blob: 05bd0779fe9bf7eae08acca31b7ba30f7592b9b1 [file] [log] [blame]
/*
* Overview:
* This is the generic MTD driver for NAND flash devices. It should be
* capable of working with almost all NAND chips currently available.
*
* Additional technical information is available on
* http://www.linux-mtd.infradead.org/doc/nand.html
*
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
* 2002-2006 Thomas Gleixner (tglx@linutronix.de)
*
* Credits:
* David Woodhouse for adding multichip support
*
* Aleph One Ltd. and Toby Churchill Ltd. for supporting the
* rework for 2K page size chips
*
* TODO:
* Enable cached programming for 2k page size chips
* Check, if mtd->ecctype should be set to MTD_ECC_HW
* if we have HW ECC support.
* BBT table is not serialized, has to be fixed
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/nand_bch.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/mtd/partitions.h>
#include <linux/of.h>
#include "internals.h"
static int nand_get_device(struct mtd_info *mtd, int new_state);
static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops);
/* Define default oob placement schemes for large and small page devices */
static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &chip->ecc;
if (section > 1)
return -ERANGE;
if (!section) {
oobregion->offset = 0;
if (mtd->oobsize == 16)
oobregion->length = 4;
else
oobregion->length = 3;
} else {
if (mtd->oobsize == 8)
return -ERANGE;
oobregion->offset = 6;
oobregion->length = ecc->total - 4;
}
return 0;
}
static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
if (section > 1)
return -ERANGE;
if (mtd->oobsize == 16) {
if (section)
return -ERANGE;
oobregion->length = 8;
oobregion->offset = 8;
} else {
oobregion->length = 2;
if (!section)
oobregion->offset = 3;
else
oobregion->offset = 6;
}
return 0;
}
const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
.ecc = nand_ooblayout_ecc_sp,
.free = nand_ooblayout_free_sp,
};
EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &chip->ecc;
if (section || !ecc->total)
return -ERANGE;
oobregion->length = ecc->total;
oobregion->offset = mtd->oobsize - oobregion->length;
return 0;
}
static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &chip->ecc;
if (section)
return -ERANGE;
oobregion->length = mtd->oobsize - ecc->total - 2;
oobregion->offset = 2;
return 0;
}
const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
.ecc = nand_ooblayout_ecc_lp,
.free = nand_ooblayout_free_lp,
};
EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
/*
* Support the old "large page" layout used for 1-bit Hamming ECC where ECC
* are placed at a fixed offset.
*/
static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &chip->ecc;
if (section)
return -ERANGE;
switch (mtd->oobsize) {
case 64:
oobregion->offset = 40;
break;
case 128:
oobregion->offset = 80;
break;
default:
return -EINVAL;
}
oobregion->length = ecc->total;
if (oobregion->offset + oobregion->length > mtd->oobsize)
return -ERANGE;
return 0;
}
static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int ecc_offset = 0;
if (section < 0 || section > 1)
return -ERANGE;
switch (mtd->oobsize) {
case 64:
ecc_offset = 40;
break;
case 128:
ecc_offset = 80;
break;
default:
return -EINVAL;
}
if (section == 0) {
oobregion->offset = 2;
oobregion->length = ecc_offset - 2;
} else {
oobregion->offset = ecc_offset + ecc->total;
oobregion->length = mtd->oobsize - oobregion->offset;
}
return 0;
}
static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
.ecc = nand_ooblayout_ecc_lp_hamming,
.free = nand_ooblayout_free_lp_hamming,
};
static int check_offs_len(struct mtd_info *mtd,
loff_t ofs, uint64_t len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int ret = 0;
/* Start address must align on block boundary */
if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
pr_debug("%s: unaligned address\n", __func__);
ret = -EINVAL;
}
/* Length must align on block boundary */
if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
pr_debug("%s: length not block aligned\n", __func__);
ret = -EINVAL;
}
return ret;
}
/**
* nand_release_device - [GENERIC] release chip
* @mtd: MTD device structure
*
* Release chip lock and wake up anyone waiting on the device.
*/
static void nand_release_device(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
/* Release the controller and the chip */
spin_lock(&chip->controller->lock);
chip->controller->active = NULL;
chip->state = FL_READY;
wake_up(&chip->controller->wq);
spin_unlock(&chip->controller->lock);
}
/**
* nand_block_bad - [DEFAULT] Read bad block marker from the chip
* @chip: NAND chip object
* @ofs: offset from device start
*
* Check, if the block is bad.
*/
static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int page, page_end, res;
u8 bad;
if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
ofs += mtd->erasesize - mtd->writesize;
page = (int)(ofs >> chip->page_shift) & chip->pagemask;
page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1);
for (; page < page_end; page++) {
res = chip->ecc.read_oob(chip, page);
if (res < 0)
return res;
bad = chip->oob_poi[chip->badblockpos];
if (likely(chip->badblockbits == 8))
res = bad != 0xFF;
else
res = hweight8(bad) < chip->badblockbits;
if (res)
return res;
}
return 0;
}
/**
* nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
* @chip: NAND chip object
* @ofs: offset from device start
*
* This is the default implementation, which can be overridden by a hardware
* specific driver. It provides the details for writing a bad block marker to a
* block.
*/
static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct mtd_oob_ops ops;
uint8_t buf[2] = { 0, 0 };
int ret = 0, res, i = 0;
memset(&ops, 0, sizeof(ops));
ops.oobbuf = buf;
ops.ooboffs = chip->badblockpos;
if (chip->options & NAND_BUSWIDTH_16) {
ops.ooboffs &= ~0x01;
ops.len = ops.ooblen = 2;
} else {
ops.len = ops.ooblen = 1;
}
ops.mode = MTD_OPS_PLACE_OOB;
/* Write to first/last page(s) if necessary */
if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
ofs += mtd->erasesize - mtd->writesize;
do {
res = nand_do_write_oob(mtd, ofs, &ops);
if (!ret)
ret = res;
i++;
ofs += mtd->writesize;
} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
return ret;
}
/**
* nand_markbad_bbm - mark a block by updating the BBM
* @chip: NAND chip object
* @ofs: offset of the block to mark bad
*/
int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
{
if (chip->legacy.block_markbad)
return chip->legacy.block_markbad(chip, ofs);
return nand_default_block_markbad(chip, ofs);
}
static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
{
if (chip->legacy.block_bad)
return chip->legacy.block_bad(chip, ofs);
return nand_block_bad(chip, ofs);
}
/**
* nand_block_markbad_lowlevel - mark a block bad
* @mtd: MTD device structure
* @ofs: offset from device start
*
* This function performs the generic NAND bad block marking steps (i.e., bad
* block table(s) and/or marker(s)). We only allow the hardware driver to
* specify how to write bad block markers to OOB (chip->legacy.block_markbad).
*
* We try operations in the following order:
*
* (1) erase the affected block, to allow OOB marker to be written cleanly
* (2) write bad block marker to OOB area of affected block (unless flag
* NAND_BBT_NO_OOB_BBM is present)
* (3) update the BBT
*
* Note that we retain the first error encountered in (2) or (3), finish the
* procedures, and dump the error in the end.
*/
static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int res, ret = 0;
if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
struct erase_info einfo;
/* Attempt erase before marking OOB */
memset(&einfo, 0, sizeof(einfo));
einfo.addr = ofs;
einfo.len = 1ULL << chip->phys_erase_shift;
nand_erase_nand(chip, &einfo, 0);
/* Write bad block marker to OOB */
nand_get_device(mtd, FL_WRITING);
ret = nand_markbad_bbm(chip, ofs);
nand_release_device(mtd);
}
/* Mark block bad in BBT */
if (chip->bbt) {
res = nand_markbad_bbt(chip, ofs);
if (!ret)
ret = res;
}
if (!ret)
mtd->ecc_stats.badblocks++;
return ret;
}
/**
* nand_check_wp - [GENERIC] check if the chip is write protected
* @mtd: MTD device structure
*
* Check, if the device is write protected. The function expects, that the
* device is already selected.
*/
static int nand_check_wp(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
u8 status;
int ret;
/* Broken xD cards report WP despite being writable */
if (chip->options & NAND_BROKEN_XD)
return 0;
/* Check the WP bit */
ret = nand_status_op(chip, &status);
if (ret)
return ret;
return status & NAND_STATUS_WP ? 0 : 1;
}
/**
* nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
* @mtd: MTD device structure
* @ofs: offset from device start
*
* Check if the block is marked as reserved.
*/
static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (!chip->bbt)
return 0;
/* Return info from the table */
return nand_isreserved_bbt(chip, ofs);
}
/**
* nand_block_checkbad - [GENERIC] Check if a block is marked bad
* @mtd: MTD device structure
* @ofs: offset from device start
* @allowbbt: 1, if its allowed to access the bbt area
*
* Check, if the block is bad. Either by reading the bad block table or
* calling of the scan function.
