| tmp_page = alloc_pgtable_page(domain->nid); |
| |
| if (!tmp_page) |
| return NULL; |
| |
| domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE); |
| pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE; |
| if (domain_use_first_level(domain)) |
| pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US; |
| if (cmpxchg64(&pte->val, 0ULL, pteval)) |
| /* Someone else set it while we were thinking; use theirs. */ |
| free_pgtable_page(tmp_page); |
| else |
| domain_flush_cache(domain, pte, sizeof(*pte)); |
| } |
| if (level == 1) |
| break; |
| |
| parent = phys_to_virt(dma_pte_addr(pte)); |
| level--; |
| } |
| |
| if (!*target_level) |
| *target_level = level; |
| |
| return pte; |
| } |
| |
| /* return address's pte at specific level */ |
| static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain, |
| unsigned long pfn, |
| int level, int *large_page) |
| { |
| struct dma_pte *parent, *pte; |
| int total = agaw_to_level(domain->agaw); |
| int offset; |
| |
| parent = domain->pgd; |
| while (level <= total) { |
| offset = pfn_level_offset(pfn, total); |
| pte = &parent[offset]; |
| if (level == total) |
| return pte; |
| |
| if (!dma_pte_present(pte)) { |
| *large_page = total; |
| break; |
| } |
| |
| if (dma_pte_superpage(pte)) { |
| *large_page = total; |
| return pte; |
| } |
| |
| parent = phys_to_virt(dma_pte_addr(pte)); |
| total--; |
| } |
| return NULL; |
| } |
| |
| /* clear last level pte, a tlb flush should be followed */ |
| static void dma_pte_clear_range(struct dmar_domain *domain, |
| unsigned long start_pfn, |
| unsigned long last_pfn) |
| { |
| unsigned int large_page; |
| struct dma_pte *first_pte, *pte; |
| |
| BUG_ON(!domain_pfn_supported(domain, start_pfn)); |
| BUG_ON(!domain_pfn_supported(domain, last_pfn)); |
| BUG_ON(start_pfn > last_pfn); |
| |
| /* we don't need lock here; nobody else touches the iova range */ |
| do { |
| large_page = 1; |
| first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page); |
| if (!pte) { |
| start_pfn = align_to_level(start_pfn + 1, large_page + 1); |
| continue; |
| } |
| do { |
| dma_clear_pte(pte); |
| start_pfn += lvl_to_nr_pages(large_page); |
| pte++; |
| } while (start_pfn <= last_pfn && !first_pte_in_page(pte)); |
| |
| domain_flush_cache(domain, first_pte, |
| (void *)pte - (void *)first_pte); |
| |
| } while (start_pfn && start_pfn <= last_pfn); |
| } |
| |
| static void dma_pte_free_level(struct dmar_domain *domain, int level, |
| int retain_level, struct dma_pte *pte, |
| unsigned long pfn, unsigned long start_pfn, |
| unsigned long last_pfn) |
| { |
| pfn = max(start_pfn, pfn); |
| pte = &pte[pfn_level_offset(pfn, level)]; |
| |
| do { |
| unsigned long level_pfn; |
| struct dma_pte *level_pte; |
| |
| if (!dma_pte_present(pte) || dma_pte_superpage(pte)) |
| goto next; |
| |
| level_pfn = pfn & level_mask(level); |
| level_pte = phys_to_virt(dma_pte_addr(pte)); |
| |
| if (level > 2) { |
| dma_pte_free_level(domain, level - 1, retain_level, |
| level_pte, level_pfn, start_pfn, |
| last_pfn); |
| } |
| |
| /* |
| * Free the page table if we're below the level we want to |
| * retain and the range covers the entire table. |
| */ |
| if (level < retain_level && !(start_pfn > level_pfn || |
| last_pfn < level_pfn + level_size(level) - 1)) { |
| dma_clear_pte(pte); |
| domain_flush_cache(domain, pte, sizeof(*pte)); |
| free_pgtable_page(level_pte); |
| } |
| next: |
| pfn += level_size(level); |
| } while (!first_pte_in_page(++pte) && pfn <= last_pfn); |
| } |
| |
| /* |
| * clear last level (leaf) ptes and free page table pages below the |
| * level we wish to keep intact. |
| */ |
| static void dma_pte_free_pagetable(struct dmar_domain *domain, |
| unsigned long start_pfn, |
| unsigned long last_pfn, |
| int retain_level) |
| { |
| BUG_ON(!domain_pfn_supported(domain, start_pfn)); |
| BUG_ON(!domain_pfn_supported(domain, last_pfn)); |
| BUG_ON(start_pfn > last_pfn); |
| |
| dma_pte_clear_range(domain, start_pfn, last_pfn); |
| |
| /* We don't need lock here; nobody else touches the iova range */ |
| dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level, |
| domain->pgd, 0, start_pfn, last_pfn); |
| |
| /* free pgd */ |
| if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { |
| free_pgtable_page(domain->pgd); |
| domain->pgd = NULL; |
| } |
| } |
| |
| /* When a page at a given level is being unlinked from its parent, we don't |
| need to *modify* it at all. All we need to do is make a list of all the |
| pages which can be freed just as soon as we've flushed the IOTLB and we |
| know the hardware page-walk will no longer touch them. |
| The 'pte' argument is the *parent* PTE, pointing to the page that is to |
| be freed. */ |
| static struct page *dma_pte_list_pagetables(struct dmar_domain *domain, |
| int level, struct dma_pte *pte, |
| struct page *freelist) |
| { |
| struct page *pg; |
| |
| pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT); |
| pg->freelist = freelist; |
| freelist = pg; |
| |
| if (level == 1) |
| return freelist; |
| |
| pte = page_address(pg); |
| do { |
| if (dma_pte_present(pte) && !dma_pte_superpage(pte)) |
| freelist = dma_pte_list_pagetables(domain, level - 1, |
| pte, freelist); |
| pte++; |
| } while (!first_pte_in_page(pte)); |
| |
| return freelist; |
| } |
| |
| static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level, |
| struct dma_pte *pte, unsigned long pfn, |
| unsigned long start_pfn, |
| unsigned long last_pfn, |
| struct page *freelist) |
| { |
| struct dma_pte *first_pte = NULL, *last_pte = NULL; |
| |
| pfn = max(start_pfn, pfn); |
| pte = &pte[pfn_level_offset(pfn, level)]; |
| |
| do { |
| unsigned long level_pfn; |
| |
| if (!dma_pte_present(pte)) |
| goto next; |
| |
| level_pfn = pfn & level_mask(level); |
| |
| /* If range covers entire pagetable, free it */ |
| if (start_pfn <= level_pfn && |
| last_pfn >= level_pfn + level_size(level) - 1) { |
| /* These suborbinate page tables are going away entirely. Don't |
| bother to clear them; we're just going to *free* them. */ |
| if (level > 1 && !dma_pte_superpage(pte)) |
| freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist); |
| |
| dma_clear_pte(pte); |
| if (!first_pte) |
| first_pte = pte; |
| last_pte = pte; |
| } else if (level > 1) { |
| /* Recurse down into a level that isn't *entirely* obsolete */ |
| freelist = dma_pte_clear_level(domain, level - 1, |
| phys_to_virt(dma_pte_addr(pte)), |
| level_pfn, start_pfn, last_pfn, |
| freelist); |
| } |
| next: |
| pfn += level_size(level); |
| } while (!first_pte_in_page(++pte) && pfn <= last_pfn); |
| |
| if (first_pte) |
| domain_flush_cache(domain, first_pte, |
| (void *)++last_pte - (void *)first_pte); |
| |
| return freelist; |
| } |
| |
| /* We can't just free the pages because the IOMMU may still be walking |
| the page tables, and may have cached the intermediate levels. The |
| pages can only be freed after the IOTLB flush has been done. */ |
| static struct page *domain_unmap(struct dmar_domain *domain, |
| unsigned long start_pfn, |
| unsigned long last_pfn) |
| { |
| struct page *freelist; |
| |
| BUG_ON(!domain_pfn_supported(domain, start_pfn)); |
| BUG_ON(!domain_pfn_supported(domain, last_pfn)); |
| BUG_ON(start_pfn > last_pfn); |
| |
| /* we don't need lock here; nobody else touches the iova range */ |
| freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw), |
| domain->pgd, 0, start_pfn, last_pfn, NULL); |
| |
| /* free pgd */ |
| if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { |
| struct page *pgd_page = virt_to_page(domain->pgd); |
| pgd_page->freelist = freelist; |
| freelist = pgd_page; |
| |
| domain->pgd = NULL; |
| } |
| |
| return freelist; |
| } |
| |
| static void dma_free_pagelist(struct page *freelist) |
| { |
| struct page *pg; |
| |
| while ((pg = freelist)) { |
| freelist = pg->freelist; |
| free_pgtable_page(page_address(pg)); |
| } |
| } |
| |
| static void iova_entry_free(unsigned long data) |
| { |
| struct page *freelist = (struct page *)data; |
| |
| dma_free_pagelist(freelist); |
| } |
| |
| /* iommu handling */ |
| static int iommu_alloc_root_entry(struct intel_iommu *iommu) |
| { |
| struct root_entry *root; |
| unsigned long flags; |
| |
| root = (struct root_entry *)alloc_pgtable_page(iommu->node); |
| if (!root) { |
| pr_err("Allocating root entry for %s failed\n", |
| iommu->name); |
| return -ENOMEM; |
| } |
| |
| __iommu_flush_cache(iommu, root, ROOT_SIZE); |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| iommu->root_entry = root; |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| return 0; |
| } |
| |
| static void iommu_set_root_entry(struct intel_iommu *iommu) |
| { |
| u64 addr; |
| u32 sts; |
| unsigned long flag; |
| |
| addr = virt_to_phys(iommu->root_entry); |
| if (sm_supported(iommu)) |
| addr |= DMA_RTADDR_SMT; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr); |
| |
| writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (sts & DMA_GSTS_RTPS), sts); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| void iommu_flush_write_buffer(struct intel_iommu *iommu) |
| { |
| u32 val; |
| unsigned long flag; |
| |
| if (!rwbf_quirk && !cap_rwbf(iommu->cap)) |
| return; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (!(val & DMA_GSTS_WBFS)), val); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| /* return value determine if we need a write buffer flush */ |
| static void __iommu_flush_context(struct intel_iommu *iommu, |
| u16 did, u16 source_id, u8 function_mask, |
| u64 type) |
| { |
| u64 val = 0; |
| unsigned long flag; |
| |
| switch (type) { |
| case DMA_CCMD_GLOBAL_INVL: |
| val = DMA_CCMD_GLOBAL_INVL; |
| break; |
| case DMA_CCMD_DOMAIN_INVL: |
| val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); |
| break; |
| case DMA_CCMD_DEVICE_INVL: |
| val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) |
| | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); |
| break; |
| default: |
| BUG(); |
| } |
| val |= DMA_CCMD_ICC; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, |
| dmar_readq, (!(val & DMA_CCMD_ICC)), val); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| /* return value determine if we need a write buffer flush */ |
| static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, |
| u64 addr, unsigned int size_order, u64 type) |
| { |
| int tlb_offset = ecap_iotlb_offset(iommu->ecap); |
| u64 val = 0, val_iva = 0; |
| unsigned long flag; |
| |
| switch (type) { |
| case DMA_TLB_GLOBAL_FLUSH: |
| /* global flush doesn't need set IVA_REG */ |
| val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; |
| break; |
| case DMA_TLB_DSI_FLUSH: |
| val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); |
| break; |
| case DMA_TLB_PSI_FLUSH: |
| val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); |
| /* IH bit is passed in as part of address */ |
| val_iva = size_order | addr; |
| break; |
| default: |
| BUG(); |
| } |
| /* Note: set drain read/write */ |
| #if 0 |
| /* |
| * This is probably to be super secure.. Looks like we can |
| * ignore it without any impact. |
| */ |
| if (cap_read_drain(iommu->cap)) |
| val |= DMA_TLB_READ_DRAIN; |
| #endif |
| if (cap_write_drain(iommu->cap)) |
| val |= DMA_TLB_WRITE_DRAIN; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| /* Note: Only uses first TLB reg currently */ |
| if (val_iva) |
| dmar_writeq(iommu->reg + tlb_offset, val_iva); |
| dmar_writeq(iommu->reg + tlb_offset + 8, val); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, tlb_offset + 8, |
| dmar_readq, (!(val & DMA_TLB_IVT)), val); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| |
| /* check IOTLB invalidation granularity */ |
| if (DMA_TLB_IAIG(val) == 0) |
| pr_err("Flush IOTLB failed\n"); |
| if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) |
| pr_debug("TLB flush request %Lx, actual %Lx\n", |
| (unsigned long long)DMA_TLB_IIRG(type), |
| (unsigned long long)DMA_TLB_IAIG(val)); |
| } |
| |
| static struct device_domain_info * |
| iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu, |
| u8 bus, u8 devfn) |
| { |
| struct device_domain_info *info; |
| |
| assert_spin_locked(&device_domain_lock); |
| |
| if (!iommu->qi) |
| return NULL; |
| |
| list_for_each_entry(info, &domain->devices, link) |
| if (info->iommu == iommu && info->bus == bus && |
| info->devfn == devfn) { |
| if (info->ats_supported && info->dev) |
| return info; |
| break; |
| } |
| |
| return NULL; |
| } |
| |
| static void domain_update_iotlb(struct dmar_domain *domain) |
| { |
| struct device_domain_info *info; |
| bool has_iotlb_device = false; |
| |
| assert_spin_locked(&device_domain_lock); |
| |
| list_for_each_entry(info, &domain->devices, link) { |
| struct pci_dev *pdev; |
| |
| if (!info->dev || !dev_is_pci(info->dev)) |
| continue; |
| |
| pdev = to_pci_dev(info->dev); |
| if (pdev->ats_enabled) { |
| has_iotlb_device = true; |
| break; |
| } |
| } |
| |
| domain->has_iotlb_device = has_iotlb_device; |
| } |
| |
| static void iommu_enable_dev_iotlb(struct device_domain_info *info) |
| { |
| struct pci_dev *pdev; |
| |
| assert_spin_locked(&device_domain_lock); |
| |
| if (!info || !dev_is_pci(info->dev)) |
| return; |
| |
| pdev = to_pci_dev(info->dev); |
| /* For IOMMU that supports device IOTLB throttling (DIT), we assign |
| * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge |
| * queue depth at PF level. If DIT is not set, PFSID will be treated as |
| * reserved, which should be set to 0. |
| */ |
| if (!ecap_dit(info->iommu->ecap)) |
| info->pfsid = 0; |
| else { |
| struct pci_dev *pf_pdev; |
| |
| /* pdev will be returned if device is not a vf */ |
| pf_pdev = pci_physfn(pdev); |
| info->pfsid = pci_dev_id(pf_pdev); |
| } |
| |
| #ifdef CONFIG_INTEL_IOMMU_SVM |
| /* The PCIe spec, in its wisdom, declares that the behaviour of |
| the device if you enable PASID support after ATS support is |
| undefined. So always enable PASID support on devices which |
| have it, even if we can't yet know if we're ever going to |
| use it. */ |
| if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1)) |
| info->pasid_enabled = 1; |
| |
| if (info->pri_supported && |
| (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1) && |
| !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) |
| info->pri_enabled = 1; |
| #endif |
| if (info->ats_supported && pci_ats_page_aligned(pdev) && |
| !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) { |
| info->ats_enabled = 1; |
| domain_update_iotlb(info->domain); |
| info->ats_qdep = pci_ats_queue_depth(pdev); |
| } |
| } |
| |
| static void iommu_disable_dev_iotlb(struct device_domain_info *info) |
| { |
| struct pci_dev *pdev; |
| |
| assert_spin_locked(&device_domain_lock); |
| |
| if (!dev_is_pci(info->dev)) |
| return; |
| |
| pdev = to_pci_dev(info->dev); |
| |
| if (info->ats_enabled) { |
| pci_disable_ats(pdev); |
| info->ats_enabled = 0; |
| domain_update_iotlb(info->domain); |
| } |
| #ifdef CONFIG_INTEL_IOMMU_SVM |
| if (info->pri_enabled) { |
| pci_disable_pri(pdev); |
| info->pri_enabled = 0; |
| } |
| if (info->pasid_enabled) { |
| pci_disable_pasid(pdev); |
| info->pasid_enabled = 0; |
| } |
| #endif |
| } |
| |
| static void iommu_flush_dev_iotlb(struct dmar_domain *domain, |
| u64 addr, unsigned mask) |
| { |
| u16 sid, qdep; |
| unsigned long flags; |
| struct device_domain_info *info; |
| |
| if (!domain->has_iotlb_device) |
| return; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| list_for_each_entry(info, &domain->devices, link) { |
| if (!info->ats_enabled) |
| continue; |
| |
| sid = info->bus << 8 | info->devfn; |
| qdep = info->ats_qdep; |
| qi_flush_dev_iotlb(info->iommu, sid, info->pfsid, |
| qdep, addr, mask); |
| } |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| } |
| |
| static void domain_flush_piotlb(struct intel_iommu *iommu, |
| struct dmar_domain *domain, |
| u64 addr, unsigned long npages, bool ih) |
| { |
| u16 did = domain->iommu_did[iommu->seq_id]; |
| |
| if (domain->default_pasid) |
| qi_flush_piotlb(iommu, did, domain->default_pasid, |
| addr, npages, ih); |
| |
| if (!list_empty(&domain->devices)) |
| qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih); |
| } |
| |
| static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, |
| struct dmar_domain *domain, |
| unsigned long pfn, unsigned int pages, |
| int ih, int map) |
| { |
| unsigned int mask = ilog2(__roundup_pow_of_two(pages)); |
| uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT; |
| u16 did = domain->iommu_did[iommu->seq_id]; |
| |
| BUG_ON(pages == 0); |
| |
| if (ih) |
| ih = 1 << 6; |
| |
| if (domain_use_first_level(domain)) { |
| domain_flush_piotlb(iommu, domain, addr, pages, ih); |
| } else { |
| /* |
| * Fallback to domain selective flush if no PSI support or |
| * the size is too big. PSI requires page size to be 2 ^ x, |
| * and the base address is naturally aligned to the size. |
| */ |
| if (!cap_pgsel_inv(iommu->cap) || |
| mask > cap_max_amask_val(iommu->cap)) |
| iommu->flush.flush_iotlb(iommu, did, 0, 0, |
| DMA_TLB_DSI_FLUSH); |
| else |
| iommu->flush.flush_iotlb(iommu, did, addr | ih, mask, |
| DMA_TLB_PSI_FLUSH); |
| } |
| |
| /* |
| * In caching mode, changes of pages from non-present to present require |
| * flush. However, device IOTLB doesn't need to be flushed in this case. |
| */ |
| if (!cap_caching_mode(iommu->cap) || !map) |
| iommu_flush_dev_iotlb(domain, addr, mask); |
| } |
| |
| /* Notification for newly created mappings */ |
| static inline void __mapping_notify_one(struct intel_iommu *iommu, |
| struct dmar_domain *domain, |
| unsigned long pfn, unsigned int pages) |
| { |
| /* |
| * It's a non-present to present mapping. Only flush if caching mode |
| * and second level. |
| */ |
| if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain)) |
| iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1); |
| else |
| iommu_flush_write_buffer(iommu); |
| } |
| |
| static void iommu_flush_iova(struct iova_domain *iovad) |
| { |
| struct dmar_domain *domain; |
| int idx; |
| |