*/
static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
{
struct nand_chip *chip = mtd_to_nand(mtd);
/* Return info from the table */
if (chip->bbt)
return nand_isbad_bbt(chip, ofs, allowbbt);
return nand_isbad_bbm(chip, ofs);
}
/**
* nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
* @chip: NAND chip structure
* @timeout_ms: Timeout in ms
*
* Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
* If that does not happen whitin the specified timeout, -ETIMEDOUT is
* returned.
*
* This helper is intended to be used when the controller does not have access
* to the NAND R/B pin.
*
* Be aware that calling this helper from an ->exec_op() implementation means
* ->exec_op() must be re-entrant.
*
* Return 0 if the NAND chip is ready, a negative error otherwise.
*/
int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
{
const struct nand_sdr_timings *timings;
u8 status = 0;
int ret;
if (!chip->exec_op)
return -ENOTSUPP;
/* Wait tWB before polling the STATUS reg. */
timings = nand_get_sdr_timings(&chip->data_interface);
ndelay(PSEC_TO_NSEC(timings->tWB_max));
ret = nand_status_op(chip, NULL);
if (ret)
return ret;
timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
do {
ret = nand_read_data_op(chip, &status, sizeof(status), true);
if (ret)
break;
if (status & NAND_STATUS_READY)
break;
/*
* Typical lowest execution time for a tR on most NANDs is 10us,
* use this as polling delay before doing something smarter (ie.
* deriving a delay from the timeout value, timeout_ms/ratio).
*/
udelay(10);
} while (time_before(jiffies, timeout_ms));
/*
* We have to exit READ_STATUS mode in order to read real data on the
* bus in case the WAITRDY instruction is preceding a DATA_IN
* instruction.
*/
nand_exit_status_op(chip);
if (ret)
return ret;
return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
};
EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
/**
* panic_nand_get_device - [GENERIC] Get chip for selected access
* @chip: the nand chip descriptor
* @mtd: MTD device structure
* @new_state: the state which is requested
*
* Used when in panic, no locks are taken.
*/
static void panic_nand_get_device(struct nand_chip *chip,
struct mtd_info *mtd, int new_state)
{
/* Hardware controller shared among independent devices */
chip->controller->active = chip;
chip->state = new_state;
}
/**
* nand_get_device - [GENERIC] Get chip for selected access
* @mtd: MTD device structure
* @new_state: the state which is requested
*
* Get the device and lock it for exclusive access
*/
static int
nand_get_device(struct mtd_info *mtd, int new_state)
{
struct nand_chip *chip = mtd_to_nand(mtd);
spinlock_t *lock = &chip->controller->lock;
wait_queue_head_t *wq = &chip->controller->wq;
DECLARE_WAITQUEUE(wait, current);
retry:
spin_lock(lock);
/* Hardware controller shared among independent devices */
if (!chip->controller->active)
chip->controller->active = chip;
if (chip->controller->active == chip && chip->state == FL_READY) {
chip->state = new_state;
spin_unlock(lock);
return 0;
}
if (new_state == FL_PM_SUSPENDED) {
if (chip->controller->active->state == FL_PM_SUSPENDED) {
chip->state = FL_PM_SUSPENDED;
spin_unlock(lock);
return 0;
}
}
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(wq, &wait);
spin_unlock(lock);
schedule();
remove_wait_queue(wq, &wait);
goto retry;
}
/**
* panic_nand_wait - [GENERIC] wait until the command is done
* @mtd: MTD device structure
* @chip: NAND chip structure
* @timeo: timeout
*
* Wait for command done. This is a helper function for nand_wait used when
* we are in interrupt context. May happen when in panic and trying to write
* an oops through mtdoops.
*/
void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
{
int i;
for (i = 0; i < timeo; i++) {
if (chip->legacy.dev_ready) {
if (chip->legacy.dev_ready(chip))
break;
} else {
int ret;
u8 status;
ret = nand_read_data_op(chip, &status, sizeof(status),
true);
if (ret)
return;
if (status & NAND_STATUS_READY)
break;
}
mdelay(1);
}
}
static bool nand_supports_get_features(struct nand_chip *chip, int addr)
{
return (chip->parameters.supports_set_get_features &&
test_bit(addr, chip->parameters.get_feature_list));
}
static bool nand_supports_set_features(struct nand_chip *chip, int addr)
{
return (chip->parameters.supports_set_get_features &&
test_bit(addr, chip->parameters.set_feature_list));
}
/**
* nand_reset_data_interface - Reset data interface and timings
* @chip: The NAND chip
* @chipnr: Internal die id
*
* Reset the Data interface and timings to ONFI mode 0.
*
* Returns 0 for success or negative error code otherwise.
*/
static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
{
int ret;
if (!chip->setup_data_interface)
return 0;
/*
* The ONFI specification says:
* "
* To transition from NV-DDR or NV-DDR2 to the SDR data
* interface, the host shall use the Reset (FFh) command
* using SDR timing mode 0. A device in any timing mode is
* required to recognize Reset (FFh) command issued in SDR
* timing mode 0.
* "
*
* Configure the data interface in SDR mode and set the
* timings to timing mode 0.
*/
onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
ret = chip->setup_data_interface(chip, chipnr, &chip->data_interface);
if (ret)
pr_err("Failed to configure data interface to SDR timing mode 0\n");
return ret;
}
/**
* nand_setup_data_interface - Setup the best data interface and timings
* @chip: The NAND chip
* @chipnr: Internal die id
*
* Find and configure the best data interface and NAND timings supported by
* the chip and the driver.
* First tries to retrieve supported timing modes from ONFI information,
* and if the NAND chip does not support ONFI, relies on the
* ->onfi_timing_mode_default specified in the nand_ids table.
*
* Returns 0 for success or negative error code otherwise.
*/
static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
{
u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
chip->onfi_timing_mode_default,
};
int ret;
if (!chip->setup_data_interface)
return 0;
/* Change the mode on the chip side (if supported by the NAND chip) */
if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
chip->select_chip(chip, chipnr);
ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
tmode_param);
chip->select_chip(chip, -1);
if (ret)
return ret;
}
/* Change the mode on the controller side */
ret = chip->setup_data_interface(chip, chipnr, &chip->data_interface);
if (ret)
return ret;
/* Check the mode has been accepted by the chip, if supported */
if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
return 0;
memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
chip->select_chip(chip, chipnr);
ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
tmode_param);
chip->select_chip(chip, -1);
if (ret)
goto err_reset_chip;
if (tmode_param[0] != chip->onfi_timing_mode_default) {
pr_warn("timing mode %d not acknowledged by the NAND chip\n",
chip->onfi_timing_mode_default);
goto err_reset_chip;
}
return 0;
err_reset_chip:
/*
* Fallback to mode 0 if the chip explicitly did not ack the chosen
* timing mode.
*/
nand_reset_data_interface(chip, chipnr);
chip->select_chip(chip, chipnr);
nand_reset_op(chip);
chip->select_chip(chip, -1);
return ret;
}
/**
* nand_init_data_interface - find the best data interface and timings
* @chip: The NAND chip
*
* Find the best data interface and NAND timings supported by the chip
* and the driver.
* First tries to retrieve supported timing modes from ONFI information,
* and if the NAND chip does not support ONFI, relies on the
* ->onfi_timing_mode_default specified in the nand_ids table. After this
* function nand_chip->data_interface is initialized with the best timing mode
* available.
*
* Returns 0 for success or negative error code otherwise.
*/
static int nand_init_data_interface(struct nand_chip *chip)
{
int modes, mode, ret;
if (!chip->setup_data_interface)
return 0;
/*
* First try to identify the best timings from ONFI parameters and
* if the NAND does not support ONFI, fallback to the default ONFI
* timing mode.
*/
if (chip->parameters.onfi) {
modes = chip->parameters.onfi->async_timing_mode;
} else {
if (!chip->onfi_timing_mode_default)
return 0;
modes = GENMASK(chip->onfi_timing_mode_default, 0);
}
for (mode = fls(modes) - 1; mode >= 0; mode--) {
ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
if (ret)
continue;
/*
* Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
* controller supports the requested timings.
*/
ret = chip->setup_data_interface(chip,
NAND_DATA_IFACE_CHECK_ONLY,
&chip->data_interface);
if (!ret) {
chip->onfi_timing_mode_default = mode;
break;
}
}
return 0;
}
/**
* nand_fill_column_cycles - fill the column cycles of an address
* @chip: The NAND chip
* @addrs: Array of address cycles to fill
* @offset_in_page: The offset in the page
*
* Fills the first or the first two bytes of the @addrs field depending
* on the NAND bus width and the page size.
*
* Returns the number of cycles needed to encode the column, or a negative
* error code in case one of the arguments is invalid.
*/
static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
unsigned int offset_in_page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
/* Make sure the offset is less than the actual page size. */
if (offset_in_page > mtd->writesize + mtd->oobsize)
return -EINVAL;
/*
* On small page NANDs, there's a dedicated command to access the OOB
* area, and the column address is relative to the start of the OOB
* area, not the start of the page. Asjust the address accordingly.
*/
if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
offset_in_page -= mtd->writesize;
/*
* The offset in page is expressed in bytes, if the NAND bus is 16-bit
* wide, then it must be divided by 2.
*/
if (chip->options & NAND_BUSWIDTH_16) {
if (WARN_ON(offset_in_page % 2))
return -EINVAL;
offset_in_page /= 2;
}
addrs[0] = offset_in_page;
/*
* Small page NANDs use 1 cycle for the columns, while large page NANDs
* need 2
*/
if (mtd->writesize <= 512)
return 1;
addrs[1] = offset_in_page >> 8;
return 2;
}
static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, void *buf,
unsigned int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(&chip->data_interface);
u8 addrs[4];
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_READ0, 0),
NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
PSEC_TO_NSEC(sdr->tRR_min)),
NAND_OP_DATA_IN(len, buf, 0),
};
struct nand_operation op = NAND_OPERATION(instrs);
int ret;
/* Drop the DATA_IN instruction if len is set to 0. */
if (!len)
op.ninstrs--;
if (offset_in_page >= mtd->writesize)
instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
else if (offset_in_page >= 256 &&
!(chip->options & NAND_BUSWIDTH_16))
instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
if (ret < 0)
return ret;
addrs[1] = page;
addrs[2] = page >> 8;
if (chip->options & NAND_ROW_ADDR_3) {
addrs[3] = page >> 16;
instrs[1].ctx.addr.naddrs++;
}
return nand_exec_op(chip, &op);
}
static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, void *buf,
unsigned int len)
{
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(&chip->data_interface);
u8 addrs[5];
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_READ0, 0),
NAND_OP_ADDR(4, addrs, 0),
NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
PSEC_TO_NSEC(sdr->tRR_min)),
NAND_OP_DATA_IN(len, buf, 0),
};
struct nand_operation op = NAND_OPERATION(instrs);
int ret;
/* Drop the DATA_IN instruction if len is set to 0. */
if (!len)
op.ninstrs--;
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
if (ret < 0)
return ret;
addrs[2] = page;
addrs[3] = page >> 8;
if (chip->options & NAND_ROW_ADDR_3) {
addrs[4] = page >> 16;
instrs[1].ctx.addr.naddrs++;
}
return nand_exec_op(chip, &op);
}
/**
* nand_read_page_op - Do a READ PAGE operation
* @chip: The NAND chip
* @page: page to read
* @offset_in_page: offset within the page
* @buf: buffer used to store the data
* @len: length of the buffer
*
* This function issues a READ PAGE operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_read_page_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, void *buf, unsigned int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (len && !buf)
return -EINVAL;
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
return -EINVAL;
if (chip->exec_op) {
if (mtd->writesize > 512)
return nand_lp_exec_read_page_op(chip, page,
offset_in_page, buf,
len);
return nand_sp_exec_read_page_op(chip, page, offset_in_page,
buf, len);
}
chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
if (len)
chip->legacy.read_buf(chip, buf, len);
return 0;
}
EXPORT_SYMBOL_GPL(nand_read_page_op);
/**
* nand_read_param_page_op - Do a READ PARAMETER PAGE operation
* @chip: The NAND chip
* @page: parameter page to read
* @buf: buffer used to store the data
* @len: length of the buffer
*
* This function issues a READ PARAMETER PAGE operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
unsigned int len)
{
unsigned int i;
u8 *p = buf;
if (len && !buf)
return -EINVAL;
if (chip->exec_op) {
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(&chip->data_interface);
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_PARAM, 0),
NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
PSEC_TO_NSEC(sdr->tRR_min)),
NAND_OP_8BIT_DATA_IN(len, buf, 0),
};
struct nand_operation op = NAND_OPERATION(instrs);
/* Drop the DATA_IN instruction if len is set to 0. */
if (!len)
op.ninstrs--;
return nand_exec_op(chip, &op);
}
chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
for (i = 0; i < len; i++)
p[i] = chip->legacy.read_byte(chip);
return 0;
}
/**
* nand_change_read_column_op - Do a CHANGE READ COLUMN operation
* @chip: The NAND chip
* @offset_in_page: offset within the page
* @buf: buffer used to store the data
* @len: length of the buffer
* @force_8bit: force 8-bit bus access
*
* This function issues a CHANGE READ COLUMN operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_change_read_column_op(struct nand_chip *chip,
unsigned int offset_in_page, void *buf,
unsigned int len, bool force_8bit)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (len && !buf)
return -EINVAL;
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
return -EINVAL;
/* Small page NANDs do not support column change. */
if (mtd->writesize <= 512)
return -ENOTSUPP;
if (chip->exec_op) {
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(&chip->data_interface);
u8 addrs[2] = {};
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
NAND_OP_ADDR(2, addrs, 0),
NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
PSEC_TO_NSEC(sdr->tCCS_min)),
NAND_OP_DATA_IN(len, buf, 0),
};
struct nand_operation op = NAND_OPERATION(instrs);
int ret;
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
if (ret < 0)
return ret;
/* Drop the DATA_IN instruction if len is set to 0. */
if (!len)
op.ninstrs--;
instrs[3].ctx.data.force_8bit = force_8bit;
return nand_exec_op(chip, &op);
}
chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
if (len)
chip->legacy.read_buf(chip, buf, len);
return 0;
}
EXPORT_SYMBOL_GPL(nand_change_read_column_op);
/**
* nand_read_oob_op - Do a READ OOB operation
* @chip: The NAND chip
* @page: page to read
* @offset_in_oob: offset within the OOB area
* @buf: buffer used to store the data
* @len: length of the buffer
*
* This function issues a READ OOB operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_oob, void *buf, unsigned int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (len && !buf)
return -EINVAL;
if (offset_in_oob + len > mtd->oobsize)
return -EINVAL;
if (chip->exec_op)
return nand_read_page_op(chip, page,
mtd->writesize + offset_in_oob,
buf, len);
chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
if (len)
chip->legacy.read_buf(chip, buf, len);
return 0;
}
EXPORT_SYMBOL_GPL(nand_read_oob_op);
static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, const void *buf,
unsigned int len, bool prog)
{
struct mtd_info *mtd = nand_to_mtd(chip);
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(&chip->data_interface);
u8 addrs[5] = {};
struct nand_op_instr instrs[] = {
/*
* The first instruction will be dropped if we're dealing
* with a large page NAND and adjusted if we're dealing
* with a small page NAND and the page offset is > 255.
*/
NAND_OP_CMD(NAND_CMD_READ0, 0),
NAND_OP_CMD(NAND_CMD_SEQIN, 0),
NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
NAND_OP_DATA_OUT(len, buf, 0),
NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
};
struct nand_operation op = NAND_OPERATION(instrs);
int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
int ret;
u8 status;
if (naddrs < 0)
return naddrs;
addrs[naddrs++] = page;
addrs[naddrs++] = page >> 8;
if (chip->options & NAND_ROW_ADDR_3)
addrs[naddrs++] = page >> 16;
instrs[2].ctx.addr.naddrs = naddrs;
/* Drop the last two instructions if we're not programming the page. */
if (!prog) {
op.ninstrs -= 2;
/* Also drop the DATA_OUT instruction if empty. */
if (!len)
op.ninstrs--;
}
if (mtd->writesize <= 512) {
/*
* Small pages need some more tweaking: we have to adjust the
* first instruction depending on the page offset we're trying
* to access.
*/
if (offset_in_page >= mtd->writesize)
instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
else if (offset_in_page >= 256 &&
!(chip->options & NAND_BUSWIDTH_16))
instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
} else {
/*
* Drop the first command if we're dealing with a large page
* NAND.