| domain = container_of(iovad, struct dmar_domain, iovad); |
| |
| for_each_domain_iommu(idx, domain) { |
| struct intel_iommu *iommu = g_iommus[idx]; |
| u16 did = domain->iommu_did[iommu->seq_id]; |
| |
| if (domain_use_first_level(domain)) |
| domain_flush_piotlb(iommu, domain, 0, -1, 0); |
| else |
| iommu->flush.flush_iotlb(iommu, did, 0, 0, |
| DMA_TLB_DSI_FLUSH); |
| |
| if (!cap_caching_mode(iommu->cap)) |
| iommu_flush_dev_iotlb(get_iommu_domain(iommu, did), |
| 0, MAX_AGAW_PFN_WIDTH); |
| } |
| } |
| |
| static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) |
| { |
| u32 pmen; |
| unsigned long flags; |
| |
| if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap)) |
| return; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flags); |
| pmen = readl(iommu->reg + DMAR_PMEN_REG); |
| pmen &= ~DMA_PMEN_EPM; |
| writel(pmen, iommu->reg + DMAR_PMEN_REG); |
| |
| /* wait for the protected region status bit to clear */ |
| IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, |
| readl, !(pmen & DMA_PMEN_PRS), pmen); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
| } |
| |
| static void iommu_enable_translation(struct intel_iommu *iommu) |
| { |
| u32 sts; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flags); |
| iommu->gcmd |= DMA_GCMD_TE; |
| writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (sts & DMA_GSTS_TES), sts); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
| } |
| |
| static void iommu_disable_translation(struct intel_iommu *iommu) |
| { |
| u32 sts; |
| unsigned long flag; |
| |
| if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated && |
| (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap))) |
| return; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| iommu->gcmd &= ~DMA_GCMD_TE; |
| writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (!(sts & DMA_GSTS_TES)), sts); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| static int iommu_init_domains(struct intel_iommu *iommu) |
| { |
| u32 ndomains, nlongs; |
| size_t size; |
| |
| ndomains = cap_ndoms(iommu->cap); |
| pr_debug("%s: Number of Domains supported <%d>\n", |
| iommu->name, ndomains); |
| nlongs = BITS_TO_LONGS(ndomains); |
| |
| spin_lock_init(&iommu->lock); |
| |
| iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); |
| if (!iommu->domain_ids) { |
| pr_err("%s: Allocating domain id array failed\n", |
| iommu->name); |
| return -ENOMEM; |
| } |
| |
| size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **); |
| iommu->domains = kzalloc(size, GFP_KERNEL); |
| |
| if (iommu->domains) { |
| size = 256 * sizeof(struct dmar_domain *); |
| iommu->domains[0] = kzalloc(size, GFP_KERNEL); |
| } |
| |
| if (!iommu->domains || !iommu->domains[0]) { |
| pr_err("%s: Allocating domain array failed\n", |
| iommu->name); |
| kfree(iommu->domain_ids); |
| kfree(iommu->domains); |
| iommu->domain_ids = NULL; |
| iommu->domains = NULL; |
| return -ENOMEM; |
| } |
| |
| /* |
| * If Caching mode is set, then invalid translations are tagged |
| * with domain-id 0, hence we need to pre-allocate it. We also |
| * use domain-id 0 as a marker for non-allocated domain-id, so |
| * make sure it is not used for a real domain. |
| */ |
| set_bit(0, iommu->domain_ids); |
| |
| /* |
| * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid |
| * entry for first-level or pass-through translation modes should |
| * be programmed with a domain id different from those used for |
| * second-level or nested translation. We reserve a domain id for |
| * this purpose. |
| */ |
| if (sm_supported(iommu)) |
| set_bit(FLPT_DEFAULT_DID, iommu->domain_ids); |
| |
| return 0; |
| } |
| |
| static void disable_dmar_iommu(struct intel_iommu *iommu) |
| { |
| struct device_domain_info *info, *tmp; |
| unsigned long flags; |
| |
| if (!iommu->domains || !iommu->domain_ids) |
| return; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| list_for_each_entry_safe(info, tmp, &device_domain_list, global) { |
| if (info->iommu != iommu) |
| continue; |
| |
| if (!info->dev || !info->domain) |
| continue; |
| |
| __dmar_remove_one_dev_info(info); |
| } |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| if (iommu->gcmd & DMA_GCMD_TE) |
| iommu_disable_translation(iommu); |
| } |
| |
| static void free_dmar_iommu(struct intel_iommu *iommu) |
| { |
| if ((iommu->domains) && (iommu->domain_ids)) { |
| int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8; |
| int i; |
| |
| for (i = 0; i < elems; i++) |
| kfree(iommu->domains[i]); |
| kfree(iommu->domains); |
| kfree(iommu->domain_ids); |
| iommu->domains = NULL; |
| iommu->domain_ids = NULL; |
| } |
| |
| g_iommus[iommu->seq_id] = NULL; |
| |
| /* free context mapping */ |
| free_context_table(iommu); |
| |
| #ifdef CONFIG_INTEL_IOMMU_SVM |
| if (pasid_supported(iommu)) { |
| if (ecap_prs(iommu->ecap)) |
| intel_svm_finish_prq(iommu); |
| } |
| if (ecap_vcs(iommu->ecap) && vccap_pasid(iommu->vccap)) |
| ioasid_unregister_allocator(&iommu->pasid_allocator); |
| |
| #endif |
| } |
| |
| /* |
| * Check and return whether first level is used by default for |
| * DMA translation. |
| */ |
| static bool first_level_by_default(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| static int first_level_support = -1; |
| |
| if (likely(first_level_support != -1)) |
| return first_level_support; |
| |
| first_level_support = 1; |
| |
| rcu_read_lock(); |
| for_each_active_iommu(iommu, drhd) { |
| if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) { |
| first_level_support = 0; |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| |
| return first_level_support; |
| } |
| |
| static struct dmar_domain *alloc_domain(int flags) |
| { |
| struct dmar_domain *domain; |
| |
| domain = alloc_domain_mem(); |
| if (!domain) |
| return NULL; |
| |
| memset(domain, 0, sizeof(*domain)); |
| domain->nid = NUMA_NO_NODE; |
| domain->flags = flags; |
| if (first_level_by_default()) |
| domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL; |
| domain->has_iotlb_device = false; |
| INIT_LIST_HEAD(&domain->devices); |
| |
| return domain; |
| } |
| |
| /* Must be called with iommu->lock */ |
| static int domain_attach_iommu(struct dmar_domain *domain, |
| struct intel_iommu *iommu) |
| { |
| unsigned long ndomains; |
| int num; |
| |
| assert_spin_locked(&device_domain_lock); |
| assert_spin_locked(&iommu->lock); |
| |
| domain->iommu_refcnt[iommu->seq_id] += 1; |
| domain->iommu_count += 1; |
| if (domain->iommu_refcnt[iommu->seq_id] == 1) { |
| ndomains = cap_ndoms(iommu->cap); |
| num = find_first_zero_bit(iommu->domain_ids, ndomains); |
| |
| if (num >= ndomains) { |
| pr_err("%s: No free domain ids\n", iommu->name); |
| domain->iommu_refcnt[iommu->seq_id] -= 1; |
| domain->iommu_count -= 1; |
| return -ENOSPC; |
| } |
| |
| set_bit(num, iommu->domain_ids); |
| set_iommu_domain(iommu, num, domain); |
| |
| domain->iommu_did[iommu->seq_id] = num; |
| domain->nid = iommu->node; |
| |
| domain_update_iommu_cap(domain); |
| } |
| |
| return 0; |
| } |
| |
| static int domain_detach_iommu(struct dmar_domain *domain, |
| struct intel_iommu *iommu) |
| { |
| int num, count; |
| |
| assert_spin_locked(&device_domain_lock); |
| assert_spin_locked(&iommu->lock); |
| |
| domain->iommu_refcnt[iommu->seq_id] -= 1; |
| count = --domain->iommu_count; |
| if (domain->iommu_refcnt[iommu->seq_id] == 0) { |
| num = domain->iommu_did[iommu->seq_id]; |
| clear_bit(num, iommu->domain_ids); |
| set_iommu_domain(iommu, num, NULL); |
| |
| domain_update_iommu_cap(domain); |
| domain->iommu_did[iommu->seq_id] = 0; |
| } |
| |
| return count; |
| } |
| |
| static struct iova_domain reserved_iova_list; |
| static struct lock_class_key reserved_rbtree_key; |
| |
| static int dmar_init_reserved_ranges(void) |
| { |
| struct pci_dev *pdev = NULL; |
| struct iova *iova; |
| int i; |
| |
| init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN); |
| |
| lockdep_set_class(&reserved_iova_list.iova_rbtree_lock, |
| &reserved_rbtree_key); |
| |
| /* IOAPIC ranges shouldn't be accessed by DMA */ |
| iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START), |
| IOVA_PFN(IOAPIC_RANGE_END)); |
| if (!iova) { |
| pr_err("Reserve IOAPIC range failed\n"); |
| return -ENODEV; |
| } |
| |
| /* Reserve all PCI MMIO to avoid peer-to-peer access */ |
| for_each_pci_dev(pdev) { |
| struct resource *r; |
| |
| for (i = 0; i < PCI_NUM_RESOURCES; i++) { |
| r = &pdev->resource[i]; |
| if (!r->flags || !(r->flags & IORESOURCE_MEM)) |
| continue; |
| iova = reserve_iova(&reserved_iova_list, |
| IOVA_PFN(r->start), |
| IOVA_PFN(r->end)); |
| if (!iova) { |
| pci_err(pdev, "Reserve iova for %pR failed\n", r); |
| return -ENODEV; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static inline int guestwidth_to_adjustwidth(int gaw) |
| { |
| int agaw; |
| int r = (gaw - 12) % 9; |
| |
| if (r == 0) |
| agaw = gaw; |
| else |
| agaw = gaw + 9 - r; |
| if (agaw > 64) |
| agaw = 64; |
| return agaw; |
| } |
| |
| static void domain_exit(struct dmar_domain *domain) |
| { |
| |
| /* Remove associated devices and clear attached or cached domains */ |
| domain_remove_dev_info(domain); |
| |
| /* destroy iovas */ |
| if (domain->domain.type == IOMMU_DOMAIN_DMA) |
| put_iova_domain(&domain->iovad); |
| |
| if (domain->pgd) { |
| struct page *freelist; |
| |
| freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw)); |
| dma_free_pagelist(freelist); |
| } |
| |
| free_domain_mem(domain); |
| } |
| |
| /* |
| * Get the PASID directory size for scalable mode context entry. |
| * Value of X in the PDTS field of a scalable mode context entry |
| * indicates PASID directory with 2^(X + 7) entries. |
| */ |
| static inline unsigned long context_get_sm_pds(struct pasid_table *table) |
| { |
| int pds, max_pde; |
| |
| max_pde = table->max_pasid >> PASID_PDE_SHIFT; |
| pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS); |
| if (pds < 7) |
| return 0; |
| |
| return pds - 7; |
| } |
| |
| /* |
| * Set the RID_PASID field of a scalable mode context entry. The |
| * IOMMU hardware will use the PASID value set in this field for |
| * DMA translations of DMA requests without PASID. |
| */ |
| static inline void |
| context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid) |
| { |
| context->hi |= pasid & ((1 << 20) - 1); |
| } |
| |
| /* |
| * Set the DTE(Device-TLB Enable) field of a scalable mode context |
| * entry. |
| */ |
| static inline void context_set_sm_dte(struct context_entry *context) |
| { |
| context->lo |= (1 << 2); |
| } |
| |
| /* |
| * Set the PRE(Page Request Enable) field of a scalable mode context |
| * entry. |
| */ |
| static inline void context_set_sm_pre(struct context_entry *context) |
| { |
| context->lo |= (1 << 4); |
| } |
| |
| /* Convert value to context PASID directory size field coding. */ |
| #define context_pdts(pds) (((pds) & 0x7) << 9) |
| |
| static int domain_context_mapping_one(struct dmar_domain *domain, |
| struct intel_iommu *iommu, |
| struct pasid_table *table, |
| u8 bus, u8 devfn) |
| { |
| u16 did = domain->iommu_did[iommu->seq_id]; |
| int translation = CONTEXT_TT_MULTI_LEVEL; |
| struct device_domain_info *info = NULL; |
| struct context_entry *context; |
| unsigned long flags; |
| int ret; |
| |
| WARN_ON(did == 0); |
| |
| if (hw_pass_through && domain_type_is_si(domain)) |
| translation = CONTEXT_TT_PASS_THROUGH; |
| |
| pr_debug("Set context mapping for %02x:%02x.%d\n", |
| bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); |
| |
| BUG_ON(!domain->pgd); |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| spin_lock(&iommu->lock); |
| |
| ret = -ENOMEM; |
| context = iommu_context_addr(iommu, bus, devfn, 1); |
| if (!context) |
| goto out_unlock; |
| |
| ret = 0; |
| if (context_present(context)) |
| goto out_unlock; |
| |
| /* |
| * For kdump cases, old valid entries may be cached due to the |
| * in-flight DMA and copied pgtable, but there is no unmapping |
| * behaviour for them, thus we need an explicit cache flush for |
| * the newly-mapped device. For kdump, at this point, the device |
| * is supposed to finish reset at its driver probe stage, so no |
| * in-flight DMA will exist, and we don't need to worry anymore |
| * hereafter. |
| */ |
| if (context_copied(context)) { |
| u16 did_old = context_domain_id(context); |
| |
| if (did_old < cap_ndoms(iommu->cap)) { |
| iommu->flush.flush_context(iommu, did_old, |
| (((u16)bus) << 8) | devfn, |
| DMA_CCMD_MASK_NOBIT, |
| DMA_CCMD_DEVICE_INVL); |
| iommu->flush.flush_iotlb(iommu, did_old, 0, 0, |
| DMA_TLB_DSI_FLUSH); |
| } |
| } |
| |
| context_clear_entry(context); |
| |
| if (sm_supported(iommu)) { |
| unsigned long pds; |
| |
| WARN_ON(!table); |
| |
| /* Setup the PASID DIR pointer: */ |
| pds = context_get_sm_pds(table); |
| context->lo = (u64)virt_to_phys(table->table) | |
| context_pdts(pds); |
| |
| /* Setup the RID_PASID field: */ |
| context_set_sm_rid2pasid(context, PASID_RID2PASID); |
| |
| /* |
| * Setup the Device-TLB enable bit and Page request |
| * Enable bit: |
| */ |
| info = iommu_support_dev_iotlb(domain, iommu, bus, devfn); |
| if (info && info->ats_supported) |
| context_set_sm_dte(context); |
| if (info && info->pri_supported) |
| context_set_sm_pre(context); |
| } else { |
| struct dma_pte *pgd = domain->pgd; |
| int agaw; |
| |
| context_set_domain_id(context, did); |
| |
| if (translation != CONTEXT_TT_PASS_THROUGH) { |
| /* |
| * Skip top levels of page tables for iommu which has |
| * less agaw than default. Unnecessary for PT mode. |
| */ |
| for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { |
| ret = -ENOMEM; |
| pgd = phys_to_virt(dma_pte_addr(pgd)); |
| if (!dma_pte_present(pgd)) |
| goto out_unlock; |
| } |
| |
| info = iommu_support_dev_iotlb(domain, iommu, bus, devfn); |
| if (info && info->ats_supported) |
| translation = CONTEXT_TT_DEV_IOTLB; |
| else |
| translation = CONTEXT_TT_MULTI_LEVEL; |
| |
| context_set_address_root(context, virt_to_phys(pgd)); |
| context_set_address_width(context, agaw); |
| } else { |
| /* |
| * In pass through mode, AW must be programmed to |
| * indicate the largest AGAW value supported by |
| * hardware. And ASR is ignored by hardware. |
| */ |
| context_set_address_width(context, iommu->msagaw); |
| } |
| |
| context_set_translation_type(context, translation); |
| } |
| |
| context_set_fault_enable(context); |
| context_set_present(context); |
| if (!ecap_coherent(iommu->ecap)) |
| clflush_cache_range(context, sizeof(*context)); |
| |
| /* |
| * It's a non-present to present mapping. If hardware doesn't cache |
| * non-present entry we only need to flush the write-buffer. If the |
| * _does_ cache non-present entries, then it does so in the special |
| * domain #0, which we have to flush: |
| */ |
| if (cap_caching_mode(iommu->cap)) { |
| iommu->flush.flush_context(iommu, 0, |
| (((u16)bus) << 8) | devfn, |
| DMA_CCMD_MASK_NOBIT, |
| DMA_CCMD_DEVICE_INVL); |
| iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH); |
| } else { |
| iommu_flush_write_buffer(iommu); |
| } |
| iommu_enable_dev_iotlb(info); |
| |
| ret = 0; |
| |
| out_unlock: |
| spin_unlock(&iommu->lock); |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| return ret; |
| } |
| |
| struct domain_context_mapping_data { |
| struct dmar_domain *domain; |
| struct intel_iommu *iommu; |
| struct pasid_table *table; |
| }; |
| |
| static int domain_context_mapping_cb(struct pci_dev *pdev, |
| u16 alias, void *opaque) |
| { |
| struct domain_context_mapping_data *data = opaque; |
| |
| return domain_context_mapping_one(data->domain, data->iommu, |
| data->table, PCI_BUS_NUM(alias), |
| alias & 0xff); |
| } |
| |
| static int |
| domain_context_mapping(struct dmar_domain *domain, struct device *dev) |
| { |
| struct domain_context_mapping_data data; |
| struct pasid_table *table; |
| struct intel_iommu *iommu; |
| u8 bus, devfn; |
| |
| iommu = device_to_iommu(dev, &bus, &devfn); |
| if (!iommu) |
| return -ENODEV; |
| |
| table = intel_pasid_get_table(dev); |
| |
| if (!dev_is_pci(dev)) |
| return domain_context_mapping_one(domain, iommu, table, |
| bus, devfn); |
| |
| data.domain = domain; |
| data.iommu = iommu; |
| data.table = table; |
| |
| return pci_for_each_dma_alias(to_pci_dev(dev), |
| &domain_context_mapping_cb, &data); |
| } |
| |
| static int domain_context_mapped_cb(struct pci_dev *pdev, |
| u16 alias, void *opaque) |
| { |
| struct intel_iommu *iommu = opaque; |
| |
| return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff); |
| } |
| |
| static int domain_context_mapped(struct device *dev) |
| { |
| struct intel_iommu *iommu; |
| u8 bus, devfn; |
| |
| iommu = device_to_iommu(dev, &bus, &devfn); |
| if (!iommu) |
| return -ENODEV; |
| |
| if (!dev_is_pci(dev)) |
| return device_context_mapped(iommu, bus, devfn); |
| |
| return !pci_for_each_dma_alias(to_pci_dev(dev), |
| domain_context_mapped_cb, iommu); |
| } |
| |
| /* Returns a number of VTD pages, but aligned to MM page size */ |
| static inline unsigned long aligned_nrpages(unsigned long host_addr, |
| size_t size) |
| { |
| host_addr &= ~PAGE_MASK; |
| return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT; |
| } |
| |
| /* Return largest possible superpage level for a given mapping */ |
| static inline int hardware_largepage_caps(struct dmar_domain *domain, |
| unsigned long iov_pfn, |
| unsigned long phy_pfn, |
| unsigned long pages) |
| { |
| int support, level = 1; |
| unsigned long pfnmerge; |
| |
| support = domain->iommu_superpage; |
| |
| /* To use a large page, the virtual *and* physical addresses |
| must be aligned to 2MiB/1GiB/etc. Lower bits set in either |
| of them will mean we have to use smaller pages. So just |
| merge them and check both at once. */ |
| pfnmerge = iov_pfn | phy_pfn; |
| |
| while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) { |
| pages >>= VTD_STRIDE_SHIFT; |
| if (!pages) |
| break; |
| pfnmerge >>= VTD_STRIDE_SHIFT; |
| level++; |
| support--; |
| } |
| return level; |
| } |
| |
| static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, |