*/
op.instrs++;
op.ninstrs--;
}
ret = nand_exec_op(chip, &op);
if (!prog || ret)
return ret;
ret = nand_status_op(chip, &status);
if (ret)
return ret;
return status;
}
/**
* nand_prog_page_begin_op - starts a PROG PAGE operation
* @chip: The NAND chip
* @page: page to write
* @offset_in_page: offset within the page
* @buf: buffer containing the data to write to the page
* @len: length of the buffer
*
* This function issues the first half of a PROG PAGE operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, const void *buf,
unsigned int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (len && !buf)
return -EINVAL;
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
return -EINVAL;
if (chip->exec_op)
return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
len, false);
chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
if (buf)
chip->legacy.write_buf(chip, buf, len);
return 0;
}
EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
/**
* nand_prog_page_end_op - ends a PROG PAGE operation
* @chip: The NAND chip
*
* This function issues the second half of a PROG PAGE operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_prog_page_end_op(struct nand_chip *chip)
{
int ret;
u8 status;
if (chip->exec_op) {
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(&chip->data_interface);
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_PAGEPROG,
PSEC_TO_NSEC(sdr->tWB_max)),
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
};
struct nand_operation op = NAND_OPERATION(instrs);
ret = nand_exec_op(chip, &op);
if (ret)
return ret;
ret = nand_status_op(chip, &status);
if (ret)
return ret;
} else {
chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
ret = chip->legacy.waitfunc(chip);
if (ret < 0)
return ret;
status = ret;
}
if (status & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
/**
* nand_prog_page_op - Do a full PROG PAGE operation
* @chip: The NAND chip
* @page: page to write
* @offset_in_page: offset within the page
* @buf: buffer containing the data to write to the page
* @len: length of the buffer
*
* This function issues a full PROG PAGE operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
unsigned int offset_in_page, const void *buf,
unsigned int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int status;
if (!len || !buf)
return -EINVAL;
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
return -EINVAL;
if (chip->exec_op) {
status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
len, true);
} else {
chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
page);
chip->legacy.write_buf(chip, buf, len);
chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
status = chip->legacy.waitfunc(chip);
}
if (status & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
EXPORT_SYMBOL_GPL(nand_prog_page_op);
/**
* nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
* @chip: The NAND chip
* @offset_in_page: offset within the page
* @buf: buffer containing the data to send to the NAND
* @len: length of the buffer
* @force_8bit: force 8-bit bus access
*
* This function issues a CHANGE WRITE COLUMN operation.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_change_write_column_op(struct nand_chip *chip,
unsigned int offset_in_page,
const void *buf, unsigned int len,
bool force_8bit)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (len && !buf)
return -EINVAL;
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
return -EINVAL;
/* Small page NANDs do not support column change. */
if (mtd->writesize <= 512)
return -ENOTSUPP;
if (chip->exec_op) {
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(&chip->data_interface);
u8 addrs[2];
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_RNDIN, 0),
NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
NAND_OP_DATA_OUT(len, buf, 0),
};
struct nand_operation op = NAND_OPERATION(instrs);
int ret;
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
if (ret < 0)
return ret;
instrs[2].ctx.data.force_8bit = force_8bit;
/* Drop the DATA_OUT instruction if len is set to 0. */
if (!len)
op.ninstrs--;
return nand_exec_op(chip, &op);
}
chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
if (len)
chip->legacy.write_buf(chip, buf, len);
return 0;
}
EXPORT_SYMBOL_GPL(nand_change_write_column_op);
/**
* nand_readid_op - Do a READID operation
* @chip: The NAND chip
* @addr: address cycle to pass after the READID command
* @buf: buffer used to store the ID
* @len: length of the buffer
*
* This function sends a READID command and reads back the ID returned by the
* NAND.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
unsigned int len)
{
unsigned int i;
u8 *id = buf;
if (len && !buf)
return -EINVAL;
if (chip->exec_op) {
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(&chip->data_interface);
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_READID, 0),
NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
NAND_OP_8BIT_DATA_IN(len, buf, 0),
};
struct nand_operation op = NAND_OPERATION(instrs);
/* Drop the DATA_IN instruction if len is set to 0. */
if (!len)
op.ninstrs--;
return nand_exec_op(chip, &op);
}
chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
for (i = 0; i < len; i++)
id[i] = chip->legacy.read_byte(chip);
return 0;
}
EXPORT_SYMBOL_GPL(nand_readid_op);
/**
* nand_status_op - Do a STATUS operation
* @chip: The NAND chip
* @status: out variable to store the NAND status
*
* This function sends a STATUS command and reads back the status returned by
* the NAND.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_status_op(struct nand_chip *chip, u8 *status)
{
if (chip->exec_op) {
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(&chip->data_interface);
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_STATUS,
PSEC_TO_NSEC(sdr->tADL_min)),
NAND_OP_8BIT_DATA_IN(1, status, 0),
};
struct nand_operation op = NAND_OPERATION(instrs);
if (!status)
op.ninstrs--;
return nand_exec_op(chip, &op);
}
chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
if (status)
*status = chip->legacy.read_byte(chip);
return 0;
}
EXPORT_SYMBOL_GPL(nand_status_op);
/**
* nand_exit_status_op - Exit a STATUS operation
* @chip: The NAND chip
*
* This function sends a READ0 command to cancel the effect of the STATUS
* command to avoid reading only the status until a new read command is sent.
*
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_exit_status_op(struct nand_chip *chip)
{
if (chip->exec_op) {
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_READ0, 0),
};
struct nand_operation op = NAND_OPERATION(instrs);
return nand_exec_op(chip, &op);
}
chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
return 0;
}
/**
* nand_erase_op - Do an erase operation
* @chip: The NAND chip
* @eraseblock: block to erase
*
* This function sends an ERASE command and waits for the NAND to be ready
* before returning.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
{
unsigned int page = eraseblock <<
(chip->phys_erase_shift - chip->page_shift);
int ret;
u8 status;
if (chip->exec_op) {
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(&chip->data_interface);
u8 addrs[3] = { page, page >> 8, page >> 16 };
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_ERASE1, 0),
NAND_OP_ADDR(2, addrs, 0),
NAND_OP_CMD(NAND_CMD_ERASE2,
PSEC_TO_MSEC(sdr->tWB_max)),
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
};
struct nand_operation op = NAND_OPERATION(instrs);
if (chip->options & NAND_ROW_ADDR_3)
instrs[1].ctx.addr.naddrs++;
ret = nand_exec_op(chip, &op);
if (ret)
return ret;
ret = nand_status_op(chip, &status);
if (ret)
return ret;
} else {
chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
ret = chip->legacy.waitfunc(chip);
if (ret < 0)
return ret;
status = ret;
}
if (status & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
EXPORT_SYMBOL_GPL(nand_erase_op);
/**
* nand_set_features_op - Do a SET FEATURES operation
* @chip: The NAND chip
* @feature: feature id
* @data: 4 bytes of data
*
* This function sends a SET FEATURES command and waits for the NAND to be
* ready before returning.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
static int nand_set_features_op(struct nand_chip *chip, u8 feature,
const void *data)
{
const u8 *params = data;
int i, ret;
if (chip->exec_op) {
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(&chip->data_interface);
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
PSEC_TO_NSEC(sdr->tWB_max)),
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
};
struct nand_operation op = NAND_OPERATION(instrs);
return nand_exec_op(chip, &op);
}
chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
chip->legacy.write_byte(chip, params[i]);
ret = chip->legacy.waitfunc(chip);
if (ret < 0)
return ret;
if (ret & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
/**
* nand_get_features_op - Do a GET FEATURES operation
* @chip: The NAND chip
* @feature: feature id
* @data: 4 bytes of data
*
* This function sends a GET FEATURES command and waits for the NAND to be
* ready before returning.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
static int nand_get_features_op(struct nand_chip *chip, u8 feature,
void *data)
{
u8 *params = data;
int i;
if (chip->exec_op) {
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(&chip->data_interface);
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
PSEC_TO_NSEC(sdr->tRR_min)),
NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
data, 0),
};
struct nand_operation op = NAND_OPERATION(instrs);
return nand_exec_op(chip, &op);
}
chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
params[i] = chip->legacy.read_byte(chip);
return 0;
}
static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
unsigned int delay_ns)
{
if (chip->exec_op) {
struct nand_op_instr instrs[] = {
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
PSEC_TO_NSEC(delay_ns)),
};
struct nand_operation op = NAND_OPERATION(instrs);
return nand_exec_op(chip, &op);
}
/* Apply delay or wait for ready/busy pin */
if (!chip->legacy.dev_ready)
udelay(chip->legacy.chip_delay);
else
nand_wait_ready(chip);
return 0;
}
/**
* nand_reset_op - Do a reset operation
* @chip: The NAND chip
*
* This function sends a RESET command and waits for the NAND to be ready
* before returning.
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_reset_op(struct nand_chip *chip)
{
if (chip->exec_op) {
const struct nand_sdr_timings *sdr =
nand_get_sdr_timings(&chip->data_interface);
struct nand_op_instr instrs[] = {
NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
};
struct nand_operation op = NAND_OPERATION(instrs);
return nand_exec_op(chip, &op);
}
chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
return 0;
}
EXPORT_SYMBOL_GPL(nand_reset_op);
/**
* nand_read_data_op - Read data from the NAND
* @chip: The NAND chip
* @buf: buffer used to store the data
* @len: length of the buffer
* @force_8bit: force 8-bit bus access
*
* This function does a raw data read on the bus. Usually used after launching
* another NAND operation like nand_read_page_op().
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
bool force_8bit)
{
if (!len || !buf)
return -EINVAL;
if (chip->exec_op) {
struct nand_op_instr instrs[] = {
NAND_OP_DATA_IN(len, buf, 0),
};
struct nand_operation op = NAND_OPERATION(instrs);
instrs[0].ctx.data.force_8bit = force_8bit;
return nand_exec_op(chip, &op);
}
if (force_8bit) {
u8 *p = buf;
unsigned int i;
for (i = 0; i < len; i++)
p[i] = chip->legacy.read_byte(chip);
} else {
chip->legacy.read_buf(chip, buf, len);
}
return 0;
}
EXPORT_SYMBOL_GPL(nand_read_data_op);
/**
* nand_write_data_op - Write data from the NAND
* @chip: The NAND chip
* @buf: buffer containing the data to send on the bus
* @len: length of the buffer
* @force_8bit: force 8-bit bus access
*
* This function does a raw data write on the bus. Usually used after launching
* another NAND operation like nand_write_page_begin_op().
* This function does not select/unselect the CS line.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_write_data_op(struct nand_chip *chip, const void *buf,
unsigned int len, bool force_8bit)
{
if (!len || !buf)
return -EINVAL;
if (chip->exec_op) {
struct nand_op_instr instrs[] = {
NAND_OP_DATA_OUT(len, buf, 0),
};
struct nand_operation op = NAND_OPERATION(instrs);
instrs[0].ctx.data.force_8bit = force_8bit;
return nand_exec_op(chip, &op);
}
if (force_8bit) {
const u8 *p = buf;
unsigned int i;
for (i = 0; i < len; i++)
chip->legacy.write_byte(chip, p[i]);
} else {
chip->legacy.write_buf(chip, buf, len);
}
return 0;
}
EXPORT_SYMBOL_GPL(nand_write_data_op);
/**
* struct nand_op_parser_ctx - Context used by the parser
* @instrs: array of all the instructions that must be addressed
* @ninstrs: length of the @instrs array
* @subop: Sub-operation to be passed to the NAND controller
*
* This structure is used by the core to split NAND operations into
* sub-operations that can be handled by the NAND controller.
*/
struct nand_op_parser_ctx {
const struct nand_op_instr *instrs;
unsigned int ninstrs;
struct nand_subop subop;
};
/**
* nand_op_parser_must_split_instr - Checks if an instruction must be split
* @pat: the parser pattern element that matches @instr
* @instr: pointer to the instruction to check
* @start_offset: this is an in/out parameter. If @instr has already been
* split, then @start_offset is the offset from which to start
* (either an address cycle or an offset in the data buffer).
* Conversely, if the function returns true (ie. instr must be
* split), this parameter is updated to point to the first
* data/address cycle that has not been taken care of.
*
* Some NAND controllers are limited and cannot send X address cycles with a
* unique operation, or cannot read/write more than Y bytes at the same time.
* In this case, split the instruction that does not fit in a single
* controller-operation into two or more chunks.
*
* Returns true if the instruction must be split, false otherwise.
* The @start_offset parameter is also updated to the offset at which the next
* bundle of instruction must start (if an address or a data instruction).
*/
static bool
nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
const struct nand_op_instr *instr,
unsigned int *start_offset)
{
switch (pat->type) {
case NAND_OP_ADDR_INSTR:
if (!pat->ctx.addr.maxcycles)
break;
if (instr->ctx.addr.naddrs - *start_offset >
pat->ctx.addr.maxcycles) {
*start_offset += pat->ctx.addr.maxcycles;
return true;
}
break;
case NAND_OP_DATA_IN_INSTR:
case NAND_OP_DATA_OUT_INSTR:
if (!pat->ctx.data.maxlen)
break;
if (instr->ctx.data.len - *start_offset >
pat->ctx.data.maxlen) {
*start_offset += pat->ctx.data.maxlen;
return true;
}
break;
default:
break;
}
return false;
}
/**
* nand_op_parser_match_pat - Checks if a pattern matches the instructions
* remaining in the parser context
* @pat: the pattern to test
* @ctx: the parser context structure to match with the pattern @pat
*
* Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
* Returns true if this is the case, false ortherwise. When true is returned,
* @ctx->subop is updated with the set of instructions to be passed to the
* controller driver.
*/
static bool
nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
struct nand_op_parser_ctx *ctx)
{
unsigned int instr_offset = ctx->subop.first_instr_start_off;
const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
const struct nand_op_instr *instr = ctx->subop.instrs;
unsigned int i, ninstrs;
for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
/*
* The pattern instruction does not match the operation
* instruction. If the instruction is marked optional in the
* pattern definition, we skip the pattern element and continue
* to the next one. If the element is mandatory, there's no
* match and we can return false directly.
*/
if (instr->type != pat->elems[i].type) {
if (!pat->elems[i].optional)
return false;
continue;
}
/*
* Now check the pattern element constraints. If the pattern is
* not able to handle the whole instruction in a single step,
* we have to split it.
* The last_instr_end_off value comes back updated to point to
* the position where we have to split the instruction (the
* start of the next subop chunk).
*/
if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
&instr_offset)) {
ninstrs++;
i++;
break;
}
instr++;
ninstrs++;
instr_offset = 0;
}
/*
* This can happen if all instructions of a pattern are optional.
* Still, if there's not at least one instruction handled by this
* pattern, this is not a match, and we should try the next one (if
* any).
*/
if (!ninstrs)
return false;
/*
* We had a match on the pattern head, but the pattern may be longer
* than the instructions we're asked to execute. We need to make sure
* there's no mandatory elements in the pattern tail.
*/
for (; i < pat->nelems; i++) {
if (!pat->elems[i].optional)
return false;
}
/*
* We have a match: update the subop structure accordingly and return
* true.
*/
ctx->subop.ninstrs = ninstrs;
ctx->subop.last_instr_end_off = instr_offset;
return true;
}
#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
{
const struct nand_op_instr *instr;
char *prefix = " ";
unsigned int i;
pr_debug("executing subop:\n");
for (i = 0; i < ctx->ninstrs; i++) {
instr = &ctx->instrs[i];
if (instr == &ctx->subop.instrs[0])
prefix = " ->";
switch (instr->type) {
case NAND_OP_CMD_INSTR:
pr_debug("%sCMD [0x%02x]\n", prefix,
instr->ctx.cmd.opcode);
break;
case NAND_OP_ADDR_INSTR:
pr_debug("%sADDR [%d cyc: %*ph]\n", prefix,
instr->ctx.addr.naddrs,
instr->ctx.addr.naddrs < 64 ?
instr->ctx.addr.naddrs : 64,
instr->ctx.addr.addrs);
break;
case NAND_OP_DATA_IN_INSTR:
pr_debug("%sDATA_IN [%d B%s]\n", prefix,
instr->ctx.data.len,
instr->ctx.data.force_8bit ?
", force 8-bit" : "");
break;
case NAND_OP_DATA_OUT_INSTR:
pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
instr->ctx.data.len,
instr->ctx.data.force_8bit ?
", force 8-bit" : "");
break;
case NAND_OP_WAITRDY_INSTR:
pr_debug("%sWAITRDY [max %d ms]\n", prefix,
instr->ctx.waitrdy.timeout_ms);
break;
}
if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
prefix = " ";
}
}
#else
static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
{
/* NOP */
}
#endif
/**
* nand_op_parser_exec_op - exec_op parser
* @chip: the NAND chip
* @parser: patterns description provided by the controller driver
* @op: the NAND operation to address
* @check_only: when true, the function only checks if @op can be handled but
* does not execute the operation
*
* Helper function designed to ease integration of NAND controller drivers that
* only support a limited set of instruction sequences. The supported sequences
* are described in @parser, and the framework takes care of splitting @op into
* multiple sub-operations (if required) and pass them back to the ->exec()
* callback of the matching pattern if @check_only is set to false.
*
* NAND controller drivers should call this function from their own ->exec_op()
* implementation.
*
* Returns 0 on success, a negative error code otherwise. A failure can be
* caused by an unsupported operation (none of the supported patterns is able
* to handle the requested operation), or an error returned by one of the
* matching pattern->exec() hook.
*/
int nand_op_parser_exec_op(struct nand_chip *chip,
const struct nand_op_parser *parser,
const struct nand_operation *op, bool check_only)
{
struct nand_op_parser_ctx ctx = {
.subop.instrs = op->instrs,
.instrs = op->instrs,
.ninstrs = op->ninstrs,
};
unsigned int i;
while (ctx.subop.instrs < op->instrs + op->ninstrs) {
int ret;
for (i = 0; i < parser->npatterns; i++) {
const struct nand_op_parser_pattern *pattern;
pattern = &parser->patterns[i];
if (!nand_op_parser_match_pat(pattern, &ctx))
continue;
nand_op_parser_trace(&ctx);
if (check_only)
break;
ret = pattern->exec(chip, &ctx.subop);
if (ret)
return ret;
break;
}
if (i == parser->npatterns) {
pr_debug("->exec_op() parser: pattern not found!\n");
return -ENOTSUPP;
}
/*
* Update the context structure by pointing to the start of the
* next subop.
*/
ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
if (ctx.subop.last_instr_end_off)
ctx.subop.instrs -= 1;
ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
}
return 0;
}
EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
static bool nand_instr_is_data(const struct nand_op_instr *instr)
{
return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
instr->type == NAND_OP_DATA_OUT_INSTR);
}
static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
unsigned int instr_idx)
{
return subop && instr_idx < subop->ninstrs;
}
static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
unsigned int instr_idx)
{
if (instr_idx)
return 0;
return subop->first_instr_start_off;
}
/**
* nand_subop_get_addr_start_off - Get the start offset in an address array
* @subop: The entire sub-operation
* @instr_idx: Index of the instruction inside the sub-operation
*
* During driver development, one could be tempted to directly use the
* ->addr.addrs field of address instructions. This is wrong as address
* instructions might be split.