| struct scatterlist *sg, unsigned long phys_pfn, |
| unsigned long nr_pages, int prot) |
| { |
| struct dma_pte *first_pte = NULL, *pte = NULL; |
| phys_addr_t pteval; |
| unsigned long sg_res = 0; |
| unsigned int largepage_lvl = 0; |
| unsigned long lvl_pages = 0; |
| u64 attr; |
| |
| BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1)); |
| |
| if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) |
| return -EINVAL; |
| |
| attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP); |
| if (domain_use_first_level(domain)) |
| attr |= DMA_FL_PTE_PRESENT | DMA_FL_PTE_XD | DMA_FL_PTE_US; |
| |
| if (!sg) { |
| sg_res = nr_pages; |
| pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr; |
| } |
| |
| while (nr_pages > 0) { |
| uint64_t tmp; |
| |
| if (!sg_res) { |
| unsigned int pgoff = sg->offset & ~PAGE_MASK; |
| |
| sg_res = aligned_nrpages(sg->offset, sg->length); |
| sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff; |
| sg->dma_length = sg->length; |
| pteval = (sg_phys(sg) - pgoff) | attr; |
| phys_pfn = pteval >> VTD_PAGE_SHIFT; |
| } |
| |
| if (!pte) { |
| largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res); |
| |
| first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl); |
| if (!pte) |
| return -ENOMEM; |
| /* It is large page*/ |
| if (largepage_lvl > 1) { |
| unsigned long nr_superpages, end_pfn; |
| |
| pteval |= DMA_PTE_LARGE_PAGE; |
| lvl_pages = lvl_to_nr_pages(largepage_lvl); |
| |
| nr_superpages = sg_res / lvl_pages; |
| end_pfn = iov_pfn + nr_superpages * lvl_pages - 1; |
| |
| /* |
| * Ensure that old small page tables are |
| * removed to make room for superpage(s). |
| * We're adding new large pages, so make sure |
| * we don't remove their parent tables. |
| */ |
| dma_pte_free_pagetable(domain, iov_pfn, end_pfn, |
| largepage_lvl + 1); |
| } else { |
| pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE; |
| } |
| |
| } |
| /* We don't need lock here, nobody else |
| * touches the iova range |
| */ |
| tmp = cmpxchg64_local(&pte->val, 0ULL, pteval); |
| if (tmp) { |
| static int dumps = 5; |
| pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n", |
| iov_pfn, tmp, (unsigned long long)pteval); |
| if (dumps) { |
| dumps--; |
| debug_dma_dump_mappings(NULL); |
| } |
| WARN_ON(1); |
| } |
| |
| lvl_pages = lvl_to_nr_pages(largepage_lvl); |
| |
| BUG_ON(nr_pages < lvl_pages); |
| BUG_ON(sg_res < lvl_pages); |
| |
| nr_pages -= lvl_pages; |
| iov_pfn += lvl_pages; |
| phys_pfn += lvl_pages; |
| pteval += lvl_pages * VTD_PAGE_SIZE; |
| sg_res -= lvl_pages; |
| |
| /* If the next PTE would be the first in a new page, then we |
| need to flush the cache on the entries we've just written. |
| And then we'll need to recalculate 'pte', so clear it and |
| let it get set again in the if (!pte) block above. |
| |
| If we're done (!nr_pages) we need to flush the cache too. |
| |
| Also if we've been setting superpages, we may need to |
| recalculate 'pte' and switch back to smaller pages for the |
| end of the mapping, if the trailing size is not enough to |
| use another superpage (i.e. sg_res < lvl_pages). */ |
| pte++; |
| if (!nr_pages || first_pte_in_page(pte) || |
| (largepage_lvl > 1 && sg_res < lvl_pages)) { |
| domain_flush_cache(domain, first_pte, |
| (void *)pte - (void *)first_pte); |
| pte = NULL; |
| } |
| |
| if (!sg_res && nr_pages) |
| sg = sg_next(sg); |
| } |
| return 0; |
| } |
| |
| static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, |
| struct scatterlist *sg, unsigned long phys_pfn, |
| unsigned long nr_pages, int prot) |
| { |
| int iommu_id, ret; |
| struct intel_iommu *iommu; |
| |
| /* Do the real mapping first */ |
| ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot); |
| if (ret) |
| return ret; |
| |
| for_each_domain_iommu(iommu_id, domain) { |
| iommu = g_iommus[iommu_id]; |
| __mapping_notify_one(iommu, domain, iov_pfn, nr_pages); |
| } |
| |
| return 0; |
| } |
| |
| static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn, |
| struct scatterlist *sg, unsigned long nr_pages, |
| int prot) |
| { |
| return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot); |
| } |
| |
| static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn, |
| unsigned long phys_pfn, unsigned long nr_pages, |
| int prot) |
| { |
| return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot); |
| } |
| |
| static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn) |
| { |
| unsigned long flags; |
| struct context_entry *context; |
| u16 did_old; |
| |
| if (!iommu) |
| return; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| context = iommu_context_addr(iommu, bus, devfn, 0); |
| if (!context) { |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| return; |
| } |
| did_old = context_domain_id(context); |
| context_clear_entry(context); |
| __iommu_flush_cache(iommu, context, sizeof(*context)); |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| iommu->flush.flush_context(iommu, |
| did_old, |
| (((u16)bus) << 8) | devfn, |
| DMA_CCMD_MASK_NOBIT, |
| DMA_CCMD_DEVICE_INVL); |
| iommu->flush.flush_iotlb(iommu, |
| did_old, |
| 0, |
| 0, |
| DMA_TLB_DSI_FLUSH); |
| } |
| |
| static inline void unlink_domain_info(struct device_domain_info *info) |
| { |
| assert_spin_locked(&device_domain_lock); |
| list_del(&info->link); |
| list_del(&info->global); |
| if (info->dev) |
| dev_iommu_priv_set(info->dev, NULL); |
| } |
| |
| static void domain_remove_dev_info(struct dmar_domain *domain) |
| { |
| struct device_domain_info *info, *tmp; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| list_for_each_entry_safe(info, tmp, &domain->devices, link) |
| __dmar_remove_one_dev_info(info); |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| } |
| |
| struct dmar_domain *find_domain(struct device *dev) |
| { |
| struct device_domain_info *info; |
| |
| if (unlikely(attach_deferred(dev) || iommu_dummy(dev))) |
| return NULL; |
| |
| /* No lock here, assumes no domain exit in normal case */ |
| info = get_domain_info(dev); |
| if (likely(info)) |
| return info->domain; |
| |
| return NULL; |
| } |
| |
| static void do_deferred_attach(struct device *dev) |
| { |
| struct iommu_domain *domain; |
| |
| dev_iommu_priv_set(dev, NULL); |
| domain = iommu_get_domain_for_dev(dev); |
| if (domain) |
| intel_iommu_attach_device(domain, dev); |
| } |
| |
| static inline struct device_domain_info * |
| dmar_search_domain_by_dev_info(int segment, int bus, int devfn) |
| { |
| struct device_domain_info *info; |
| |
| list_for_each_entry(info, &device_domain_list, global) |
| if (info->segment == segment && info->bus == bus && |
| info->devfn == devfn) |
| return info; |
| |
| return NULL; |
| } |
| |
| static int domain_setup_first_level(struct intel_iommu *iommu, |
| struct dmar_domain *domain, |
| struct device *dev, |
| int pasid) |
| { |
| int flags = PASID_FLAG_SUPERVISOR_MODE; |
| struct dma_pte *pgd = domain->pgd; |
| int agaw, level; |
| |
| /* |
| * Skip top levels of page tables for iommu which has |
| * less agaw than default. Unnecessary for PT mode. |
| */ |
| for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { |
| pgd = phys_to_virt(dma_pte_addr(pgd)); |
| if (!dma_pte_present(pgd)) |
| return -ENOMEM; |
| } |
| |
| level = agaw_to_level(agaw); |
| if (level != 4 && level != 5) |
| return -EINVAL; |
| |
| flags |= (level == 5) ? PASID_FLAG_FL5LP : 0; |
| |
| return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid, |
| domain->iommu_did[iommu->seq_id], |
| flags); |
| } |
| |
| static bool dev_is_real_dma_subdevice(struct device *dev) |
| { |
| return dev && dev_is_pci(dev) && |
| pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev); |
| } |
| |
| static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu, |
| int bus, int devfn, |
| struct device *dev, |
| struct dmar_domain *domain) |
| { |
| struct dmar_domain *found = NULL; |
| struct device_domain_info *info; |
| unsigned long flags; |
| int ret; |
| |
| info = alloc_devinfo_mem(); |
| if (!info) |
| return NULL; |
| |
| if (!dev_is_real_dma_subdevice(dev)) { |
| info->bus = bus; |
| info->devfn = devfn; |
| info->segment = iommu->segment; |
| } else { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| |
| info->bus = pdev->bus->number; |
| info->devfn = pdev->devfn; |
| info->segment = pci_domain_nr(pdev->bus); |
| } |
| |
| info->ats_supported = info->pasid_supported = info->pri_supported = 0; |
| info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0; |
| info->ats_qdep = 0; |
| info->dev = dev; |
| info->domain = domain; |
| info->iommu = iommu; |
| info->pasid_table = NULL; |
| info->auxd_enabled = 0; |
| INIT_LIST_HEAD(&info->auxiliary_domains); |
| |
| if (dev && dev_is_pci(dev)) { |
| struct pci_dev *pdev = to_pci_dev(info->dev); |
| |
| if (ecap_dev_iotlb_support(iommu->ecap) && |
| pci_ats_supported(pdev) && |
| dmar_find_matched_atsr_unit(pdev)) |
| info->ats_supported = 1; |
| |
| if (sm_supported(iommu)) { |
| if (pasid_supported(iommu)) { |
| int features = pci_pasid_features(pdev); |
| if (features >= 0) |
| info->pasid_supported = features | 1; |
| } |
| |
| if (info->ats_supported && ecap_prs(iommu->ecap) && |
| pci_pri_supported(pdev)) |
| info->pri_supported = 1; |
| } |
| } |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| if (dev) |
| found = find_domain(dev); |
| |
| if (!found) { |
| struct device_domain_info *info2; |
| info2 = dmar_search_domain_by_dev_info(info->segment, info->bus, |
| info->devfn); |
| if (info2) { |
| found = info2->domain; |
| info2->dev = dev; |
| } |
| } |
| |
| if (found) { |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| free_devinfo_mem(info); |
| /* Caller must free the original domain */ |
| return found; |
| } |
| |
| spin_lock(&iommu->lock); |
| ret = domain_attach_iommu(domain, iommu); |
| spin_unlock(&iommu->lock); |
| |
| if (ret) { |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| free_devinfo_mem(info); |
| return NULL; |
| } |
| |
| list_add(&info->link, &domain->devices); |
| list_add(&info->global, &device_domain_list); |
| if (dev) |
| dev_iommu_priv_set(dev, info); |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| /* PASID table is mandatory for a PCI device in scalable mode. */ |
| if (dev && dev_is_pci(dev) && sm_supported(iommu)) { |
| ret = intel_pasid_alloc_table(dev); |
| if (ret) { |
| dev_err(dev, "PASID table allocation failed\n"); |
| dmar_remove_one_dev_info(dev); |
| return NULL; |
| } |
| |
| /* Setup the PASID entry for requests without PASID: */ |
| spin_lock(&iommu->lock); |
| if (hw_pass_through && domain_type_is_si(domain)) |
| ret = intel_pasid_setup_pass_through(iommu, domain, |
| dev, PASID_RID2PASID); |
| else if (domain_use_first_level(domain)) |
| ret = domain_setup_first_level(iommu, domain, dev, |
| PASID_RID2PASID); |
| else |
| ret = intel_pasid_setup_second_level(iommu, domain, |
| dev, PASID_RID2PASID); |
| spin_unlock(&iommu->lock); |
| if (ret) { |
| dev_err(dev, "Setup RID2PASID failed\n"); |
| dmar_remove_one_dev_info(dev); |
| return NULL; |
| } |
| } |
| |
| if (dev && domain_context_mapping(domain, dev)) { |
| dev_err(dev, "Domain context map failed\n"); |
| dmar_remove_one_dev_info(dev); |
| return NULL; |
| } |
| |
| return domain; |
| } |
| |
| static int iommu_domain_identity_map(struct dmar_domain *domain, |
| unsigned long first_vpfn, |
| unsigned long last_vpfn) |
| { |
| /* |
| * RMRR range might have overlap with physical memory range, |
| * clear it first |
| */ |
| dma_pte_clear_range(domain, first_vpfn, last_vpfn); |
| |
| return __domain_mapping(domain, first_vpfn, NULL, |
| first_vpfn, last_vpfn - first_vpfn + 1, |
| DMA_PTE_READ|DMA_PTE_WRITE); |
| } |
| |
| static int md_domain_init(struct dmar_domain *domain, int guest_width); |
| |
| static int __init si_domain_init(int hw) |
| { |
| struct dmar_rmrr_unit *rmrr; |
| struct device *dev; |
| int i, nid, ret; |
| |
| si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY); |
| if (!si_domain) |
| return -EFAULT; |
| |
| if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { |
| domain_exit(si_domain); |
| return -EFAULT; |
| } |
| |
| if (hw) |
| return 0; |
| |
| for_each_online_node(nid) { |
| unsigned long start_pfn, end_pfn; |
| int i; |
| |
| for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
| ret = iommu_domain_identity_map(si_domain, |
| mm_to_dma_pfn(start_pfn), |
| mm_to_dma_pfn(end_pfn)); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| /* |
| * Identity map the RMRRs so that devices with RMRRs could also use |
| * the si_domain. |
| */ |
| for_each_rmrr_units(rmrr) { |
| for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, |
| i, dev) { |
| unsigned long long start = rmrr->base_address; |
| unsigned long long end = rmrr->end_address; |
| |
| if (WARN_ON(end < start || |
| end >> agaw_to_width(si_domain->agaw))) |
| continue; |
| |
| ret = iommu_domain_identity_map(si_domain, |
| mm_to_dma_pfn(start >> PAGE_SHIFT), |
| mm_to_dma_pfn(end >> PAGE_SHIFT)); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev) |
| { |
| struct dmar_domain *ndomain; |
| struct intel_iommu *iommu; |
| u8 bus, devfn; |
| |
| iommu = device_to_iommu(dev, &bus, &devfn); |
| if (!iommu) |
| return -ENODEV; |
| |
| ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain); |
| if (ndomain != domain) |
| return -EBUSY; |
| |
| return 0; |
| } |
| |
| static bool device_has_rmrr(struct device *dev) |
| { |
| struct dmar_rmrr_unit *rmrr; |
| struct device *tmp; |
| int i; |
| |
| rcu_read_lock(); |
| for_each_rmrr_units(rmrr) { |
| /* |
| * Return TRUE if this RMRR contains the device that |
| * is passed in. |
| */ |
| for_each_active_dev_scope(rmrr->devices, |
| rmrr->devices_cnt, i, tmp) |
| if (tmp == dev || |
| is_downstream_to_pci_bridge(dev, tmp)) { |
| rcu_read_unlock(); |
| return true; |
| } |
| } |
| rcu_read_unlock(); |
| return false; |
| } |
| |
| /** |
| * device_rmrr_is_relaxable - Test whether the RMRR of this device |
| * is relaxable (ie. is allowed to be not enforced under some conditions) |
| * @dev: device handle |
| * |
| * We assume that PCI USB devices with RMRRs have them largely |
| * for historical reasons and that the RMRR space is not actively used post |
| * boot. This exclusion may change if vendors begin to abuse it. |
| * |
| * The same exception is made for graphics devices, with the requirement that |
| * any use of the RMRR regions will be torn down before assigning the device |
| * to a guest. |
| * |
| * Return: true if the RMRR is relaxable, false otherwise |
| */ |
| static bool device_rmrr_is_relaxable(struct device *dev) |
| { |
| struct pci_dev *pdev; |
| |
| if (!dev_is_pci(dev)) |
| return false; |
| |
| pdev = to_pci_dev(dev); |
| if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev)) |
| return true; |
| else |
| return false; |
| } |
| |
| /* |
| * There are a couple cases where we need to restrict the functionality of |
| * devices associated with RMRRs. The first is when evaluating a device for |
| * identity mapping because problems exist when devices are moved in and out |
| * of domains and their respective RMRR information is lost. This means that |
| * a device with associated RMRRs will never be in a "passthrough" domain. |
| * The second is use of the device through the IOMMU API. This interface |
| * expects to have full control of the IOVA space for the device. We cannot |
| * satisfy both the requirement that RMRR access is maintained and have an |
| * unencumbered IOVA space. We also have no ability to quiesce the device's |
| * use of the RMRR space or even inform the IOMMU API user of the restriction. |
| * We therefore prevent devices associated with an RMRR from participating in |
| * the IOMMU API, which eliminates them from device assignment. |
| * |
| * In both cases, devices which have relaxable RMRRs are not concerned by this |
| * restriction. See device_rmrr_is_relaxable comment. |
| */ |
| static bool device_is_rmrr_locked(struct device *dev) |
| { |
| if (!device_has_rmrr(dev)) |
| return false; |
| |
| if (device_rmrr_is_relaxable(dev)) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * Return the required default domain type for a specific device. |
| * |
| * @dev: the device in query |
| * @startup: true if this is during early boot |
| * |
| * Returns: |
| * - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain |
| * - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain |
| * - 0: both identity and dynamic domains work for this device |
| */ |
| static int device_def_domain_type(struct device *dev) |
| { |
| if (dev_is_pci(dev)) { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| |
| /* |
| * Prevent any device marked as untrusted from getting |
| * placed into the statically identity mapping domain. |
| */ |
| if (pdev->untrusted) |
| return IOMMU_DOMAIN_DMA; |
| |
| if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev)) |
| return IOMMU_DOMAIN_IDENTITY; |
| |
| if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev)) |
| return IOMMU_DOMAIN_IDENTITY; |
| } |
| |
| return 0; |
| } |
| |
| static void intel_iommu_init_qi(struct intel_iommu *iommu) |
| { |
| /* |
| * Start from the sane iommu hardware state. |
| * If the queued invalidation is already initialized by us |
| * (for example, while enabling interrupt-remapping) then |
| * we got the things already rolling from a sane state. |
| */ |
| if (!iommu->qi) { |
| /* |
| * Clear any previous faults. |
| */ |
| dmar_fault(-1, iommu); |
| /* |
| * Disable queued invalidation if supported and already enabled |
| * before OS handover. |
| */ |
| dmar_disable_qi(iommu); |
| } |
| |
| if (dmar_enable_qi(iommu)) { |
| /* |
| * Queued Invalidate not enabled, use Register Based Invalidate |
| */ |
| iommu->flush.flush_context = __iommu_flush_context; |
| iommu->flush.flush_iotlb = __iommu_flush_iotlb; |
| pr_info("%s: Using Register based invalidation\n", |
| iommu->name); |
| } else { |
| iommu->flush.flush_context = qi_flush_context; |