*
* Given an address instruction, returns the offset of the first cycle to issue.
*/
unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
unsigned int instr_idx)
{
if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
return 0;
return nand_subop_get_start_off(subop, instr_idx);
}
EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
/**
* nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
* @subop: The entire sub-operation
* @instr_idx: Index of the instruction inside the sub-operation
*
* During driver development, one could be tempted to directly use the
* ->addr->naddrs field of a data instruction. This is wrong as instructions
* might be split.
*
* Given an address instruction, returns the number of address cycle to issue.
*/
unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
unsigned int instr_idx)
{
int start_off, end_off;
if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
return 0;
start_off = nand_subop_get_addr_start_off(subop, instr_idx);
if (instr_idx == subop->ninstrs - 1 &&
subop->last_instr_end_off)
end_off = subop->last_instr_end_off;
else
end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
return end_off - start_off;
}
EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
/**
* nand_subop_get_data_start_off - Get the start offset in a data array
* @subop: The entire sub-operation
* @instr_idx: Index of the instruction inside the sub-operation
*
* During driver development, one could be tempted to directly use the
* ->data->buf.{in,out} field of data instructions. This is wrong as data
* instructions might be split.
*
* Given a data instruction, returns the offset to start from.
*/
unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
unsigned int instr_idx)
{
if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
!nand_instr_is_data(&subop->instrs[instr_idx])))
return 0;
return nand_subop_get_start_off(subop, instr_idx);
}
EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
/**
* nand_subop_get_data_len - Get the number of bytes to retrieve
* @subop: The entire sub-operation
* @instr_idx: Index of the instruction inside the sub-operation
*
* During driver development, one could be tempted to directly use the
* ->data->len field of a data instruction. This is wrong as data instructions
* might be split.
*
* Returns the length of the chunk of data to send/receive.
*/
unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
unsigned int instr_idx)
{
int start_off = 0, end_off;
if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
!nand_instr_is_data(&subop->instrs[instr_idx])))
return 0;
start_off = nand_subop_get_data_start_off(subop, instr_idx);
if (instr_idx == subop->ninstrs - 1 &&
subop->last_instr_end_off)
end_off = subop->last_instr_end_off;
else
end_off = subop->instrs[instr_idx].ctx.data.len;
return end_off - start_off;
}
EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
/**
* nand_reset - Reset and initialize a NAND device
* @chip: The NAND chip
* @chipnr: Internal die id
*
* Save the timings data structure, then apply SDR timings mode 0 (see
* nand_reset_data_interface for details), do the reset operation, and
* apply back the previous timings.
*
* Returns 0 on success, a negative error code otherwise.
*/
int nand_reset(struct nand_chip *chip, int chipnr)
{
struct nand_data_interface saved_data_intf = chip->data_interface;
int ret;
ret = nand_reset_data_interface(chip, chipnr);
if (ret)
return ret;
/*
* The CS line has to be released before we can apply the new NAND
* interface settings, hence this weird ->select_chip() dance.
*/
chip->select_chip(chip, chipnr);
ret = nand_reset_op(chip);
chip->select_chip(chip, -1);
if (ret)
return ret;
/*
* A nand_reset_data_interface() put both the NAND chip and the NAND
* controller in timings mode 0. If the default mode for this chip is
* also 0, no need to proceed to the change again. Plus, at probe time,
* nand_setup_data_interface() uses ->set/get_features() which would
* fail anyway as the parameter page is not available yet.
*/
if (!chip->onfi_timing_mode_default)
return 0;
chip->data_interface = saved_data_intf;
ret = nand_setup_data_interface(chip, chipnr);
if (ret)
return ret;
return 0;
}
EXPORT_SYMBOL_GPL(nand_reset);
/**
* nand_get_features - wrapper to perform a GET_FEATURE
* @chip: NAND chip info structure
* @addr: feature address
* @subfeature_param: the subfeature parameters, a four bytes array
*
* Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
* operation cannot be handled.
*/
int nand_get_features(struct nand_chip *chip, int addr,
u8 *subfeature_param)
{
if (!nand_supports_get_features(chip, addr))
return -ENOTSUPP;
if (chip->legacy.get_features)
return chip->legacy.get_features(chip, addr, subfeature_param);
return nand_get_features_op(chip, addr, subfeature_param);
}
/**
* nand_set_features - wrapper to perform a SET_FEATURE
* @chip: NAND chip info structure
* @addr: feature address
* @subfeature_param: the subfeature parameters, a four bytes array
*
* Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
* operation cannot be handled.
*/
int nand_set_features(struct nand_chip *chip, int addr,
u8 *subfeature_param)
{
if (!nand_supports_set_features(chip, addr))
return -ENOTSUPP;
if (chip->legacy.set_features)
return chip->legacy.set_features(chip, addr, subfeature_param);
return nand_set_features_op(chip, addr, subfeature_param);
}
/**
* nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
* @buf: buffer to test
* @len: buffer length
* @bitflips_threshold: maximum number of bitflips
*
* Check if a buffer contains only 0xff, which means the underlying region
* has been erased and is ready to be programmed.
* The bitflips_threshold specify the maximum number of bitflips before
* considering the region is not erased.
* Note: The logic of this function has been extracted from the memweight
* implementation, except that nand_check_erased_buf function exit before
* testing the whole buffer if the number of bitflips exceed the
* bitflips_threshold value.
*
* Returns a positive number of bitflips less than or equal to
* bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
* threshold.
*/
static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
{
const unsigned char *bitmap = buf;
int bitflips = 0;
int weight;
for (; len && ((uintptr_t)bitmap) % sizeof(long);
len--, bitmap++) {
weight = hweight8(*bitmap);
bitflips += BITS_PER_BYTE - weight;
if (unlikely(bitflips > bitflips_threshold))
return -EBADMSG;
}
for (; len >= sizeof(long);
len -= sizeof(long), bitmap += sizeof(long)) {
unsigned long d = *((unsigned long *)bitmap);
if (d == ~0UL)
continue;
weight = hweight_long(d);
bitflips += BITS_PER_LONG - weight;
if (unlikely(bitflips > bitflips_threshold))
return -EBADMSG;
}
for (; len > 0; len--, bitmap++) {
weight = hweight8(*bitmap);
bitflips += BITS_PER_BYTE - weight;
if (unlikely(bitflips > bitflips_threshold))
return -EBADMSG;
}
return bitflips;
}
/**
* nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
* 0xff data
* @data: data buffer to test
* @datalen: data length
* @ecc: ECC buffer
* @ecclen: ECC length
* @extraoob: extra OOB buffer
* @extraooblen: extra OOB length
* @bitflips_threshold: maximum number of bitflips
*
* Check if a data buffer and its associated ECC and OOB data contains only
* 0xff pattern, which means the underlying region has been erased and is
* ready to be programmed.
* The bitflips_threshold specify the maximum number of bitflips before
* considering the region as not erased.
*
* Note:
* 1/ ECC algorithms are working on pre-defined block sizes which are usually
* different from the NAND page size. When fixing bitflips, ECC engines will
* report the number of errors per chunk, and the NAND core infrastructure
* expect you to return the maximum number of bitflips for the whole page.
* This is why you should always use this function on a single chunk and
* not on the whole page. After checking each chunk you should update your
* max_bitflips value accordingly.
* 2/ When checking for bitflips in erased pages you should not only check
* the payload data but also their associated ECC data, because a user might
* have programmed almost all bits to 1 but a few. In this case, we
* shouldn't consider the chunk as erased, and checking ECC bytes prevent
* this case.
* 3/ The extraoob argument is optional, and should be used if some of your OOB
* data are protected by the ECC engine.
* It could also be used if you support subpages and want to attach some
* extra OOB data to an ECC chunk.
*
* Returns a positive number of bitflips less than or equal to
* bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
* threshold. In case of success, the passed buffers are filled with 0xff.
*/
int nand_check_erased_ecc_chunk(void *data, int datalen,
void *ecc, int ecclen,
void *extraoob, int extraooblen,
int bitflips_threshold)
{
int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
data_bitflips = nand_check_erased_buf(data, datalen,
bitflips_threshold);
if (data_bitflips < 0)
return data_bitflips;
bitflips_threshold -= data_bitflips;
ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
if (ecc_bitflips < 0)
return ecc_bitflips;
bitflips_threshold -= ecc_bitflips;
extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
bitflips_threshold);
if (extraoob_bitflips < 0)
return extraoob_bitflips;
if (data_bitflips)
memset(data, 0xff, datalen);
if (ecc_bitflips)
memset(ecc, 0xff, ecclen);
if (extraoob_bitflips)
memset(extraoob, 0xff, extraooblen);
return data_bitflips + ecc_bitflips + extraoob_bitflips;
}
EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
/**
* nand_read_page_raw_notsupp - dummy read raw page function
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Returns -ENOTSUPP unconditionally.
*/
int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
return -ENOTSUPP;
}
/**
* nand_read_page_raw - [INTERN] read raw page data without ecc
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Not for syndrome calculating ECC controllers, which use a special oob layout.
*/
int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
if (ret)
return ret;
if (oob_required) {
ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
false);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL(nand_read_page_raw);
/**
* nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* We need a special oob layout and handling even when OOB isn't used.
*/
static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
uint8_t *oob = chip->oob_poi;
int steps, size, ret;
ret = nand_read_page_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
for (steps = chip->ecc.steps; steps > 0; steps--) {
ret = nand_read_data_op(chip, buf, eccsize, false);
if (ret)
return ret;
buf += eccsize;
if (chip->ecc.prepad) {
ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
false);
if (ret)
return ret;
oob += chip->ecc.prepad;
}
ret = nand_read_data_op(chip, oob, eccbytes, false);
if (ret)
return ret;
oob += eccbytes;
if (chip->ecc.postpad) {
ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
false);
if (ret)
return ret;
oob += chip->ecc.postpad;
}
}
size = mtd->oobsize - (oob - chip->oob_poi);
if (size) {
ret = nand_read_data_op(chip, oob, size, false);
if (ret)
return ret;
}
return 0;
}
/**
* nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*/
static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int i, eccsize = chip->ecc.size, ret;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_calc = chip->ecc.calc_buf;
uint8_t *ecc_code = chip->ecc.code_buf;
unsigned int max_bitflips = 0;
chip->ecc.read_page_raw(chip, buf, 1, page);
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
chip->ecc.calculate(chip, p, &ecc_calc[i]);
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
eccsteps = chip->ecc.steps;
p = buf;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
* @chip: nand chip info structure
* @data_offs: offset of requested data within the page
* @readlen: data length
* @bufpoi: buffer to store read data
* @page: page number to read
*/
static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
uint32_t readlen, uint8_t *bufpoi, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int start_step, end_step, num_steps, ret;
uint8_t *p;
int data_col_addr, i, gaps = 0;
int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
int index, section = 0;
unsigned int max_bitflips = 0;
struct mtd_oob_region oobregion = { };
/* Column address within the page aligned to ECC size (256bytes) */
start_step = data_offs / chip->ecc.size;
end_step = (data_offs + readlen - 1) / chip->ecc.size;
num_steps = end_step - start_step + 1;
index = start_step * chip->ecc.bytes;
/* Data size aligned to ECC ecc.size */
datafrag_len = num_steps * chip->ecc.size;
eccfrag_len = num_steps * chip->ecc.bytes;
data_col_addr = start_step * chip->ecc.size;
/* If we read not a page aligned data */
p = bufpoi + data_col_addr;
ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
if (ret)
return ret;
/* Calculate ECC */
for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
/*
* The performance is faster if we position offsets according to
* ecc.pos. Let's make sure that there are no gaps in ECC positions.
*/
ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
if (ret)
return ret;
if (oobregion.length < eccfrag_len)
gaps = 1;
if (gaps) {
ret = nand_change_read_column_op(chip, mtd->writesize,
chip->oob_poi, mtd->oobsize,
false);
if (ret)
return ret;
} else {
/*
* Send the command to read the particular ECC bytes take care
* about buswidth alignment in read_buf.
*/
aligned_pos = oobregion.offset & ~(busw - 1);
aligned_len = eccfrag_len;
if (oobregion.offset & (busw - 1))
aligned_len++;
if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
(busw - 1))
aligned_len++;
ret = nand_change_read_column_op(chip,
mtd->writesize + aligned_pos,
&chip->oob_poi[aligned_pos],
aligned_len, false);
if (ret)
return ret;
}
ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
chip->oob_poi, index, eccfrag_len);
if (ret)
return ret;
p = bufpoi + data_col_addr;
for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
int stat;
stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
&chip->ecc.calc_buf[i]);
if (stat == -EBADMSG &&
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
/* check for empty pages with bitflips */
stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
&chip->ecc.code_buf[i],
chip->ecc.bytes,
NULL, 0,
chip->ecc.strength);
}
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Not for syndrome calculating ECC controllers which need a special oob layout.
*/
static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int i, eccsize = chip->ecc.size, ret;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_calc = chip->ecc.calc_buf;
uint8_t *ecc_code = chip->ecc.code_buf;
unsigned int max_bitflips = 0;
ret = nand_read_page_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(chip, NAND_ECC_READ);
ret = nand_read_data_op(chip, p, eccsize, false);
if (ret)
return ret;
chip->ecc.calculate(chip, p, &ecc_calc[i]);
}
ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
if (ret)
return ret;
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
eccsteps = chip->ecc.steps;
p = buf;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
if (stat == -EBADMSG &&
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
/* check for empty pages with bitflips */
stat = nand_check_erased_ecc_chunk(p, eccsize,
&ecc_code[i], eccbytes,
NULL, 0,
chip->ecc.strength);
}
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Hardware ECC for large page chips, require OOB to be read first. For this
* ECC mode, the write_page method is re-used from ECC_HW. These methods
* read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
* multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
* the data area, by overwriting the NAND manufacturer bad block markings.
*/
static int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int i, eccsize = chip->ecc.size, ret;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *ecc_code = chip->ecc.code_buf;
uint8_t *ecc_calc = chip->ecc.calc_buf;
unsigned int max_bitflips = 0;
/* Read the OOB area first */
ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
if (ret)
return ret;
ret = nand_read_page_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
chip->ecc.hwctl(chip, NAND_ECC_READ);
ret = nand_read_data_op(chip, p, eccsize, false);
if (ret)
return ret;
chip->ecc.calculate(chip, p, &ecc_calc[i]);
stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
if (stat == -EBADMSG &&
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
/* check for empty pages with bitflips */
stat = nand_check_erased_ecc_chunk(p, eccsize,
&ecc_code[i], eccbytes,
NULL, 0,
chip->ecc.strength);
}
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/**
* nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* The hw generator calculates the error syndrome automatically. Therefore we
* need a special oob layout and handling.
*/
static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret, i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
unsigned int max_bitflips = 0;
ret = nand_read_page_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat;
chip->ecc.hwctl(chip, NAND_ECC_READ);
ret = nand_read_data_op(chip, p, eccsize, false);
if (ret)
return ret;
if (chip->ecc.prepad) {
ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
false);
if (ret)
return ret;
oob += chip->ecc.prepad;
}
chip->ecc.hwctl(chip, NAND_ECC_READSYN);
ret = nand_read_data_op(chip, oob, eccbytes, false);
if (ret)
return ret;
stat = chip->ecc.correct(chip, p, oob, NULL);
oob += eccbytes;
if (chip->ecc.postpad) {
ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
false);
if (ret)
return ret;
oob += chip->ecc.postpad;
}
if (stat == -EBADMSG &&
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
/* check for empty pages with bitflips */
stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
oob - eccpadbytes,
eccpadbytes,
NULL, 0,
chip->ecc.strength);
}
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
/* Calculate remaining oob bytes */
i = mtd->oobsize - (oob - chip->oob_poi);
if (i) {
ret = nand_read_data_op(chip, oob, i, false);
if (ret)
return ret;
}
return max_bitflips;
}
/**
* nand_transfer_oob - [INTERN] Transfer oob to client buffer
* @mtd: mtd info structure
* @oob: oob destination address
* @ops: oob ops structure
* @len: size of oob to transfer
*/
static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
struct mtd_oob_ops *ops, size_t len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int ret;
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_RAW:
memcpy(oob, chip->oob_poi + ops->ooboffs, len);
return oob + len;
case MTD_OPS_AUTO_OOB:
ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
ops->ooboffs, len);
BUG_ON(ret);
return oob + len;
default:
BUG();
}
return NULL;
}
/**
* nand_setup_read_retry - [INTERN] Set the READ RETRY mode
* @chip: NAND chip object
* @retry_mode: the retry mode to use
*
* Some vendors supply a special command to shift the Vt threshold, to be used
* when there are too many bitflips in a page (i.e., ECC error). After setting
* a new threshold, the host should retry reading the page.
*/
static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
{
pr_debug("setting READ RETRY mode %d\n", retry_mode);
if (retry_mode >= chip->read_retries)
return -EINVAL;
if (!chip->setup_read_retry)
return -EOPNOTSUPP;
return chip->setup_read_retry(chip, retry_mode);
}
static void nand_wait_readrdy(struct nand_chip *chip)
{
const struct nand_sdr_timings *sdr;
if (!(chip->options & NAND_NEED_READRDY))
return;
sdr = nand_get_sdr_timings(&chip->data_interface);
WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0));
}
/**
* nand_do_read_ops - [INTERN] Read data with ECC
* @mtd: MTD device structure
* @from: offset to read from
* @ops: oob ops structure
*
* Internal function. Called with chip held.