| iommu->flush.flush_iotlb = qi_flush_iotlb; |
| pr_info("%s: Using Queued invalidation\n", iommu->name); |
| } |
| } |
| |
| static int copy_context_table(struct intel_iommu *iommu, |
| struct root_entry *old_re, |
| struct context_entry **tbl, |
| int bus, bool ext) |
| { |
| int tbl_idx, pos = 0, idx, devfn, ret = 0, did; |
| struct context_entry *new_ce = NULL, ce; |
| struct context_entry *old_ce = NULL; |
| struct root_entry re; |
| phys_addr_t old_ce_phys; |
| |
| tbl_idx = ext ? bus * 2 : bus; |
| memcpy(&re, old_re, sizeof(re)); |
| |
| for (devfn = 0; devfn < 256; devfn++) { |
| /* First calculate the correct index */ |
| idx = (ext ? devfn * 2 : devfn) % 256; |
| |
| if (idx == 0) { |
| /* First save what we may have and clean up */ |
| if (new_ce) { |
| tbl[tbl_idx] = new_ce; |
| __iommu_flush_cache(iommu, new_ce, |
| VTD_PAGE_SIZE); |
| pos = 1; |
| } |
| |
| if (old_ce) |
| memunmap(old_ce); |
| |
| ret = 0; |
| if (devfn < 0x80) |
| old_ce_phys = root_entry_lctp(&re); |
| else |
| old_ce_phys = root_entry_uctp(&re); |
| |
| if (!old_ce_phys) { |
| if (ext && devfn == 0) { |
| /* No LCTP, try UCTP */ |
| devfn = 0x7f; |
| continue; |
| } else { |
| goto out; |
| } |
| } |
| |
| ret = -ENOMEM; |
| old_ce = memremap(old_ce_phys, PAGE_SIZE, |
| MEMREMAP_WB); |
| if (!old_ce) |
| goto out; |
| |
| new_ce = alloc_pgtable_page(iommu->node); |
| if (!new_ce) |
| goto out_unmap; |
| |
| ret = 0; |
| } |
| |
| /* Now copy the context entry */ |
| memcpy(&ce, old_ce + idx, sizeof(ce)); |
| |
| if (!__context_present(&ce)) |
| continue; |
| |
| did = context_domain_id(&ce); |
| if (did >= 0 && did < cap_ndoms(iommu->cap)) |
| set_bit(did, iommu->domain_ids); |
| |
| /* |
| * We need a marker for copied context entries. This |
| * marker needs to work for the old format as well as |
| * for extended context entries. |
| * |
| * Bit 67 of the context entry is used. In the old |
| * format this bit is available to software, in the |
| * extended format it is the PGE bit, but PGE is ignored |
| * by HW if PASIDs are disabled (and thus still |
| * available). |
| * |
| * So disable PASIDs first and then mark the entry |
| * copied. This means that we don't copy PASID |
| * translations from the old kernel, but this is fine as |
| * faults there are not fatal. |
| */ |
| context_clear_pasid_enable(&ce); |
| context_set_copied(&ce); |
| |
| new_ce[idx] = ce; |
| } |
| |
| tbl[tbl_idx + pos] = new_ce; |
| |
| __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE); |
| |
| out_unmap: |
| memunmap(old_ce); |
| |
| out: |
| return ret; |
| } |
| |
| static int copy_translation_tables(struct intel_iommu *iommu) |
| { |
| struct context_entry **ctxt_tbls; |
| struct root_entry *old_rt; |
| phys_addr_t old_rt_phys; |
| int ctxt_table_entries; |
| unsigned long flags; |
| u64 rtaddr_reg; |
| int bus, ret; |
| bool new_ext, ext; |
| |
| rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG); |
| ext = !!(rtaddr_reg & DMA_RTADDR_RTT); |
| new_ext = !!ecap_ecs(iommu->ecap); |
| |
| /* |
| * The RTT bit can only be changed when translation is disabled, |
| * but disabling translation means to open a window for data |
| * corruption. So bail out and don't copy anything if we would |
| * have to change the bit. |
| */ |
| if (new_ext != ext) |
| return -EINVAL; |
| |
| old_rt_phys = rtaddr_reg & VTD_PAGE_MASK; |
| if (!old_rt_phys) |
| return -EINVAL; |
| |
| old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB); |
| if (!old_rt) |
| return -ENOMEM; |
| |
| /* This is too big for the stack - allocate it from slab */ |
| ctxt_table_entries = ext ? 512 : 256; |
| ret = -ENOMEM; |
| ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL); |
| if (!ctxt_tbls) |
| goto out_unmap; |
| |
| for (bus = 0; bus < 256; bus++) { |
| ret = copy_context_table(iommu, &old_rt[bus], |
| ctxt_tbls, bus, ext); |
| if (ret) { |
| pr_err("%s: Failed to copy context table for bus %d\n", |
| iommu->name, bus); |
| continue; |
| } |
| } |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| |
| /* Context tables are copied, now write them to the root_entry table */ |
| for (bus = 0; bus < 256; bus++) { |
| int idx = ext ? bus * 2 : bus; |
| u64 val; |
| |
| if (ctxt_tbls[idx]) { |
| val = virt_to_phys(ctxt_tbls[idx]) | 1; |
| iommu->root_entry[bus].lo = val; |
| } |
| |
| if (!ext || !ctxt_tbls[idx + 1]) |
| continue; |
| |
| val = virt_to_phys(ctxt_tbls[idx + 1]) | 1; |
| iommu->root_entry[bus].hi = val; |
| } |
| |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| kfree(ctxt_tbls); |
| |
| __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE); |
| |
| ret = 0; |
| |
| out_unmap: |
| memunmap(old_rt); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_INTEL_IOMMU_SVM |
| static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data) |
| { |
| struct intel_iommu *iommu = data; |
| ioasid_t ioasid; |
| |
| if (!iommu) |
| return INVALID_IOASID; |
| /* |
| * VT-d virtual command interface always uses the full 20 bit |
| * PASID range. Host can partition guest PASID range based on |
| * policies but it is out of guest's control. |
| */ |
| if (min < PASID_MIN || max > intel_pasid_max_id) |
| return INVALID_IOASID; |
| |
| if (vcmd_alloc_pasid(iommu, &ioasid)) |
| return INVALID_IOASID; |
| |
| return ioasid; |
| } |
| |
| static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data) |
| { |
| struct intel_iommu *iommu = data; |
| |
| if (!iommu) |
| return; |
| /* |
| * Sanity check the ioasid owner is done at upper layer, e.g. VFIO |
| * We can only free the PASID when all the devices are unbound. |
| */ |
| if (ioasid_find(NULL, ioasid, NULL)) { |
| pr_alert("Cannot free active IOASID %d\n", ioasid); |
| return; |
| } |
| vcmd_free_pasid(iommu, ioasid); |
| } |
| |
| static void register_pasid_allocator(struct intel_iommu *iommu) |
| { |
| /* |
| * If we are running in the host, no need for custom allocator |
| * in that PASIDs are allocated from the host system-wide. |
| */ |
| if (!cap_caching_mode(iommu->cap)) |
| return; |
| |
| if (!sm_supported(iommu)) { |
| pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n"); |
| return; |
| } |
| |
| /* |
| * Register a custom PASID allocator if we are running in a guest, |
| * guest PASID must be obtained via virtual command interface. |
| * There can be multiple vIOMMUs in each guest but only one allocator |
| * is active. All vIOMMU allocators will eventually be calling the same |
| * host allocator. |
| */ |
| if (!ecap_vcs(iommu->ecap) || !vccap_pasid(iommu->vccap)) |
| return; |
| |
| pr_info("Register custom PASID allocator\n"); |
| iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc; |
| iommu->pasid_allocator.free = intel_vcmd_ioasid_free; |
| iommu->pasid_allocator.pdata = (void *)iommu; |
| if (ioasid_register_allocator(&iommu->pasid_allocator)) { |
| pr_warn("Custom PASID allocator failed, scalable mode disabled\n"); |
| /* |
| * Disable scalable mode on this IOMMU if there |
| * is no custom allocator. Mixing SM capable vIOMMU |
| * and non-SM vIOMMU are not supported. |
| */ |
| intel_iommu_sm = 0; |
| } |
| } |
| #endif |
| |
| static int __init init_dmars(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| int ret; |
| |
| /* |
| * for each drhd |
| * allocate root |
| * initialize and program root entry to not present |
| * endfor |
| */ |
| for_each_drhd_unit(drhd) { |
| /* |
| * lock not needed as this is only incremented in the single |
| * threaded kernel __init code path all other access are read |
| * only |
| */ |
| if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) { |
| g_num_of_iommus++; |
| continue; |
| } |
| pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED); |
| } |
| |
| /* Preallocate enough resources for IOMMU hot-addition */ |
| if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) |
| g_num_of_iommus = DMAR_UNITS_SUPPORTED; |
| |
| g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *), |
| GFP_KERNEL); |
| if (!g_iommus) { |
| pr_err("Allocating global iommu array failed\n"); |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| for_each_iommu(iommu, drhd) { |
| if (drhd->ignored) { |
| iommu_disable_translation(iommu); |
| continue; |
| } |
| |
| /* |
| * Find the max pasid size of all IOMMU's in the system. |
| * We need to ensure the system pasid table is no bigger |
| * than the smallest supported. |
| */ |
| if (pasid_supported(iommu)) { |
| u32 temp = 2 << ecap_pss(iommu->ecap); |
| |
| intel_pasid_max_id = min_t(u32, temp, |
| intel_pasid_max_id); |
| } |
| |
| g_iommus[iommu->seq_id] = iommu; |
| |
| intel_iommu_init_qi(iommu); |
| |
| ret = iommu_init_domains(iommu); |
| if (ret) |
| goto free_iommu; |
| |
| init_translation_status(iommu); |
| |
| if (translation_pre_enabled(iommu) && !is_kdump_kernel()) { |
| iommu_disable_translation(iommu); |
| clear_translation_pre_enabled(iommu); |
| pr_warn("Translation was enabled for %s but we are not in kdump mode\n", |
| iommu->name); |
| } |
| |
| /* |
| * TBD: |
| * we could share the same root & context tables |
| * among all IOMMU's. Need to Split it later. |
| */ |
| ret = iommu_alloc_root_entry(iommu); |
| if (ret) |
| goto free_iommu; |
| |
| if (translation_pre_enabled(iommu)) { |
| pr_info("Translation already enabled - trying to copy translation structures\n"); |
| |
| ret = copy_translation_tables(iommu); |
| if (ret) { |
| /* |
| * We found the IOMMU with translation |
| * enabled - but failed to copy over the |
| * old root-entry table. Try to proceed |
| * by disabling translation now and |
| * allocating a clean root-entry table. |
| * This might cause DMAR faults, but |
| * probably the dump will still succeed. |
| */ |
| pr_err("Failed to copy translation tables from previous kernel for %s\n", |
| iommu->name); |
| iommu_disable_translation(iommu); |
| clear_translation_pre_enabled(iommu); |
| } else { |
| pr_info("Copied translation tables from previous kernel for %s\n", |
| iommu->name); |
| } |
| } |
| |
| if (!ecap_pass_through(iommu->ecap)) |
| hw_pass_through = 0; |
| intel_svm_check(iommu); |
| } |
| |
| /* |
| * Now that qi is enabled on all iommus, set the root entry and flush |
| * caches. This is required on some Intel X58 chipsets, otherwise the |
| * flush_context function will loop forever and the boot hangs. |
| */ |
| for_each_active_iommu(iommu, drhd) { |
| iommu_flush_write_buffer(iommu); |
| #ifdef CONFIG_INTEL_IOMMU_SVM |
| register_pasid_allocator(iommu); |
| #endif |
| iommu_set_root_entry(iommu); |
| iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); |
| iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); |
| } |
| |
| #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA |
| dmar_map_gfx = 0; |
| #endif |
| |
| if (!dmar_map_gfx) |
| iommu_identity_mapping |= IDENTMAP_GFX; |
| |
| check_tylersburg_isoch(); |
| |
| ret = si_domain_init(hw_pass_through); |
| if (ret) |
| goto free_iommu; |
| |
| /* |
| * for each drhd |
| * enable fault log |
| * global invalidate context cache |
| * global invalidate iotlb |
| * enable translation |
| */ |
| for_each_iommu(iommu, drhd) { |
| if (drhd->ignored) { |
| /* |
| * we always have to disable PMRs or DMA may fail on |
| * this device |
| */ |
| if (force_on) |
| iommu_disable_protect_mem_regions(iommu); |
| continue; |
| } |
| |
| iommu_flush_write_buffer(iommu); |
| |
| #ifdef CONFIG_INTEL_IOMMU_SVM |
| if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) { |
| /* |
| * Call dmar_alloc_hwirq() with dmar_global_lock held, |
| * could cause possible lock race condition. |
| */ |
| up_write(&dmar_global_lock); |
| ret = intel_svm_enable_prq(iommu); |
| down_write(&dmar_global_lock); |
| if (ret) |
| goto free_iommu; |
| } |
| #endif |
| ret = dmar_set_interrupt(iommu); |
| if (ret) |
| goto free_iommu; |
| } |
| |
| return 0; |
| |
| free_iommu: |
| for_each_active_iommu(iommu, drhd) { |
| disable_dmar_iommu(iommu); |
| free_dmar_iommu(iommu); |
| } |
| |
| kfree(g_iommus); |
| |
| error: |
| return ret; |
| } |
| |
| /* This takes a number of _MM_ pages, not VTD pages */ |
| static unsigned long intel_alloc_iova(struct device *dev, |
| struct dmar_domain *domain, |
| unsigned long nrpages, uint64_t dma_mask) |
| { |
| unsigned long iova_pfn; |
| |
| /* |
| * Restrict dma_mask to the width that the iommu can handle. |
| * First-level translation restricts the input-address to a |
| * canonical address (i.e., address bits 63:N have the same |
| * value as address bit [N-1], where N is 48-bits with 4-level |
| * paging and 57-bits with 5-level paging). Hence, skip bit |
| * [N-1]. |
| */ |
| if (domain_use_first_level(domain)) |
| dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw - 1), |
| dma_mask); |
| else |
| dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), |
| dma_mask); |
| |
| /* Ensure we reserve the whole size-aligned region */ |
| nrpages = __roundup_pow_of_two(nrpages); |
| |
| if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) { |
| /* |
| * First try to allocate an io virtual address in |
| * DMA_BIT_MASK(32) and if that fails then try allocating |
| * from higher range |
| */ |
| iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, |
| IOVA_PFN(DMA_BIT_MASK(32)), false); |
| if (iova_pfn) |
| return iova_pfn; |
| } |
| iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, |
| IOVA_PFN(dma_mask), true); |
| if (unlikely(!iova_pfn)) { |
| dev_err_once(dev, "Allocating %ld-page iova failed\n", |
| nrpages); |
| return 0; |
| } |
| |
| return iova_pfn; |
| } |
| |
| static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr, |
| size_t size, int dir, u64 dma_mask) |
| { |
| struct dmar_domain *domain; |
| phys_addr_t start_paddr; |
| unsigned long iova_pfn; |
| int prot = 0; |
| int ret; |
| struct intel_iommu *iommu; |
| unsigned long paddr_pfn = paddr >> PAGE_SHIFT; |
| |
| BUG_ON(dir == DMA_NONE); |
| |
| if (unlikely(attach_deferred(dev))) |
| do_deferred_attach(dev); |
| |
| domain = find_domain(dev); |
| if (!domain) |
| return DMA_MAPPING_ERROR; |
| |
| iommu = domain_get_iommu(domain); |
| size = aligned_nrpages(paddr, size); |
| |
| iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask); |
| if (!iova_pfn) |
| goto error; |
| |
| /* |
| * Check if DMAR supports zero-length reads on write only |
| * mappings.. |
| */ |
| if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ |
| !cap_zlr(iommu->cap)) |
| prot |= DMA_PTE_READ; |
| if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) |
| prot |= DMA_PTE_WRITE; |
| /* |
| * paddr - (paddr + size) might be partial page, we should map the whole |
| * page. Note: if two part of one page are separately mapped, we |
| * might have two guest_addr mapping to the same host paddr, but this |
| * is not a big problem |
| */ |
| ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn), |
| mm_to_dma_pfn(paddr_pfn), size, prot); |
| if (ret) |
| goto error; |
| |
| start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT; |
| start_paddr += paddr & ~PAGE_MASK; |
| |
| trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT); |
| |
| return start_paddr; |
| |
| error: |
| if (iova_pfn) |
| free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size)); |
| dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n", |
| size, (unsigned long long)paddr, dir); |
| return DMA_MAPPING_ERROR; |
| } |
| |
| static dma_addr_t intel_map_page(struct device *dev, struct page *page, |
| unsigned long offset, size_t size, |
| enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| return __intel_map_single(dev, page_to_phys(page) + offset, |
| size, dir, *dev->dma_mask); |
| } |
| |
| static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr, |
| size_t size, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| return __intel_map_single(dev, phys_addr, size, dir, *dev->dma_mask); |
| } |
| |
| static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size) |
| { |
| struct dmar_domain *domain; |
| unsigned long start_pfn, last_pfn; |
| unsigned long nrpages; |
| unsigned long iova_pfn; |
| struct intel_iommu *iommu; |
| struct page *freelist; |
| struct pci_dev *pdev = NULL; |
| |
| domain = find_domain(dev); |
| BUG_ON(!domain); |
| |
| iommu = domain_get_iommu(domain); |
| |
| iova_pfn = IOVA_PFN(dev_addr); |
| |
| nrpages = aligned_nrpages(dev_addr, size); |
| start_pfn = mm_to_dma_pfn(iova_pfn); |
| last_pfn = start_pfn + nrpages - 1; |
| |
| if (dev_is_pci(dev)) |
| pdev = to_pci_dev(dev); |
| |
| freelist = domain_unmap(domain, start_pfn, last_pfn); |
| if (intel_iommu_strict || (pdev && pdev->untrusted) || |
| !has_iova_flush_queue(&domain->iovad)) { |
| iommu_flush_iotlb_psi(iommu, domain, start_pfn, |
| nrpages, !freelist, 0); |
| /* free iova */ |
| free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages)); |
| dma_free_pagelist(freelist); |
| } else { |
| queue_iova(&domain->iovad, iova_pfn, nrpages, |
| (unsigned long)freelist); |
| /* |
| * queue up the release of the unmap to save the 1/6th of the |
| * cpu used up by the iotlb flush operation... |
| */ |
| } |
| |
| trace_unmap_single(dev, dev_addr, size); |
| } |
| |
| static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr, |
| size_t size, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| intel_unmap(dev, dev_addr, size); |
| } |
| |
| static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr, |
| size_t size, enum dma_data_direction dir, unsigned long attrs) |
| { |
| intel_unmap(dev, dev_addr, size); |
| } |
| |
| static void *intel_alloc_coherent(struct device *dev, size_t size, |
| dma_addr_t *dma_handle, gfp_t flags, |
| unsigned long attrs) |
| { |
| struct page *page = NULL; |
| int order; |
| |
| if (unlikely(attach_deferred(dev))) |
| do_deferred_attach(dev); |
| |
| size = PAGE_ALIGN(size); |
| order = get_order(size); |
| |
| if (gfpflags_allow_blocking(flags)) { |
| unsigned int count = size >> PAGE_SHIFT; |
| |
| page = dma_alloc_from_contiguous(dev, count, order, |
| flags & __GFP_NOWARN); |
| } |
| |
| if (!page) |
| page = alloc_pages(flags, order); |
| if (!page) |
| return NULL; |
| memset(page_address(page), 0, size); |
| |
| *dma_handle = __intel_map_single(dev, page_to_phys(page), size, |
| DMA_BIDIRECTIONAL, |
| dev->coherent_dma_mask); |
| if (*dma_handle != DMA_MAPPING_ERROR) |
| return page_address(page); |
| if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT)) |
| __free_pages(page, order); |
| |
| return NULL; |
| } |
| |
| static void intel_free_coherent(struct device *dev, size_t size, void *vaddr, |
| dma_addr_t dma_handle, unsigned long attrs) |
| { |
| int order; |
| struct page *page = virt_to_page(vaddr); |
| |
| size = PAGE_ALIGN(size); |
| order = get_order(size); |
| |
| intel_unmap(dev, dma_handle, size); |
| if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT)) |
| __free_pages(page, order); |
| } |
| |
| static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist, |
| int nelems, enum dma_data_direction dir, |
| unsigned long attrs) |
| { |
| dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK; |
| unsigned long nrpages = 0; |
| struct scatterlist *sg; |
| int i; |
| |
| for_each_sg(sglist, sg, nelems, i) { |
| nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg)); |
| } |
| |
| intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT); |
| |
| trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT); |
| } |
| |
| static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| int i; |
| struct dmar_domain *domain; |
| size_t size = 0; |
| int prot = 0; |
| unsigned long iova_pfn; |
| int ret; |
| struct scatterlist *sg; |
| unsigned long start_vpfn; |
| struct intel_iommu *iommu; |
| |
| BUG_ON(dir == DMA_NONE); |
| |
| if (unlikely(attach_deferred(dev))) |
| do_deferred_attach(dev); |
| |
| domain = find_domain(dev); |
| if (!domain) |
| return 0; |
| |
| iommu = domain_get_iommu(domain); |
| |
| for_each_sg(sglist, sg, nelems, i) |
| size += aligned_nrpages(sg->offset, sg->length); |
| |
| iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), |
| *dev->dma_mask); |
| if (!iova_pfn) { |
| sglist->dma_length = 0; |
| return 0; |
| } |
| |
| /* |
| * Check if DMAR supports zero-length reads on write only |
| * mappings.. |
| */ |
| if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \ |
| !cap_zlr(iommu->cap)) |
| prot |= DMA_PTE_READ; |
| if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) |
| prot |= DMA_PTE_WRITE; |
| |
| start_vpfn = mm_to_dma_pfn(iova_pfn); |
| |
| ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot); |
| if (unlikely(ret)) { |
| dma_pte_free_pagetable(domain, start_vpfn, |
| start_vpfn + size - 1, |
| agaw_to_level(domain->agaw) + 1); |
| free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size)); |
| return 0; |
| } |
| |
| for_each_sg(sglist, sg, nelems, i) |
| trace_map_sg(dev, i + 1, nelems, sg); |
| |
| return nelems; |
| } |
| |
| static u64 intel_get_required_mask(struct device *dev) |
| { |
| return DMA_BIT_MASK(32); |
| } |
| |
| static const struct dma_map_ops intel_dma_ops = { |
| .alloc = intel_alloc_coherent, |
| .free = intel_free_coherent, |
| .map_sg = intel_map_sg, |
| .unmap_sg = intel_unmap_sg, |
| .map_page = intel_map_page, |
| .unmap_page = intel_unmap_page, |
| .map_resource = intel_map_resource, |
| .unmap_resource = intel_unmap_resource, |
| .dma_supported = dma_direct_supported, |
| .mmap = dma_common_mmap, |
| .get_sgtable = dma_common_get_sgtable, |
| .get_required_mask = intel_get_required_mask, |
| }; |
| |
| static void |
| bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size, |
| enum dma_data_direction dir, enum dma_sync_target target) |
| { |
| struct dmar_domain *domain; |
| phys_addr_t tlb_addr; |
| |
| domain = find_domain(dev); |
| if (WARN_ON(!domain)) |
| return; |
| |
| tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr); |
| if (is_swiotlb_buffer(tlb_addr)) |
| swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target); |
| } |
| |
| static dma_addr_t |
| bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size, |
| enum dma_data_direction dir, unsigned long attrs, |
| u64 dma_mask) |
| { |
| size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE); |
| struct dmar_domain *domain; |
| struct intel_iommu *iommu; |
| unsigned long iova_pfn; |
| unsigned long nrpages; |
| phys_addr_t tlb_addr; |
| int prot = 0; |
| int ret; |
| |
| if (unlikely(attach_deferred(dev))) |
| do_deferred_attach(dev); |
| |
| domain = find_domain(dev); |
| |
| if (WARN_ON(dir == DMA_NONE || !domain)) |
| return DMA_MAPPING_ERROR; |
| |
| iommu = domain_get_iommu(domain); |
| if (WARN_ON(!iommu)) |
| return DMA_MAPPING_ERROR; |
| |
| nrpages = aligned_nrpages(0, size); |
| iova_pfn = intel_alloc_iova(dev, domain, |
| dma_to_mm_pfn(nrpages), dma_mask); |
| if (!iova_pfn) |
| return DMA_MAPPING_ERROR; |
| |
| /* |
| * Check if DMAR supports zero-length reads on write only |
| * mappings.. |
| */ |
| if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || |
| !cap_zlr(iommu->cap)) |
| prot |= DMA_PTE_READ; |
| if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) |
| prot |= DMA_PTE_WRITE; |
| |
| /* |
| * If both the physical buffer start address and size are |
| * page aligned, we don't need to use a bounce page. |
| */ |
| if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) { |
| tlb_addr = swiotlb_tbl_map_single(dev, |
| __phys_to_dma(dev, io_tlb_start), |
| paddr, size, aligned_size, dir, attrs); |
| if (tlb_addr == DMA_MAPPING_ERROR) { |
| goto swiotlb_error; |
| } else { |
| /* Cleanup the padding area. */ |
| void *padding_start = phys_to_virt(tlb_addr); |
| size_t padding_size = aligned_size; |
| |
| if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && |
| (dir == DMA_TO_DEVICE || |
| dir == DMA_BIDIRECTIONAL)) { |
| padding_start += size; |
| padding_size -= size; |
| } |
| |
| memset(padding_start, 0, padding_size); |
| } |
| } else { |
| tlb_addr = paddr; |
| } |
| |
| ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn), |
| tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot); |
| if (ret) |
| goto mapping_error; |
| |
| trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size); |
| |
| return (phys_addr_t)iova_pfn << PAGE_SHIFT; |
| |
| mapping_error: |
| if (is_swiotlb_buffer(tlb_addr)) |
| swiotlb_tbl_unmap_single(dev, tlb_addr, size, |
| aligned_size, dir, attrs); |
| swiotlb_error: |
| free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages)); |
| dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n", |
| size, (unsigned long long)paddr, dir); |
| |
| return DMA_MAPPING_ERROR; |
| } |
| |
| static void |
| bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE); |
| struct dmar_domain *domain; |
| phys_addr_t tlb_addr; |
| |
| domain = find_domain(dev); |
| if (WARN_ON(!domain)) |
| return; |
| |
| tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr); |
| if (WARN_ON(!tlb_addr)) |
| return; |
| |
| intel_unmap(dev, dev_addr, size); |
| if (is_swiotlb_buffer(tlb_addr)) |
| swiotlb_tbl_unmap_single(dev, tlb_addr, size, |
| aligned_size, dir, attrs); |
| |
| trace_bounce_unmap_single(dev, dev_addr, size); |
| } |
| |
| static dma_addr_t |
| bounce_map_page(struct device *dev, struct page *page, unsigned long offset, |
| size_t size, enum dma_data_direction dir, unsigned long attrs) |
| { |
| return bounce_map_single(dev, page_to_phys(page) + offset, |
| size, dir, attrs, *dev->dma_mask); |
| } |
| |
| static dma_addr_t |
| bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| return bounce_map_single(dev, phys_addr, size, |
| dir, attrs, *dev->dma_mask); |
| } |
| |
| static void |
| bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| bounce_unmap_single(dev, dev_addr, size, dir, attrs); |
| } |
| |
| static void |
| bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| bounce_unmap_single(dev, dev_addr, size, dir, attrs); |
| } |
| |
| static void |
| bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| for_each_sg(sglist, sg, nelems, i) |
| bounce_unmap_page(dev, sg->dma_address, |
| sg_dma_len(sg), dir, attrs); |
| } |
| |
| static int |
| bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems, |
| enum dma_data_direction dir, unsigned long attrs) |
| { |
| int i; |
| struct scatterlist *sg; |
| |
| for_each_sg(sglist, sg, nelems, i) { |
| sg->dma_address = bounce_map_page(dev, sg_page(sg), |
| sg->offset, sg->length, |
| dir, attrs); |
| if (sg->dma_address == DMA_MAPPING_ERROR) |
| goto out_unmap; |
| sg_dma_len(sg) = sg->length; |
| } |
| |
| for_each_sg(sglist, sg, nelems, i) |
| trace_bounce_map_sg(dev, i + 1, nelems, sg); |
| |
| return nelems; |
| |
| out_unmap: |
| bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); |
| return 0; |
| } |
| |
| static void |
| bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr, |
| size_t size, enum dma_data_direction dir) |
| { |
| bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU); |
| } |
| |
| static void |
| bounce_sync_single_for_device(struct device *dev, dma_addr_t addr, |
| size_t size, enum dma_data_direction dir) |
| { |
| bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE); |
| } |
| |
| static void |
| bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist, |
| int nelems, enum dma_data_direction dir) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| for_each_sg(sglist, sg, nelems, i) |
| bounce_sync_single(dev, sg_dma_address(sg), |
| sg_dma_len(sg), dir, SYNC_FOR_CPU); |
| } |
| |
| static void |
| bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist, |
| int nelems, enum dma_data_direction dir) |
| { |
| struct scatterlist *sg; |
| int i; |
| |
| for_each_sg(sglist, sg, nelems, i) |
| bounce_sync_single(dev, sg_dma_address(sg), |
| sg_dma_len(sg), dir, SYNC_FOR_DEVICE); |
| } |
| |
| static const struct dma_map_ops bounce_dma_ops = { |
| .alloc = intel_alloc_coherent, |
| .free = intel_free_coherent, |
| .map_sg = bounce_map_sg, |
| .unmap_sg = bounce_unmap_sg, |
| .map_page = bounce_map_page, |
| .unmap_page = bounce_unmap_page, |
| .sync_single_for_cpu = bounce_sync_single_for_cpu, |
| .sync_single_for_device = bounce_sync_single_for_device, |
| .sync_sg_for_cpu = bounce_sync_sg_for_cpu, |
| .sync_sg_for_device = bounce_sync_sg_for_device, |
| .map_resource = bounce_map_resource, |
| .unmap_resource = bounce_unmap_resource, |
| .dma_supported = dma_direct_supported, |
| }; |
| |
| static inline int iommu_domain_cache_init(void) |
| { |
| int ret = 0; |
| |
| iommu_domain_cache = kmem_cache_create("iommu_domain", |
| sizeof(struct dmar_domain), |
| 0, |
| SLAB_HWCACHE_ALIGN, |
| |
| NULL); |
| if (!iommu_domain_cache) { |
| pr_err("Couldn't create iommu_domain cache\n"); |
| ret = -ENOMEM; |
| } |
| |
| return ret; |
| } |
| |
| static inline int iommu_devinfo_cache_init(void) |
| { |
| int ret = 0; |
| |
| iommu_devinfo_cache = kmem_cache_create("iommu_devinfo", |
| sizeof(struct device_domain_info), |
| 0, |
| SLAB_HWCACHE_ALIGN, |
| NULL); |
| if (!iommu_devinfo_cache) { |
| pr_err("Couldn't create devinfo cache\n"); |
| ret = -ENOMEM; |
| } |
| |
| return ret; |
| } |
| |
| static int __init iommu_init_mempool(void) |
| { |
| int ret; |
| ret = iova_cache_get(); |
| if (ret) |
| return ret; |
| |
| ret = iommu_domain_cache_init(); |
| if (ret) |
| goto domain_error; |
| |
| ret = iommu_devinfo_cache_init(); |
| if (!ret) |
| return ret; |
| |
| kmem_cache_destroy(iommu_domain_cache); |
| domain_error: |
| iova_cache_put(); |
| |
| return -ENOMEM; |
| } |
| |
| static void __init iommu_exit_mempool(void) |
| { |
| kmem_cache_destroy(iommu_devinfo_cache); |
| kmem_cache_destroy(iommu_domain_cache); |
| iova_cache_put(); |
| } |
| |
| static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev) |
| { |
| struct dmar_drhd_unit *drhd; |
| u32 vtbar; |
| int rc; |
| |
| /* We know that this device on this chipset has its own IOMMU. |
| * If we find it under a different IOMMU, then the BIOS is lying |
| * to us. Hope that the IOMMU for this device is actually |
| * disabled, and it needs no translation... |
| */ |
| rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar); |
| if (rc) { |
| /* "can't" happen */ |
| dev_info(&pdev->dev, "failed to run vt-d quirk\n"); |
| return; |
| } |
| vtbar &= 0xffff0000; |
| |
| /* we know that the this iommu should be at offset 0xa000 from vtbar */ |
| drhd = dmar_find_matched_drhd_unit(pdev); |
| if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) { |
| pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"); |
| add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); |
| dev_iommu_priv_set(&pdev->dev, DUMMY_DEVICE_DOMAIN_INFO); |
| } |
| } |
| DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu); |
| |
| static void __init init_no_remapping_devices(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct device *dev; |
| int i; |
| |
| for_each_drhd_unit(drhd) { |
| if (!drhd->include_all) { |
| for_each_active_dev_scope(drhd->devices, |
| drhd->devices_cnt, i, dev) |
| break; |
| /* ignore DMAR unit if no devices exist */ |
| if (i == drhd->devices_cnt) |
| drhd->ignored = 1; |
| } |
| } |
| |
| for_each_active_drhd_unit(drhd) { |
| if (drhd->include_all) |
| continue; |
| |
| for_each_active_dev_scope(drhd->devices, |
| drhd->devices_cnt, i, dev) |
| if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev))) |
| break; |
| if (i < drhd->devices_cnt) |
| continue; |
| |
| /* This IOMMU has *only* gfx devices. Either bypass it or |
| set the gfx_mapped flag, as appropriate */ |
| drhd->gfx_dedicated = 1; |
| if (!dmar_map_gfx) { |
| drhd->ignored = 1; |
| for_each_active_dev_scope(drhd->devices, |
| drhd->devices_cnt, i, dev) |
| dev_iommu_priv_set(dev, DUMMY_DEVICE_DOMAIN_INFO); |
| } |
| } |
| } |
| |
| #ifdef CONFIG_SUSPEND |
| static int init_iommu_hw(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu = NULL; |
| |
| for_each_active_iommu(iommu, drhd) |
| if (iommu->qi) |
| dmar_reenable_qi(iommu); |
| |
| for_each_iommu(iommu, drhd) { |
| if (drhd->ignored) { |
| /* |
| * we always have to disable PMRs or DMA may fail on |
| * this device |
| */ |
| if (force_on) |
| iommu_disable_protect_mem_regions(iommu); |
| continue; |
| } |
| |
| iommu_flush_write_buffer(iommu); |
| |
| iommu_set_root_entry(iommu); |
| |
| iommu->flush.flush_context(iommu, 0, 0, 0, |
| DMA_CCMD_GLOBAL_INVL); |
| iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); |
| iommu_enable_translation(iommu); |
| iommu_disable_protect_mem_regions(iommu); |
| } |
| |
| return 0; |
| } |
| |
| static void iommu_flush_all(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| |
| for_each_active_iommu(iommu, drhd) { |
| iommu->flush.flush_context(iommu, 0, 0, 0, |
| DMA_CCMD_GLOBAL_INVL); |
| iommu->flush.flush_iotlb(iommu, 0, 0, 0, |
| DMA_TLB_GLOBAL_FLUSH); |
| } |
| } |
| |
| static int iommu_suspend(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu = NULL; |
| unsigned long flag; |
| |
| for_each_active_iommu(iommu, drhd) { |
| iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32), |
| GFP_ATOMIC); |
| if (!iommu->iommu_state) |
| goto nomem; |
| } |
| |
| iommu_flush_all(); |
| |
| for_each_active_iommu(iommu, drhd) { |
| iommu_disable_translation(iommu); |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| |
| iommu->iommu_state[SR_DMAR_FECTL_REG] = |
| readl(iommu->reg + DMAR_FECTL_REG); |
| iommu->iommu_state[SR_DMAR_FEDATA_REG] = |
| readl(iommu->reg + DMAR_FEDATA_REG); |
| iommu->iommu_state[SR_DMAR_FEADDR_REG] = |
| readl(iommu->reg + DMAR_FEADDR_REG); |
| iommu->iommu_state[SR_DMAR_FEUADDR_REG] = |
| readl(iommu->reg + DMAR_FEUADDR_REG); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| return 0; |
| |
| nomem: |
| for_each_active_iommu(iommu, drhd) |
| kfree(iommu->iommu_state); |
| |
| return -ENOMEM; |
| } |
| |
| static void iommu_resume(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu = NULL; |
| unsigned long flag; |
| |
| if (init_iommu_hw()) { |
| if (force_on) |
| panic("tboot: IOMMU setup failed, DMAR can not resume!\n"); |
| else |
| WARN(1, "IOMMU setup failed, DMAR can not resume!\n"); |
| return; |
| } |
| |
| for_each_active_iommu(iommu, drhd) { |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| |
| writel(iommu->iommu_state[SR_DMAR_FECTL_REG], |
| iommu->reg + DMAR_FECTL_REG); |
| writel(iommu->iommu_state[SR_DMAR_FEDATA_REG], |
| iommu->reg + DMAR_FEDATA_REG); |
| writel(iommu->iommu_state[SR_DMAR_FEADDR_REG], |
| iommu->reg + DMAR_FEADDR_REG); |
| writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG], |
| iommu->reg + DMAR_FEUADDR_REG); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| for_each_active_iommu(iommu, drhd) |
| kfree(iommu->iommu_state); |
| } |
| |
| static struct syscore_ops iommu_syscore_ops = { |
| .resume = iommu_resume, |
| .suspend = iommu_suspend, |
| }; |
| |
| static void __init init_iommu_pm_ops(void) |
| { |
| register_syscore_ops(&iommu_syscore_ops); |
| } |
| |
| #else |
| static inline void init_iommu_pm_ops(void) {} |
| #endif /* CONFIG_PM */ |
| |
| static int rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr) |
| { |
| if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) || |
| !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) || |
| rmrr->end_address <= rmrr->base_address || |
| arch_rmrr_sanity_check(rmrr)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg) |
| { |
| struct acpi_dmar_reserved_memory *rmrr; |
| struct dmar_rmrr_unit *rmrru; |
| |
| rmrr = (struct acpi_dmar_reserved_memory *)header; |
| if (rmrr_sanity_check(rmrr)) { |
| pr_warn(FW_BUG |
| "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n" |
| "BIOS vendor: %s; Ver: %s; Product Version: %s\n", |
| rmrr->base_address, rmrr->end_address, |
| dmi_get_system_info(DMI_BIOS_VENDOR), |
| dmi_get_system_info(DMI_BIOS_VERSION), |
| dmi_get_system_info(DMI_PRODUCT_VERSION)); |
| add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); |
| } |
| |
| rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL); |
| if (!rmrru) |
| goto out; |
| |
| rmrru->hdr = header; |
| |
| rmrru->base_address = rmrr->base_address; |
| rmrru->end_address = rmrr->end_address; |
| |
| rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1), |
| ((void *)rmrr) + rmrr->header.length, |
| &rmrru->devices_cnt); |
| if (rmrru->devices_cnt && rmrru->devices == NULL) |
| goto free_rmrru; |
| |
| list_add(&rmrru->list, &dmar_rmrr_units); |
| |
| return 0; |
| free_rmrru: |
| kfree(rmrru); |
| out: |
| return -ENOMEM; |
| } |
| |
| static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr) |
| { |
| struct dmar_atsr_unit *atsru; |
| struct acpi_dmar_atsr *tmp; |
| |
| list_for_each_entry_rcu(atsru, &dmar_atsr_units, list, |
| dmar_rcu_check()) { |
| tmp = (struct acpi_dmar_atsr *)atsru->hdr; |
| if (atsr->segment != tmp->segment) |
| continue; |
| if (atsr->header.length != tmp->header.length) |
| continue; |
| if (memcmp(atsr, tmp, atsr->header.length) == 0) |
| return atsru; |
| } |
| |
| return NULL; |
| } |
| |
| int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg) |
| { |
| struct acpi_dmar_atsr *atsr; |
| struct dmar_atsr_unit *atsru; |
| |
| if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled) |
| return 0; |
| |
| atsr = container_of(hdr, struct acpi_dmar_atsr, header); |
| atsru = dmar_find_atsr(atsr); |
| if (atsru) |
| return 0; |
| |
| atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL); |
| if (!atsru) |
| return -ENOMEM; |
| |
| /* |
| * If memory is allocated from slab by ACPI _DSM method, we need to |
| * copy the memory content because the memory buffer will be freed |
| * on return. |
| */ |
| atsru->hdr = (void *)(atsru + 1); |
| memcpy(atsru->hdr, hdr, hdr->length); |
| atsru->include_all = atsr->flags & 0x1; |
| if (!atsru->include_all) { |
| atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1), |
| (void *)atsr + atsr->header.length, |
| &atsru->devices_cnt); |
| if (atsru->devices_cnt && atsru->devices == NULL) { |
| kfree(atsru); |
| return -ENOMEM; |
| } |
| } |
| |
| list_add_rcu(&atsru->list, &dmar_atsr_units); |
| |
| return 0; |
| } |
| |
| static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru) |
| { |
| dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt); |
| kfree(atsru); |
| } |
| |
| int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg) |
| { |
| struct acpi_dmar_atsr *atsr; |
| struct dmar_atsr_unit *atsru; |
| |
| atsr = container_of(hdr, struct acpi_dmar_atsr, header); |
| atsru = dmar_find_atsr(atsr); |
| if (atsru) { |
| list_del_rcu(&atsru->list); |
| synchronize_rcu(); |
| intel_iommu_free_atsr(atsru); |
| } |
| |
| return 0; |
| } |
| |
| int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg) |
| { |
| int i; |
| struct device *dev; |
| struct acpi_dmar_atsr *atsr; |
| struct dmar_atsr_unit *atsru; |
| |
| atsr = container_of(hdr, struct acpi_dmar_atsr, header); |
| atsru = dmar_find_atsr(atsr); |
| if (!atsru) |
| return 0; |
| |
| if (!atsru->include_all && atsru->devices && atsru->devices_cnt) { |
| for_each_active_dev_scope(atsru->devices, atsru->devices_cnt, |
| i, dev) |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| static int intel_iommu_add(struct dmar_drhd_unit *dmaru) |
| { |
| int sp, ret; |
| struct intel_iommu *iommu = dmaru->iommu; |
| |
| if (g_iommus[iommu->seq_id]) |
| return 0; |
| |
| if (hw_pass_through && !ecap_pass_through(iommu->ecap)) { |
| pr_warn("%s: Doesn't support hardware pass through.\n", |
| iommu->name); |
| return -ENXIO; |
| } |
| if (!ecap_sc_support(iommu->ecap) && |
| domain_update_iommu_snooping(iommu)) { |
| pr_warn("%s: Doesn't support snooping.\n", |
| iommu->name); |
| return -ENXIO; |
| } |
| sp = domain_update_iommu_superpage(NULL, iommu) - 1; |
| if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) { |
| pr_warn("%s: Doesn't support large page.\n", |
| iommu->name); |
| return -ENXIO; |
| } |
| |
| /* |
| * Disable translation if already enabled prior to OS handover. |
| */ |
| if (iommu->gcmd & DMA_GCMD_TE) |
| iommu_disable_translation(iommu); |
| |
| g_iommus[iommu->seq_id] = iommu; |
| ret = iommu_init_domains(iommu); |
| if (ret == 0) |
| ret = iommu_alloc_root_entry(iommu); |
| if (ret) |
| goto out; |
| |
| intel_svm_check(iommu); |
| |
| if (dmaru->ignored) { |
| /* |
| * we always have to disable PMRs or DMA may fail on this device |
| */ |
| if (force_on) |
| iommu_disable_protect_mem_regions(iommu); |
| return 0; |
| } |
| |
| intel_iommu_init_qi(iommu); |
| iommu_flush_write_buffer(iommu); |
| |
| #ifdef CONFIG_INTEL_IOMMU_SVM |
| if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) { |
| ret = intel_svm_enable_prq(iommu); |
| if (ret) |
| goto disable_iommu; |
| } |
| #endif |
| ret = dmar_set_interrupt(iommu); |
| if (ret) |
| goto disable_iommu; |
| |
| iommu_set_root_entry(iommu); |
| iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); |
| iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); |
| iommu_enable_translation(iommu); |
| |
| iommu_disable_protect_mem_regions(iommu); |
| return 0; |
| |
| disable_iommu: |
| disable_dmar_iommu(iommu); |
| out: |
| free_dmar_iommu(iommu); |
| return ret; |
| } |
| |
| int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert) |
| { |
| int ret = 0; |
| struct intel_iommu *iommu = dmaru->iommu; |
| |
| if (!intel_iommu_enabled) |
| return 0; |
| if (iommu == NULL) |
| return -EINVAL; |
| |
| if (insert) { |
| ret = intel_iommu_add(dmaru); |
| } else { |
| disable_dmar_iommu(iommu); |
| free_dmar_iommu(iommu); |
| } |
| |
| return ret; |
| } |
| |
| static void intel_iommu_free_dmars(void) |
| { |
| struct dmar_rmrr_unit *rmrru, *rmrr_n; |
| struct dmar_atsr_unit *atsru, *atsr_n; |
| |
| list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) { |
| list_del(&rmrru->list); |
| dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt); |
| kfree(rmrru); |
| } |
| |
| list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) { |
| list_del(&atsru->list); |
| intel_iommu_free_atsr(atsru); |
| } |
| } |
| |
| int dmar_find_matched_atsr_unit(struct pci_dev *dev) |
| { |
| int i, ret = 1; |
| struct pci_bus *bus; |
| struct pci_dev *bridge = NULL; |
| struct device *tmp; |
| struct acpi_dmar_atsr *atsr; |
| struct dmar_atsr_unit *atsru; |
| |
| dev = pci_physfn(dev); |
| for (bus = dev->bus; bus; bus = bus->parent) { |
| bridge = bus->self; |
| /* If it's an integrated device, allow ATS */ |
| if (!bridge) |
| return 1; |
| /* Connected via non-PCIe: no ATS */ |
| if (!pci_is_pcie(bridge) || |
| pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) |
| return 0; |
| /* If we found the root port, look it up in the ATSR */ |
| if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) |
| break; |
| } |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) { |
| atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); |
| if (atsr->segment != pci_domain_nr(dev->bus)) |
| continue; |
| |
| for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp) |
| if (tmp == &bridge->dev) |
| goto out; |
| |
| if (atsru->include_all) |
| goto out; |
| } |
| ret = 0; |
| out: |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info) |
| { |
| int ret; |
| struct dmar_rmrr_unit *rmrru; |
| struct dmar_atsr_unit *atsru; |
| struct acpi_dmar_atsr *atsr; |
| struct acpi_dmar_reserved_memory *rmrr; |
| |
| if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING) |
| return 0; |
| |
| list_for_each_entry(rmrru, &dmar_rmrr_units, list) { |
| rmrr = container_of(rmrru->hdr, |
| struct acpi_dmar_reserved_memory, header); |
| if (info->event == BUS_NOTIFY_ADD_DEVICE) { |
| ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1), |
| ((void *)rmrr) + rmrr->header.length, |
| rmrr->segment, rmrru->devices, |
| rmrru->devices_cnt); |
| if (ret < 0) |
| return ret; |
| } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { |
| dmar_remove_dev_scope(info, rmrr->segment, |
| rmrru->devices, rmrru->devices_cnt); |
| } |
| } |
| |
| list_for_each_entry(atsru, &dmar_atsr_units, list) { |
| if (atsru->include_all) |
| continue; |
| |
| atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); |
| if (info->event == BUS_NOTIFY_ADD_DEVICE) { |
| ret = dmar_insert_dev_scope(info, (void *)(atsr + 1), |
| (void *)atsr + atsr->header.length, |
| atsr->segment, atsru->devices, |
| atsru->devices_cnt); |
| if (ret > 0) |
| break; |
| else if (ret < 0) |
| return ret; |
| } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { |
| if (dmar_remove_dev_scope(info, atsr->segment, |
| atsru->devices, atsru->devices_cnt)) |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int intel_iommu_memory_notifier(struct notifier_block *nb, |
| unsigned long val, void *v) |
| { |
| struct memory_notify *mhp = v; |
| unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn); |
| unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn + |
| mhp->nr_pages - 1); |
| |
| switch (val) { |
| case MEM_GOING_ONLINE: |
| if (iommu_domain_identity_map(si_domain, |
| start_vpfn, last_vpfn)) { |
| pr_warn("Failed to build identity map for [%lx-%lx]\n", |
| start_vpfn, last_vpfn); |
| return NOTIFY_BAD; |
| } |
| break; |
| |
| case MEM_OFFLINE: |
| case MEM_CANCEL_ONLINE: |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| struct page *freelist; |
| |
| freelist = domain_unmap(si_domain, |
| start_vpfn, last_vpfn); |
| |
| rcu_read_lock(); |
| for_each_active_iommu(iommu, drhd) |
| iommu_flush_iotlb_psi(iommu, si_domain, |
| start_vpfn, mhp->nr_pages, |
| !freelist, 0); |
| rcu_read_unlock(); |
| dma_free_pagelist(freelist); |
| } |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block intel_iommu_memory_nb = { |
| .notifier_call = intel_iommu_memory_notifier, |
| .priority = 0 |
| }; |
| |
| static void free_all_cpu_cached_iovas(unsigned int cpu) |
| { |
| int i; |
| |
| for (i = 0; i < g_num_of_iommus; i++) { |
| struct intel_iommu *iommu = g_iommus[i]; |
| struct dmar_domain *domain; |
| int did; |
| |
| if (!iommu) |
| continue; |
| |
| for (did = 0; did < cap_ndoms(iommu->cap); did++) { |
| domain = get_iommu_domain(iommu, (u16)did); |
| |
| if (!domain || domain->domain.type != IOMMU_DOMAIN_DMA) |
| continue; |
| |
| free_cpu_cached_iovas(cpu, &domain->iovad); |
| } |
| } |
| } |
| |
| static int intel_iommu_cpu_dead(unsigned int cpu) |
| { |
| free_all_cpu_cached_iovas(cpu); |
| return 0; |
| } |
| |
| static void intel_disable_iommus(void) |
| { |
| struct intel_iommu *iommu = NULL; |
| struct dmar_drhd_unit *drhd; |
| |
| for_each_iommu(iommu, drhd) |
| iommu_disable_translation(iommu); |
| } |
| |
| void intel_iommu_shutdown(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu = NULL; |
| |
| if (no_iommu || dmar_disabled) |
| return; |
| |
| down_write(&dmar_global_lock); |
| |
| /* Disable PMRs explicitly here. */ |
| for_each_iommu(iommu, drhd) |
| iommu_disable_protect_mem_regions(iommu); |
| |
| /* Make sure the IOMMUs are switched off */ |
| intel_disable_iommus(); |
| |
| up_write(&dmar_global_lock); |
| } |
| |
| static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev) |
| { |
| struct iommu_device *iommu_dev = dev_to_iommu_device(dev); |
| |
| return container_of(iommu_dev, struct intel_iommu, iommu); |
| } |
| |
| static ssize_t intel_iommu_show_version(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct intel_iommu *iommu = dev_to_intel_iommu(dev); |
| u32 ver = readl(iommu->reg + DMAR_VER_REG); |
| return sprintf(buf, "%d:%d\n", |
| DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver)); |
| } |
| static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL); |
| |
| static ssize_t intel_iommu_show_address(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct intel_iommu *iommu = dev_to_intel_iommu(dev); |
| return sprintf(buf, "%llx\n", iommu->reg_phys); |
| } |
| static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL); |
| |
| static ssize_t intel_iommu_show_cap(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct intel_iommu *iommu = dev_to_intel_iommu(dev); |
| return sprintf(buf, "%llx\n", iommu->cap); |
| } |
| static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL); |
| |
| static ssize_t intel_iommu_show_ecap(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct intel_iommu *iommu = dev_to_intel_iommu(dev); |
| return sprintf(buf, "%llx\n", iommu->ecap); |
| } |
| static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL); |
| |
| static ssize_t intel_iommu_show_ndoms(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct intel_iommu *iommu = dev_to_intel_iommu(dev); |
| return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap)); |
| } |
| static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL); |
| |
| static ssize_t intel_iommu_show_ndoms_used(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct intel_iommu *iommu = dev_to_intel_iommu(dev); |
| return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids, |
| cap_ndoms(iommu->cap))); |
| } |
| static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL); |
| |
| static struct attribute *intel_iommu_attrs[] = { |
| &dev_attr_version.attr, |
| &dev_attr_address.attr, |
| &dev_attr_cap.attr, |
| &dev_attr_ecap.attr, |
| &dev_attr_domains_supported.attr, |
| &dev_attr_domains_used.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group intel_iommu_group = { |
| .name = "intel-iommu", |
| .attrs = intel_iommu_attrs, |
| }; |
| |
| const struct attribute_group *intel_iommu_groups[] = { |
| &intel_iommu_group, |
| NULL, |
| }; |
| |
| static inline bool has_external_pci(void) |
| { |
| struct pci_dev *pdev = NULL; |
| |
| for_each_pci_dev(pdev) |
| if (pdev->external_facing) |
| return true; |
| |
| return false; |
| } |
| |
| static int __init platform_optin_force_iommu(void) |
| { |
| if (!dmar_platform_optin() || no_platform_optin || !has_external_pci()) |
| return 0; |
| |
| if (no_iommu || dmar_disabled) |
| pr_info("Intel-IOMMU force enabled due to platform opt in\n"); |
| |
| /* |
| * If Intel-IOMMU is disabled by default, we will apply identity |
| * map for all devices except those marked as being untrusted. |
| */ |
| if (dmar_disabled) |
| iommu_set_default_passthrough(false); |
| |
| dmar_disabled = 0; |
| no_iommu = 0; |
| |
| return 1; |
| } |
| |
| static int __init probe_acpi_namespace_devices(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| /* To avoid a -Wunused-but-set-variable warning. */ |
| struct intel_iommu *iommu __maybe_unused; |
| struct device *dev; |
| int i, ret = 0; |
| |
| for_each_active_iommu(iommu, drhd) { |
| for_each_active_dev_scope(drhd->devices, |
| drhd->devices_cnt, i, dev) { |
| struct acpi_device_physical_node *pn; |
| struct iommu_group *group; |
| struct acpi_device *adev; |
| |
| if (dev->bus != &acpi_bus_type) |
| continue; |
| |
| adev = to_acpi_device(dev); |
| mutex_lock(&adev->physical_node_lock); |
| list_for_each_entry(pn, |
| &adev->physical_node_list, node) { |
| group = iommu_group_get(pn->dev); |
| if (group) { |
| iommu_group_put(group); |
| continue; |
| } |
| |
| pn->dev->bus->iommu_ops = &intel_iommu_ops; |
| ret = iommu_probe_device(pn->dev); |
| if (ret) |
| break; |
| } |
| mutex_unlock(&adev->physical_node_lock); |
| |
| if (ret) |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int __init intel_iommu_init(void) |
| { |
| int ret = -ENODEV; |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| |
| /* |
| * Intel IOMMU is required for a TXT/tboot launch or platform |
| * opt in, so enforce that. |
| */ |
| force_on = tboot_force_iommu() || platform_optin_force_iommu(); |
| |
| if (iommu_init_mempool()) { |
| if (force_on) |
| panic("tboot: Failed to initialize iommu memory\n"); |
| return -ENOMEM; |
| } |
| |
| down_write(&dmar_global_lock); |
| if (dmar_table_init()) { |
| if (force_on) |
| panic("tboot: Failed to initialize DMAR table\n"); |
| goto out_free_dmar; |
| } |
| |
| if (dmar_dev_scope_init() < 0) { |
| if (force_on) |
| panic("tboot: Failed to initialize DMAR device scope\n"); |
| goto out_free_dmar; |
| } |
| |
| up_write(&dmar_global_lock); |
| |
| /* |
| * The bus notifier takes the dmar_global_lock, so lockdep will |
| * complain later when we register it under the lock. |
| */ |
| dmar_register_bus_notifier(); |
| |
| down_write(&dmar_global_lock); |
| |
| if (!no_iommu) |
| intel_iommu_debugfs_init(); |
| |
| if (no_iommu || dmar_disabled) { |
| /* |
| * We exit the function here to ensure IOMMU's remapping and |
| * mempool aren't setup, which means that the IOMMU's PMRs |
| * won't be disabled via the call to init_dmars(). So disable |
| * it explicitly here. The PMRs were setup by tboot prior to |
| * calling SENTER, but the kernel is expected to reset/tear |
| * down the PMRs. |
| */ |
| if (intel_iommu_tboot_noforce) { |
| for_each_iommu(iommu, drhd) |
| iommu_disable_protect_mem_regions(iommu); |
| } |
| |
| /* |
| * Make sure the IOMMUs are switched off, even when we |
| * boot into a kexec kernel and the previous kernel left |
| * them enabled |
| */ |
| intel_disable_iommus(); |
| goto out_free_dmar; |
| } |
| |
| if (list_empty(&dmar_rmrr_units)) |
| pr_info("No RMRR found\n"); |
| |
| if (list_empty(&dmar_atsr_units)) |
| pr_info("No ATSR found\n"); |
| |
| if (dmar_init_reserved_ranges()) { |
| if (force_on) |
| panic("tboot: Failed to reserve iommu ranges\n"); |
| goto out_free_reserved_range; |
| } |
| |
| if (dmar_map_gfx) |
| intel_iommu_gfx_mapped = 1; |
| |
| init_no_remapping_devices(); |
| |
| ret = init_dmars(); |
| if (ret) { |
| if (force_on) |
| panic("tboot: Failed to initialize DMARs\n"); |
| pr_err("Initialization failed\n"); |
| goto out_free_reserved_range; |
| } |
| up_write(&dmar_global_lock); |
| |
| init_iommu_pm_ops(); |
| |
| down_read(&dmar_global_lock); |
| for_each_active_iommu(iommu, drhd) { |
| iommu_device_sysfs_add(&iommu->iommu, NULL, |
| intel_iommu_groups, |
| "%s", iommu->name); |
| iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops); |
| iommu_device_register(&iommu->iommu); |
| } |
| up_read(&dmar_global_lock); |
| |
| bus_set_iommu(&pci_bus_type, &intel_iommu_ops); |
| if (si_domain && !hw_pass_through) |
| register_memory_notifier(&intel_iommu_memory_nb); |
| cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL, |
| intel_iommu_cpu_dead); |
| |
| down_read(&dmar_global_lock); |
| if (probe_acpi_namespace_devices()) |
| pr_warn("ACPI name space devices didn't probe correctly\n"); |
| |
| /* Finally, we enable the DMA remapping hardware. */ |
| for_each_iommu(iommu, drhd) { |
| if (!drhd->ignored && !translation_pre_enabled(iommu)) |
| iommu_enable_translation(iommu); |
| |
| iommu_disable_protect_mem_regions(iommu); |
| } |
| up_read(&dmar_global_lock); |
| |
| pr_info("Intel(R) Virtualization Technology for Directed I/O\n"); |
| |
| intel_iommu_enabled = 1; |
| |
| return 0; |
| |
| out_free_reserved_range: |
| put_iova_domain(&reserved_iova_list); |
| out_free_dmar: |
| intel_iommu_free_dmars(); |
| up_write(&dmar_global_lock); |
| iommu_exit_mempool(); |
| return ret; |
| } |
| |
| static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque) |
| { |
| struct intel_iommu *iommu = opaque; |
| |
| domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff); |
| return 0; |
| } |
| |
| /* |
| * NB - intel-iommu lacks any sort of reference counting for the users of |
| * dependent devices. If multiple endpoints have intersecting dependent |
| * devices, unbinding the driver from any one of them will possibly leave |
| * the others unable to operate. |
| */ |
| static void domain_context_clear(struct intel_iommu *iommu, struct device *dev) |
| { |
| if (!iommu || !dev || !dev_is_pci(dev)) |
| return; |
| |
| pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu); |
| } |
| |
| static void __dmar_remove_one_dev_info(struct device_domain_info *info) |
| { |
| struct dmar_domain *domain; |
| struct intel_iommu *iommu; |
| unsigned long flags; |
| |
| assert_spin_locked(&device_domain_lock); |
| |
| if (WARN_ON(!info)) |
| return; |
| |
| iommu = info->iommu; |
| domain = info->domain; |
| |
| if (info->dev) { |
| if (dev_is_pci(info->dev) && sm_supported(iommu)) |
| intel_pasid_tear_down_entry(iommu, info->dev, |
| PASID_RID2PASID, false); |
| |
| iommu_disable_dev_iotlb(info); |
| if (!dev_is_real_dma_subdevice(info->dev)) |
| domain_context_clear(iommu, info->dev); |
| intel_pasid_free_table(info->dev); |
| } |
| |
| unlink_domain_info(info); |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| domain_detach_iommu(domain, iommu); |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| |
| free_devinfo_mem(info); |
| } |
| |
| static void dmar_remove_one_dev_info(struct device *dev) |
| { |
| struct device_domain_info *info; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| info = get_domain_info(dev); |
| if (info) |
| __dmar_remove_one_dev_info(info); |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| } |
| |
| static int md_domain_init(struct dmar_domain *domain, int guest_width) |
| { |
| int adjust_width; |
| |
| /* calculate AGAW */ |
| domain->gaw = guest_width; |
| adjust_width = guestwidth_to_adjustwidth(guest_width); |
| domain->agaw = width_to_agaw(adjust_width); |
| |
| domain->iommu_coherency = 0; |
| domain->iommu_snooping = 0; |
| domain->iommu_superpage = 0; |
| domain->max_addr = 0; |
| |
| /* always allocate the top pgd */ |
| domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid); |
| if (!domain->pgd) |
| return -ENOMEM; |
| domain_flush_cache(domain, domain->pgd, PAGE_SIZE); |
| return 0; |
| } |
| |
| static void intel_init_iova_domain(struct dmar_domain *dmar_domain) |
| { |
| init_iova_domain(&dmar_domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN); |
| copy_reserved_iova(&reserved_iova_list, &dmar_domain->iovad); |
| |
| if (!intel_iommu_strict && |
| init_iova_flush_queue(&dmar_domain->iovad, |
| iommu_flush_iova, iova_entry_free)) |
| pr_info("iova flush queue initialization failed\n"); |
| } |
| |
| static struct iommu_domain *intel_iommu_domain_alloc(unsigned type) |
| { |
| struct dmar_domain *dmar_domain; |
| struct iommu_domain *domain; |
| |
| switch (type) { |
| case IOMMU_DOMAIN_DMA: |
| case IOMMU_DOMAIN_UNMANAGED: |
| dmar_domain = alloc_domain(0); |
| if (!dmar_domain) { |
| pr_err("Can't allocate dmar_domain\n"); |
| return NULL; |
| } |
| if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { |
| pr_err("Domain initialization failed\n"); |
| domain_exit(dmar_domain); |
| return NULL; |
| } |
| |
| if (type == IOMMU_DOMAIN_DMA) |
| intel_init_iova_domain(dmar_domain); |
| |
| domain_update_iommu_cap(dmar_domain); |
| |
| domain = &dmar_domain->domain; |
| domain->geometry.aperture_start = 0; |
| domain->geometry.aperture_end = |
| __DOMAIN_MAX_ADDR(dmar_domain->gaw); |
| domain->geometry.force_aperture = true; |
| |
| return domain; |
| case IOMMU_DOMAIN_IDENTITY: |
| return &si_domain->domain; |
| default: |
| return NULL; |
| } |
| |
| return NULL; |
| } |
| |
| static void intel_iommu_domain_free(struct iommu_domain *domain) |
| { |
| if (domain != &si_domain->domain) |
| domain_exit(to_dmar_domain(domain)); |
| } |
| |
| /* |
| * Check whether a @domain could be attached to the @dev through the |
| * aux-domain attach/detach APIs. |
| */ |
| static inline bool |
| is_aux_domain(struct device *dev, struct iommu_domain *domain) |
| { |
| struct device_domain_info *info = get_domain_info(dev); |
| |
| return info && info->auxd_enabled && |
| domain->type == IOMMU_DOMAIN_UNMANAGED; |
| } |
| |
| static void auxiliary_link_device(struct dmar_domain *domain, |
| struct device *dev) |
| { |
| struct device_domain_info *info = get_domain_info(dev); |
| |
| assert_spin_locked(&device_domain_lock); |
| if (WARN_ON(!info)) |
| return; |
| |
| domain->auxd_refcnt++; |
| list_add(&domain->auxd, &info->auxiliary_domains); |
| } |
| |
| static void auxiliary_unlink_device(struct dmar_domain *domain, |
| struct device *dev) |
| { |
| struct device_domain_info *info = get_domain_info(dev); |
| |
| assert_spin_locked(&device_domain_lock); |
| if (WARN_ON(!info)) |
| return; |
| |
| list_del(&domain->auxd); |
| domain->auxd_refcnt--; |
| |
| if (!domain->auxd_refcnt && domain->default_pasid > 0) |
| ioasid_free(domain->default_pasid); |
| } |
| |
| static int aux_domain_add_dev(struct dmar_domain *domain, |
| struct device *dev) |
| { |
| int ret; |
| unsigned long flags; |
| struct intel_iommu *iommu; |
| |
| iommu = device_to_iommu(dev, NULL, NULL); |
| if (!iommu) |
| return -ENODEV; |
| |
| if (domain->default_pasid <= 0) { |
| int pasid; |
| |
| /* No private data needed for the default pasid */ |
| pasid = ioasid_alloc(NULL, PASID_MIN, |
| pci_max_pasids(to_pci_dev(dev)) - 1, |
| NULL); |
| if (pasid == INVALID_IOASID) { |
| pr_err("Can't allocate default pasid\n"); |
| return -ENODEV; |
| } |
| domain->default_pasid = pasid; |
| } |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| /* |
| * iommu->lock must be held to attach domain to iommu and setup the |
| * pasid entry for second level translation. |
| */ |
| spin_lock(&iommu->lock); |
| ret = domain_attach_iommu(domain, iommu); |
| if (ret) |
| goto attach_failed; |
| |
| /* Setup the PASID entry for mediated devices: */ |
| if (domain_use_first_level(domain)) |
| ret = domain_setup_first_level(iommu, domain, dev, |
| domain->default_pasid); |
| else |
| ret = intel_pasid_setup_second_level(iommu, domain, dev, |
| domain->default_pasid); |
| if (ret) |
| goto table_failed; |
| spin_unlock(&iommu->lock); |
| |
| auxiliary_link_device(domain, dev); |
| |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| return 0; |
| |
| table_failed: |
| domain_detach_iommu(domain, iommu); |
| attach_failed: |
| spin_unlock(&iommu->lock); |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| if (!domain->auxd_refcnt && domain->default_pasid > 0) |
| ioasid_free(domain->default_pasid); |
| |
| return ret; |
| } |
| |
| static void aux_domain_remove_dev(struct dmar_domain *domain, |
| struct device *dev) |
| { |
| struct device_domain_info *info; |
| struct intel_iommu *iommu; |
| unsigned long flags; |
| |
| if (!is_aux_domain(dev, &domain->domain)) |
| return; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| info = get_domain_info(dev); |
| iommu = info->iommu; |
| |
| auxiliary_unlink_device(domain, dev); |
| |
| spin_lock(&iommu->lock); |
| intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid, false); |
| domain_detach_iommu(domain, iommu); |
| spin_unlock(&iommu->lock); |
| |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| } |
| |
| static int prepare_domain_attach_device(struct iommu_domain *domain, |
| struct device *dev) |
| { |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| struct intel_iommu *iommu; |
| int addr_width; |
| |
| iommu = device_to_iommu(dev, NULL, NULL); |
| if (!iommu) |
| return -ENODEV; |
| |
| /* check if this iommu agaw is sufficient for max mapped address */ |
| addr_width = agaw_to_width(iommu->agaw); |
| if (addr_width > cap_mgaw(iommu->cap)) |
| addr_width = cap_mgaw(iommu->cap); |
| |
| if (dmar_domain->max_addr > (1LL << addr_width)) { |
| dev_err(dev, "%s: iommu width (%d) is not " |
| "sufficient for the mapped address (%llx)\n", |
| __func__, addr_width, dmar_domain->max_addr); |
| return -EFAULT; |
| } |
| dmar_domain->gaw = addr_width; |
| |
| /* |
| * Knock out extra levels of page tables if necessary |
| */ |
| while (iommu->agaw < dmar_domain->agaw) { |
| struct dma_pte *pte; |
| |
| pte = dmar_domain->pgd; |
| if (dma_pte_present(pte)) { |
| dmar_domain->pgd = (struct dma_pte *) |
| phys_to_virt(dma_pte_addr(pte)); |
| free_pgtable_page(pte); |
| } |
| dmar_domain->agaw--; |
| } |
| |
| return 0; |
| } |
| |
| static int intel_iommu_attach_device(struct iommu_domain *domain, |
| struct device *dev) |
| { |
| int ret; |
| |
| if (domain->type == IOMMU_DOMAIN_UNMANAGED && |
| device_is_rmrr_locked(dev)) { |
| dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n"); |
| return -EPERM; |
| } |
| |
| if (is_aux_domain(dev, domain)) |
| return -EPERM; |
| |
| /* normally dev is not mapped */ |
| if (unlikely(domain_context_mapped(dev))) { |
| struct dmar_domain *old_domain; |
| |
| old_domain = find_domain(dev); |
| if (old_domain) |
| dmar_remove_one_dev_info(dev); |
| } |
| |
| ret = prepare_domain_attach_device(domain, dev); |
| if (ret) |
| return ret; |
| |
| return domain_add_dev_info(to_dmar_domain(domain), dev); |
| } |
| |
| static int intel_iommu_aux_attach_device(struct iommu_domain *domain, |
| struct device *dev) |
| { |
| int ret; |
| |
| if (!is_aux_domain(dev, domain)) |
| return -EPERM; |
| |
| ret = prepare_domain_attach_device(domain, dev); |
| if (ret) |
| return ret; |
| |
| return aux_domain_add_dev(to_dmar_domain(domain), dev); |
| } |
| |
| static void intel_iommu_detach_device(struct iommu_domain *domain, |
| struct device *dev) |
| { |
| dmar_remove_one_dev_info(dev); |
| } |
| |
| static void intel_iommu_aux_detach_device(struct iommu_domain *domain, |
| struct device *dev) |
| { |
| aux_domain_remove_dev(to_dmar_domain(domain), dev); |
| } |
| |
| /* |
| * 2D array for converting and sanitizing IOMMU generic TLB granularity to |
| * VT-d granularity. Invalidation is typically included in the unmap operation |
| * as a result of DMA or VFIO unmap. However, for assigned devices guest |
| * owns the first level page tables. Invalidations of translation caches in the |
| * guest are trapped and passed down to the host. |
| * |
| * vIOMMU in the guest will only expose first level page tables, therefore |
| * we do not support IOTLB granularity for request without PASID (second level). |
| * |
| * For example, to find the VT-d granularity encoding for IOTLB |
| * type and page selective granularity within PASID: |
| * X: indexed by iommu cache type |
| * Y: indexed by enum iommu_inv_granularity |
| * [IOMMU_CACHE_INV_TYPE_IOTLB][IOMMU_INV_GRANU_ADDR] |
| */ |
| |
| static const int |
| inv_type_granu_table[IOMMU_CACHE_INV_TYPE_NR][IOMMU_INV_GRANU_NR] = { |
| /* |
| * PASID based IOTLB invalidation: PASID selective (per PASID), |
| * page selective (address granularity) |
| */ |
| {-EINVAL, QI_GRAN_NONG_PASID, QI_GRAN_PSI_PASID}, |
| /* PASID based dev TLBs */ |
| {-EINVAL, -EINVAL, QI_DEV_IOTLB_GRAN_PASID_SEL}, |
| /* PASID cache */ |
| {-EINVAL, -EINVAL, -EINVAL} |
| }; |
| |
| static inline int to_vtd_granularity(int type, int granu) |
| { |
| return inv_type_granu_table[type][granu]; |
| } |
| |
| static inline u64 to_vtd_size(u64 granu_size, u64 nr_granules) |
| { |
| u64 nr_pages = (granu_size * nr_granules) >> VTD_PAGE_SHIFT; |
| |
| /* VT-d size is encoded as 2^size of 4K pages, 0 for 4k, 9 for 2MB, etc. |
| * IOMMU cache invalidate API passes granu_size in bytes, and number of |
| * granu size in contiguous memory. |
| */ |
| return order_base_2(nr_pages); |
| } |
| |
| #ifdef CONFIG_INTEL_IOMMU_SVM |
| static int |
| intel_iommu_sva_invalidate(struct iommu_domain *domain, struct device *dev, |
| struct iommu_cache_invalidate_info *inv_info) |
| { |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| struct device_domain_info *info; |
| struct intel_iommu *iommu; |
| unsigned long flags; |
| int cache_type; |
| u8 bus, devfn; |
| u16 did, sid; |
| int ret = 0; |
| u64 size = 0; |
| |
| if (!inv_info || !dmar_domain || |
| inv_info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1) |
| return -EINVAL; |
| |
| if (!dev || !dev_is_pci(dev)) |
| return -ENODEV; |
| |
| iommu = device_to_iommu(dev, &bus, &devfn); |
| if (!iommu) |
| return -ENODEV; |
| |
| if (!(dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE)) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| spin_lock(&iommu->lock); |
| info = get_domain_info(dev); |
| if (!info) { |
| ret = -EINVAL; |
| goto out_unlock; |
| } |
| did = dmar_domain->iommu_did[iommu->seq_id]; |
| sid = PCI_DEVID(bus, devfn); |
| |
| /* Size is only valid in address selective invalidation */ |
| if (inv_info->granularity == IOMMU_INV_GRANU_ADDR) |
| size = to_vtd_size(inv_info->addr_info.granule_size, |
| inv_info->addr_info.nb_granules); |
| |
| for_each_set_bit(cache_type, |
| (unsigned long *)&inv_info->cache, |
| IOMMU_CACHE_INV_TYPE_NR) { |
| int granu = 0; |
| u64 pasid = 0; |
| u64 addr = 0; |
| |
| granu = to_vtd_granularity(cache_type, inv_info->granularity); |
| if (granu == -EINVAL) { |
| pr_err_ratelimited("Invalid cache type and granu combination %d/%d\n", |
| cache_type, inv_info->granularity); |
| break; |
| } |
| |
| /* |
| * PASID is stored in different locations based on the |
| * granularity. |
| */ |
| if (inv_info->granularity == IOMMU_INV_GRANU_PASID && |
| (inv_info->pasid_info.flags & IOMMU_INV_PASID_FLAGS_PASID)) |
| pasid = inv_info->pasid_info.pasid; |
| else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR && |
| (inv_info->addr_info.flags & IOMMU_INV_ADDR_FLAGS_PASID)) |
| pasid = inv_info->addr_info.pasid; |
| |
| switch (BIT(cache_type)) { |
| case IOMMU_CACHE_INV_TYPE_IOTLB: |
| /* HW will ignore LSB bits based on address mask */ |
| if (inv_info->granularity == IOMMU_INV_GRANU_ADDR && |
| size && |
| (inv_info->addr_info.addr & ((BIT(VTD_PAGE_SHIFT + size)) - 1))) { |
| pr_err_ratelimited("User address not aligned, 0x%llx, size order %llu\n", |
| inv_info->addr_info.addr, size); |
| } |
| |
| /* |
| * If granu is PASID-selective, address is ignored. |
| * We use npages = -1 to indicate that. |
| */ |
| qi_flush_piotlb(iommu, did, pasid, |
| mm_to_dma_pfn(inv_info->addr_info.addr), |
| (granu == QI_GRAN_NONG_PASID) ? -1 : 1 << size, |
| inv_info->addr_info.flags & IOMMU_INV_ADDR_FLAGS_LEAF); |
| |
| if (!info->ats_enabled) |
| break; |
| /* |
| * Always flush device IOTLB if ATS is enabled. vIOMMU |
| * in the guest may assume IOTLB flush is inclusive, |
| * which is more efficient. |
| */ |
| fallthrough; |
| case IOMMU_CACHE_INV_TYPE_DEV_IOTLB: |
| /* |
| * PASID based device TLB invalidation does not support |
| * IOMMU_INV_GRANU_PASID granularity but only supports |
| * IOMMU_INV_GRANU_ADDR. |
| * The equivalent of that is we set the size to be the |
| * entire range of 64 bit. User only provides PASID info |
| * without address info. So we set addr to 0. |
| */ |
| if (inv_info->granularity == IOMMU_INV_GRANU_PASID) { |
| size = 64 - VTD_PAGE_SHIFT; |
| addr = 0; |
| } else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR) { |
| addr = inv_info->addr_info.addr; |
| } |
| |
| if (info->ats_enabled) |
| qi_flush_dev_iotlb_pasid(iommu, sid, |
| info->pfsid, pasid, |
| info->ats_qdep, addr, |
| size); |
| else |
| pr_warn_ratelimited("Passdown device IOTLB flush w/o ATS!\n"); |
| break; |
| default: |
| dev_err_ratelimited(dev, "Unsupported IOMMU invalidation type %d\n", |
| cache_type); |
| ret = -EINVAL; |
| } |
| } |
| out_unlock: |
| spin_unlock(&iommu->lock); |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| return ret; |
| } |
| #endif |
| |
| static int intel_iommu_map(struct iommu_domain *domain, |
| unsigned long iova, phys_addr_t hpa, |
| size_t size, int iommu_prot, gfp_t gfp) |
| { |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| u64 max_addr; |
| int prot = 0; |
| int ret; |
| |
| if (iommu_prot & IOMMU_READ) |
| prot |= DMA_PTE_READ; |
| if (iommu_prot & IOMMU_WRITE) |
| prot |= DMA_PTE_WRITE; |
| if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping) |
| prot |= DMA_PTE_SNP; |
| |
| max_addr = iova + size; |
| if (dmar_domain->max_addr < max_addr) { |
| u64 end; |
| |
| /* check if minimum agaw is sufficient for mapped address */ |
| end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1; |
| if (end < max_addr) { |
| pr_err("%s: iommu width (%d) is not " |
| "sufficient for the mapped address (%llx)\n", |
| __func__, dmar_domain->gaw, max_addr); |
| return -EFAULT; |
| } |
| dmar_domain->max_addr = max_addr; |
| } |
| /* Round up size to next multiple of PAGE_SIZE, if it and |
| the low bits of hpa would take us onto the next page */ |
| size = aligned_nrpages(hpa, size); |
| ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT, |
| hpa >> VTD_PAGE_SHIFT, size, prot); |
| return ret; |
| } |
| |
| static size_t intel_iommu_unmap(struct iommu_domain *domain, |
| unsigned long iova, size_t size, |
| struct iommu_iotlb_gather *gather) |
| { |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| struct page *freelist = NULL; |
| unsigned long start_pfn, last_pfn; |
| unsigned int npages; |
| int iommu_id, level = 0; |
| |
| /* Cope with horrid API which requires us to unmap more than the |
| size argument if it happens to be a large-page mapping. */ |
| BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level)); |
| |
| if (size < VTD_PAGE_SIZE << level_to_offset_bits(level)) |
| size = VTD_PAGE_SIZE << level_to_offset_bits(level); |
| |
| start_pfn = iova >> VTD_PAGE_SHIFT; |
| last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT; |
| |
| freelist = domain_unmap(dmar_domain, start_pfn, last_pfn); |
| |
| npages = last_pfn - start_pfn + 1; |
| |
| for_each_domain_iommu(iommu_id, dmar_domain) |
| iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain, |
| start_pfn, npages, !freelist, 0); |
| |
| dma_free_pagelist(freelist); |
| |
| if (dmar_domain->max_addr == iova + size) |
| dmar_domain->max_addr = iova; |
| |
| return size; |
| } |
| |
| static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, |
| dma_addr_t iova) |
| { |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| struct dma_pte *pte; |
| int level = 0; |
| u64 phys = 0; |
| |
| pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level); |
| if (pte && dma_pte_present(pte)) |
| phys = dma_pte_addr(pte) + |
| (iova & (BIT_MASK(level_to_offset_bits(level) + |
| VTD_PAGE_SHIFT) - 1)); |
| |
| return phys; |
| } |
| |
| static inline bool scalable_mode_support(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| bool ret = true; |
| |
| rcu_read_lock(); |
| for_each_active_iommu(iommu, drhd) { |
| if (!sm_supported(iommu)) { |
| ret = false; |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static inline bool iommu_pasid_support(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| bool ret = true; |
| |
| rcu_read_lock(); |
| for_each_active_iommu(iommu, drhd) { |
| if (!pasid_supported(iommu)) { |
| ret = false; |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static inline bool nested_mode_support(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| bool ret = true; |
| |
| rcu_read_lock(); |
| for_each_active_iommu(iommu, drhd) { |
| if (!sm_supported(iommu) || !ecap_nest(iommu->ecap)) { |
| ret = false; |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static bool intel_iommu_capable(enum iommu_cap cap) |
| { |
| if (cap == IOMMU_CAP_CACHE_COHERENCY) |
| return domain_update_iommu_snooping(NULL) == 1; |
| if (cap == IOMMU_CAP_INTR_REMAP) |
| return irq_remapping_enabled == 1; |
| |
| return false; |
| } |
| |
| static struct iommu_device *intel_iommu_probe_device(struct device *dev) |
| { |
| struct intel_iommu *iommu; |
| |
| iommu = device_to_iommu(dev, NULL, NULL); |
| if (!iommu) |
| return ERR_PTR(-ENODEV); |
| |
| if (translation_pre_enabled(iommu)) |
| dev_iommu_priv_set(dev, DEFER_DEVICE_DOMAIN_INFO); |
| |
| return &iommu->iommu; |
| } |
| |
| static void intel_iommu_release_device(struct device *dev) |
| { |
| struct intel_iommu *iommu; |
| |
| iommu = device_to_iommu(dev, NULL, NULL); |
| if (!iommu) |
| return; |
| |
| dmar_remove_one_dev_info(dev); |
| |
| set_dma_ops(dev, NULL); |
| } |
| |
| static void intel_iommu_probe_finalize(struct device *dev) |
| { |
| struct iommu_domain *domain; |
| |
| domain = iommu_get_domain_for_dev(dev); |
| if (device_needs_bounce(dev)) |
| set_dma_ops(dev, &bounce_dma_ops); |
| else if (domain && domain->type == IOMMU_DOMAIN_DMA) |
| set_dma_ops(dev, &intel_dma_ops); |
| else |
| set_dma_ops(dev, NULL); |
| } |
| |
| static void intel_iommu_get_resv_regions(struct device *device, |
| struct list_head *head) |
| { |
| int prot = DMA_PTE_READ | DMA_PTE_WRITE; |
| struct iommu_resv_region *reg; |
| struct dmar_rmrr_unit *rmrr; |
| struct device *i_dev; |
| int i; |
| |
| down_read(&dmar_global_lock); |
| for_each_rmrr_units(rmrr) { |
| for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, |
| i, i_dev) { |
| struct iommu_resv_region *resv; |
| enum iommu_resv_type type; |
| size_t length; |
| |
| if (i_dev != device && |
| !is_downstream_to_pci_bridge(device, i_dev)) |
| continue; |
| |
| length = rmrr->end_address - rmrr->base_address + 1; |
| |
| type = device_rmrr_is_relaxable(device) ? |
| IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT; |
| |
| resv = iommu_alloc_resv_region(rmrr->base_address, |
| length, prot, type); |
| if (!resv) |
| break; |
| |
| list_add_tail(&resv->list, head); |
| } |
| } |
| up_read(&dmar_global_lock); |
| |
| #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA |
| if (dev_is_pci(device)) { |
| struct pci_dev *pdev = to_pci_dev(device); |
| |
| if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) { |
| reg = iommu_alloc_resv_region(0, 1UL << 24, prot, |
| IOMMU_RESV_DIRECT_RELAXABLE); |
| if (reg) |
| list_add_tail(®->list, head); |
| } |
| } |
| #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */ |
| |
| reg = iommu_alloc_resv_region(IOAPIC_RANGE_START, |
| IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1, |
| 0, IOMMU_RESV_MSI); |
| if (!reg) |
| return; |
| list_add_tail(®->list, head); |
| } |
| |
| int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev) |
| { |
| struct device_domain_info *info; |
| struct context_entry *context; |
| struct dmar_domain *domain; |
| unsigned long flags; |
| u64 ctx_lo; |
| int ret; |
| |
| domain = find_domain(dev); |
| if (!domain) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| spin_lock(&iommu->lock); |
| |
| ret = -EINVAL; |
| info = get_domain_info(dev); |
| if (!info || !info->pasid_supported) |
| goto out; |
| |
| context = iommu_context_addr(iommu, info->bus, info->devfn, 0); |
| if (WARN_ON(!context)) |
| goto out; |
| |
| ctx_lo = context[0].lo; |
| |
| if (!(ctx_lo & CONTEXT_PASIDE)) { |
| ctx_lo |= CONTEXT_PASIDE; |
| context[0].lo = ctx_lo; |
| wmb(); |
| iommu->flush.flush_context(iommu, |
| domain->iommu_did[iommu->seq_id], |
| PCI_DEVID(info->bus, info->devfn), |
| DMA_CCMD_MASK_NOBIT, |
| DMA_CCMD_DEVICE_INVL); |
| } |
| |
| /* Enable PASID support in the device, if it wasn't already */ |
| if (!info->pasid_enabled) |
| iommu_enable_dev_iotlb(info); |
| |
| ret = 0; |
| |
| out: |
| spin_unlock(&iommu->lock); |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| return ret; |
| } |
| |
| static void intel_iommu_apply_resv_region(struct device *dev, |
| struct iommu_domain *domain, |
| struct iommu_resv_region *region) |
| { |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| unsigned long start, end; |
| |
| start = IOVA_PFN(region->start); |
| end = IOVA_PFN(region->start + region->length - 1); |
| |
| WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end)); |
| } |
| |
| static struct iommu_group *intel_iommu_device_group(struct device *dev) |
| { |
| if (dev_is_pci(dev)) |
| return pci_device_group(dev); |
| return generic_device_group(dev); |
| } |
| |
| static int intel_iommu_enable_auxd(struct device *dev) |
| { |
| struct device_domain_info *info; |
| struct intel_iommu *iommu; |
| unsigned long flags; |
| int ret; |
| |
| iommu = device_to_iommu(dev, NULL, NULL); |
| if (!iommu || dmar_disabled) |
| return -EINVAL; |
| |
| if (!sm_supported(iommu) || !pasid_supported(iommu)) |
| return -EINVAL; |
| |
| ret = intel_iommu_enable_pasid(iommu, dev); |
| if (ret) |
| return -ENODEV; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| info = get_domain_info(dev); |
| info->auxd_enabled = 1; |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| return 0; |
| } |
| |
| static int intel_iommu_disable_auxd(struct device *dev) |
| { |
| struct device_domain_info *info; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&device_domain_lock, flags); |
| info = get_domain_info(dev); |
| if (!WARN_ON(!info)) |
| info->auxd_enabled = 0; |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| |
| return 0; |
| } |
| |
| /* |
| * A PCI express designated vendor specific extended capability is defined |
| * in the section 3.7 of Intel scalable I/O virtualization technical spec |
| * for system software and tools to detect endpoint devices supporting the |
| * Intel scalable IO virtualization without host driver dependency. |
| * |
| * Returns the address of the matching extended capability structure within |
| * the device's PCI configuration space or 0 if the device does not support |
| * it. |
| */ |
| static int siov_find_pci_dvsec(struct pci_dev *pdev) |
| { |
| int pos; |
| u16 vendor, id; |
| |
| pos = pci_find_next_ext_capability(pdev, 0, 0x23); |
| while (pos) { |
| pci_read_config_word(pdev, pos + 4, &vendor); |
| pci_read_config_word(pdev, pos + 8, &id); |
| if (vendor == PCI_VENDOR_ID_INTEL && id == 5) |
| return pos; |
| |
| pos = pci_find_next_ext_capability(pdev, pos, 0x23); |
| } |
| |
| return 0; |
| } |
| |
| static bool |
| intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat) |
| { |
| if (feat == IOMMU_DEV_FEAT_AUX) { |
| int ret; |
| |
| if (!dev_is_pci(dev) || dmar_disabled || |
| !scalable_mode_support() || !iommu_pasid_support()) |
| return false; |
| |
| ret = pci_pasid_features(to_pci_dev(dev)); |
| if (ret < 0) |
| return false; |
| |
| return !!siov_find_pci_dvsec(to_pci_dev(dev)); |
| } |
| |
| if (feat == IOMMU_DEV_FEAT_SVA) { |
| struct device_domain_info *info = get_domain_info(dev); |
| |
| return info && (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) && |
| info->pasid_supported && info->pri_supported && |
| info->ats_supported; |
| } |
| |
| return false; |
| } |
| |
| static int |
| intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat) |
| { |
| if (feat == IOMMU_DEV_FEAT_AUX) |
| return intel_iommu_enable_auxd(dev); |
| |
| if (feat == IOMMU_DEV_FEAT_SVA) { |
| struct device_domain_info *info = get_domain_info(dev); |
| |
| if (!info) |
| return -EINVAL; |
| |
| if (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) |
| return 0; |
| } |
| |
| return -ENODEV; |
| } |
| |
| static int |
| intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat) |
| { |
| if (feat == IOMMU_DEV_FEAT_AUX) |
| return intel_iommu_disable_auxd(dev); |
| |
| return -ENODEV; |
| } |
| |
| static bool |
| intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat) |
| { |
| struct device_domain_info *info = get_domain_info(dev); |
| |
| if (feat == IOMMU_DEV_FEAT_AUX) |
| return scalable_mode_support() && info && info->auxd_enabled; |
| |
| return false; |
| } |
| |
| static int |
| intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev) |
| { |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| |
| return dmar_domain->default_pasid > 0 ? |
| dmar_domain->default_pasid : -EINVAL; |
| } |
| |
| static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain, |
| struct device *dev) |
| { |
| return attach_deferred(dev); |
| } |
| |
| static int |
| intel_iommu_domain_set_attr(struct iommu_domain *domain, |
| enum iommu_attr attr, void *data) |
| { |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| unsigned long flags; |
| int ret = 0; |
| |
| if (domain->type != IOMMU_DOMAIN_UNMANAGED) |
| return -EINVAL; |
| |
| switch (attr) { |
| case DOMAIN_ATTR_NESTING: |
| spin_lock_irqsave(&device_domain_lock, flags); |
| if (nested_mode_support() && |
| list_empty(&dmar_domain->devices)) { |
| dmar_domain->flags |= DOMAIN_FLAG_NESTING_MODE; |
| dmar_domain->flags &= ~DOMAIN_FLAG_USE_FIRST_LEVEL; |
| } else { |
| ret = -ENODEV; |
| } |
| spin_unlock_irqrestore(&device_domain_lock, flags); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Check that the device does not live on an external facing PCI port that is |
| * marked as untrusted. Such devices should not be able to apply quirks and |
| * thus not be able to bypass the IOMMU restrictions. |
| */ |
| static bool risky_device(struct pci_dev *pdev) |
| { |
| if (pdev->untrusted) { |
| pci_info(pdev, |
| "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n", |
| pdev->vendor, pdev->device); |
| pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n"); |
| return true; |
| } |
| return false; |
| } |
| |
| const struct iommu_ops intel_iommu_ops = { |
| .capable = intel_iommu_capable, |
| .domain_alloc = intel_iommu_domain_alloc, |
| .domain_free = intel_iommu_domain_free, |
| .domain_set_attr = intel_iommu_domain_set_attr, |
| .attach_dev = intel_iommu_attach_device, |
| .detach_dev = intel_iommu_detach_device, |
| .aux_attach_dev = intel_iommu_aux_attach_device, |
| .aux_detach_dev = intel_iommu_aux_detach_device, |
| .aux_get_pasid = intel_iommu_aux_get_pasid, |
| .map = intel_iommu_map, |
| .unmap = intel_iommu_unmap, |
| .iova_to_phys = intel_iommu_iova_to_phys, |
| .probe_device = intel_iommu_probe_device, |
| .probe_finalize = intel_iommu_probe_finalize, |
| .release_device = intel_iommu_release_device, |
| .get_resv_regions = intel_iommu_get_resv_regions, |
| .put_resv_regions = generic_iommu_put_resv_regions, |
| .apply_resv_region = intel_iommu_apply_resv_region, |
| .device_group = intel_iommu_device_group, |
| .dev_has_feat = intel_iommu_dev_has_feat, |
| .dev_feat_enabled = intel_iommu_dev_feat_enabled, |
| .dev_enable_feat = intel_iommu_dev_enable_feat, |
| .dev_disable_feat = intel_iommu_dev_disable_feat, |
| .is_attach_deferred = intel_iommu_is_attach_deferred, |
| .def_domain_type = device_def_domain_type, |
| .pgsize_bitmap = INTEL_IOMMU_PGSIZES, |
| #ifdef CONFIG_INTEL_IOMMU_SVM |
| .cache_invalidate = intel_iommu_sva_invalidate, |
| .sva_bind_gpasid = intel_svm_bind_gpasid, |
| .sva_unbind_gpasid = intel_svm_unbind_gpasid, |
| .sva_bind = intel_svm_bind, |
| .sva_unbind = intel_svm_unbind, |
| .sva_get_pasid = intel_svm_get_pasid, |
| .page_response = intel_svm_page_response, |
| #endif |
| }; |
| |
| static void quirk_iommu_igfx(struct pci_dev *dev) |
| { |
| if (risky_device(dev)) |
| return; |
| |
| pci_info(dev, "Disabling IOMMU for graphics on this chipset\n"); |
| dmar_map_gfx = 0; |
| } |
| |
| /* G4x/GM45 integrated gfx dmar support is totally busted. */ |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx); |
| |
| /* Broadwell igfx malfunctions with dmar */ |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx); |
| |
| static void quirk_iommu_rwbf(struct pci_dev *dev) |
| { |
| if (risky_device(dev)) |
| return; |
| |
| /* |
| * Mobile 4 Series Chipset neglects to set RWBF capability, |
| * but needs it. Same seems to hold for the desktop versions. |
| */ |
| pci_info(dev, "Forcing write-buffer flush capability\n"); |
| rwbf_quirk = 1; |
| } |
| |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf); |
| |
| #define GGC 0x52 |
| #define GGC_MEMORY_SIZE_MASK (0xf << 8) |
| #define GGC_MEMORY_SIZE_NONE (0x0 << 8) |
| #define GGC_MEMORY_SIZE_1M (0x1 << 8) |
| #define GGC_MEMORY_SIZE_2M (0x3 << 8) |
| #define GGC_MEMORY_VT_ENABLED (0x8 << 8) |
| #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8) |
| #define GGC_MEMORY_SIZE_3M_VT (0xa << 8) |
| #define GGC_MEMORY_SIZE_4M_VT (0xb << 8) |
| |
| static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev) |
| { |
| unsigned short ggc; |
| |
| if (risky_device(dev)) |
| return; |
| |
| if (pci_read_config_word(dev, GGC, &ggc)) |
| return; |
| |
| if (!(ggc & GGC_MEMORY_VT_ENABLED)) { |
| pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n"); |
| dmar_map_gfx = 0; |
| } else if (dmar_map_gfx) { |
| /* we have to ensure the gfx device is idle before we flush */ |
| pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n"); |
| intel_iommu_strict = 1; |
| } |
| } |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt); |
| |
| static void quirk_igfx_skip_te_disable(struct pci_dev *dev) |
| { |
| unsigned short ver; |
| |
| if (!IS_GFX_DEVICE(dev)) |
| return; |
| |
| ver = (dev->device >> 8) & 0xff; |
| if (ver != 0x45 && ver != 0x46 && ver != 0x4c && |
| ver != 0x4e && ver != 0x8a && ver != 0x98 && |
| ver != 0x9a) |
| return; |
| |
| if (risky_device(dev)) |
| return; |
| |
| pci_info(dev, "Skip IOMMU disabling for graphics\n"); |
| iommu_skip_te_disable = 1; |
| } |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable); |
| |
| /* On Tylersburg chipsets, some BIOSes have been known to enable the |
| ISOCH DMAR unit for the Azalia sound device, but not give it any |
| TLB entries, which causes it to deadlock. Check for that. We do |
| this in a function called from init_dmars(), instead of in a PCI |
| quirk, because we don't want to print the obnoxious "BIOS broken" |
| message if VT-d is actually disabled. |
| */ |
| static void __init check_tylersburg_isoch(void) |
| { |
| struct pci_dev *pdev; |
| uint32_t vtisochctrl; |
| |
| /* If there's no Azalia in the system anyway, forget it. */ |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL); |
| if (!pdev) |
| return; |
| |
| if (risky_device(pdev)) { |
| pci_dev_put(pdev); |
| return; |
| } |
| |
| pci_dev_put(pdev); |
| |
| /* System Management Registers. Might be hidden, in which case |
| we can't do the sanity check. But that's OK, because the |
| known-broken BIOSes _don't_ actually hide it, so far. */ |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL); |
| if (!pdev) |
| return; |
| |
| if (risky_device(pdev)) { |
| pci_dev_put(pdev); |
| return; |
| } |
| |
| if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) { |
| pci_dev_put(pdev); |
| return; |
| } |
| |
| pci_dev_put(pdev); |
| |
| /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */ |
| if (vtisochctrl & 1) |
| return; |
| |
| /* Drop all bits other than the number of TLB entries */ |
| vtisochctrl &= 0x1c; |
| |
| /* If we have the recommended number of TLB entries (16), fine. */ |
| if (vtisochctrl == 0x10) |
| return; |
| |
| /* Zero TLB entries? You get to ride the short bus to school. */ |
| if (!vtisochctrl) { |
| WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n" |
| "BIOS vendor: %s; Ver: %s; Product Version: %s\n", |
| dmi_get_system_info(DMI_BIOS_VENDOR), |
| dmi_get_system_info(DMI_BIOS_VERSION), |
| dmi_get_system_info(DMI_PRODUCT_VERSION)); |
| iommu_identity_mapping |= IDENTMAP_AZALIA; |
| return; |
| } |
| |
| pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n", |
| vtisochctrl); |
| } |