*/
static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
int chipnr, page, realpage, col, bytes, aligned, oob_required;
struct nand_chip *chip = mtd_to_nand(mtd);
int ret = 0;
uint32_t readlen = ops->len;
uint32_t oobreadlen = ops->ooblen;
uint32_t max_oobsize = mtd_oobavail(mtd, ops);
uint8_t *bufpoi, *oob, *buf;
int use_bufpoi;
unsigned int max_bitflips = 0;
int retry_mode = 0;
bool ecc_fail = false;
chipnr = (int)(from >> chip->chip_shift);
chip->select_chip(chip, chipnr);
realpage = (int)(from >> chip->page_shift);
page = realpage & chip->pagemask;
col = (int)(from & (mtd->writesize - 1));
buf = ops->datbuf;
oob = ops->oobbuf;
oob_required = oob ? 1 : 0;
while (1) {
unsigned int ecc_failures = mtd->ecc_stats.failed;
bytes = min(mtd->writesize - col, readlen);
aligned = (bytes == mtd->writesize);
if (!aligned)
use_bufpoi = 1;
else if (chip->options & NAND_USE_BOUNCE_BUFFER)
use_bufpoi = !virt_addr_valid(buf) ||
!IS_ALIGNED((unsigned long)buf,
chip->buf_align);
else
use_bufpoi = 0;
/* Is the current page in the buffer? */
if (realpage != chip->pagebuf || oob) {
bufpoi = use_bufpoi ? chip->data_buf : buf;
if (use_bufpoi && aligned)
pr_debug("%s: using read bounce buffer for buf@%p\n",
__func__, buf);
read_retry:
/*
* Now read the page into the buffer. Absent an error,
* the read methods return max bitflips per ecc step.
*/
if (unlikely(ops->mode == MTD_OPS_RAW))
ret = chip->ecc.read_page_raw(chip, bufpoi,
oob_required,
page);
else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
!oob)
ret = chip->ecc.read_subpage(chip, col, bytes,
bufpoi, page);
else
ret = chip->ecc.read_page(chip, bufpoi,
oob_required, page);
if (ret < 0) {
if (use_bufpoi)
/* Invalidate page cache */
chip->pagebuf = -1;
break;
}
/* Transfer not aligned data */
if (use_bufpoi) {
if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
!(mtd->ecc_stats.failed - ecc_failures) &&
(ops->mode != MTD_OPS_RAW)) {
chip->pagebuf = realpage;
chip->pagebuf_bitflips = ret;
} else {
/* Invalidate page cache */
chip->pagebuf = -1;
}
memcpy(buf, chip->data_buf + col, bytes);
}
if (unlikely(oob)) {
int toread = min(oobreadlen, max_oobsize);
if (toread) {
oob = nand_transfer_oob(mtd,
oob, ops, toread);
oobreadlen -= toread;
}
}
nand_wait_readrdy(chip);
if (mtd->ecc_stats.failed - ecc_failures) {
if (retry_mode + 1 < chip->read_retries) {
retry_mode++;
ret = nand_setup_read_retry(chip,
retry_mode);
if (ret < 0)
break;
/* Reset failures; retry */
mtd->ecc_stats.failed = ecc_failures;
goto read_retry;
} else {
/* No more retry modes; real failure */
ecc_fail = true;
}
}
buf += bytes;
max_bitflips = max_t(unsigned int, max_bitflips, ret);
} else {
memcpy(buf, chip->data_buf + col, bytes);
buf += bytes;
max_bitflips = max_t(unsigned int, max_bitflips,
chip->pagebuf_bitflips);
}
readlen -= bytes;
/* Reset to retry mode 0 */
if (retry_mode) {
ret = nand_setup_read_retry(chip, 0);
if (ret < 0)
break;
retry_mode = 0;
}
if (!readlen)
break;
/* For subsequent reads align to page boundary */
col = 0;
/* Increment page address */
realpage++;
page = realpage & chip->pagemask;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
chip->select_chip(chip, -1);
chip->select_chip(chip, chipnr);
}
}
chip->select_chip(chip, -1);
ops->retlen = ops->len - (size_t) readlen;
if (oob)
ops->oobretlen = ops->ooblen - oobreadlen;
if (ret < 0)
return ret;
if (ecc_fail)
return -EBADMSG;
return max_bitflips;
}
/**
* nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
* @chip: nand chip info structure
* @page: page number to read
*/
int nand_read_oob_std(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
}
EXPORT_SYMBOL(nand_read_oob_std);
/**
* nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
* with syndromes
* @chip: nand chip info structure
* @page: page number to read
*/
static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int length = mtd->oobsize;
int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
int eccsize = chip->ecc.size;
uint8_t *bufpoi = chip->oob_poi;
int i, toread, sndrnd = 0, pos, ret;
ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
if (ret)
return ret;
for (i = 0; i < chip->ecc.steps; i++) {
if (sndrnd) {
int ret;
pos = eccsize + i * (eccsize + chunk);
if (mtd->writesize > 512)
ret = nand_change_read_column_op(chip, pos,
NULL, 0,
false);
else
ret = nand_read_page_op(chip, page, pos, NULL,
0);
if (ret)
return ret;
} else
sndrnd = 1;
toread = min_t(int, length, chunk);
ret = nand_read_data_op(chip, bufpoi, toread, false);
if (ret)
return ret;
bufpoi += toread;
length -= toread;
}
if (length > 0) {
ret = nand_read_data_op(chip, bufpoi, length, false);
if (ret)
return ret;
}
return 0;
}
/**
* nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
* @chip: nand chip info structure
* @page: page number to write
*/
int nand_write_oob_std(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
mtd->oobsize);
}
EXPORT_SYMBOL(nand_write_oob_std);
/**
* nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
* with syndrome - only for large page flash
* @chip: nand chip info structure
* @page: page number to write
*/
static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
int eccsize = chip->ecc.size, length = mtd->oobsize;
int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
const uint8_t *bufpoi = chip->oob_poi;
/*
* data-ecc-data-ecc ... ecc-oob
* or
* data-pad-ecc-pad-data-pad .... ecc-pad-oob
*/
if (!chip->ecc.prepad && !chip->ecc.postpad) {
pos = steps * (eccsize + chunk);
steps = 0;
} else
pos = eccsize;
ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
if (ret)
return ret;
for (i = 0; i < steps; i++) {
if (sndcmd) {
if (mtd->writesize <= 512) {
uint32_t fill = 0xFFFFFFFF;
len = eccsize;
while (len > 0) {
int num = min_t(int, len, 4);
ret = nand_write_data_op(chip, &fill,
num, false);
if (ret)
return ret;
len -= num;
}
} else {
pos = eccsize + i * (eccsize + chunk);
ret = nand_change_write_column_op(chip, pos,
NULL, 0,
false);
if (ret)
return ret;
}
} else
sndcmd = 1;
len = min_t(int, length, chunk);
ret = nand_write_data_op(chip, bufpoi, len, false);
if (ret)
return ret;
bufpoi += len;
length -= len;
}
if (length > 0) {
ret = nand_write_data_op(chip, bufpoi, length, false);
if (ret)
return ret;
}
return nand_prog_page_end_op(chip);
}
/**
* nand_do_read_oob - [INTERN] NAND read out-of-band
* @mtd: MTD device structure
* @from: offset to read from
* @ops: oob operations description structure
*
* NAND read out-of-band data from the spare area.
*/
static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
unsigned int max_bitflips = 0;
int page, realpage, chipnr;
struct nand_chip *chip = mtd_to_nand(mtd);
struct mtd_ecc_stats stats;
int readlen = ops->ooblen;
int len;
uint8_t *buf = ops->oobbuf;
int ret = 0;
pr_debug("%s: from = 0x%08Lx, len = %i\n",
__func__, (unsigned long long)from, readlen);
stats = mtd->ecc_stats;
len = mtd_oobavail(mtd, ops);
chipnr = (int)(from >> chip->chip_shift);
chip->select_chip(chip, chipnr);
/* Shift to get page */
realpage = (int)(from >> chip->page_shift);
page = realpage & chip->pagemask;
while (1) {
if (ops->mode == MTD_OPS_RAW)
ret = chip->ecc.read_oob_raw(chip, page);
else
ret = chip->ecc.read_oob(chip, page);
if (ret < 0)
break;
len = min(len, readlen);
buf = nand_transfer_oob(mtd, buf, ops, len);
nand_wait_readrdy(chip);
max_bitflips = max_t(unsigned int, max_bitflips, ret);
readlen -= len;
if (!readlen)
break;
/* Increment page address */
realpage++;
page = realpage & chip->pagemask;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
chip->select_chip(chip, -1);
chip->select_chip(chip, chipnr);
}
}
chip->select_chip(chip, -1);
ops->oobretlen = ops->ooblen - readlen;
if (ret < 0)
return ret;
if (mtd->ecc_stats.failed - stats.failed)
return -EBADMSG;
return max_bitflips;
}
/**
* nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
* @mtd: MTD device structure
* @from: offset to read from
* @ops: oob operation description structure
*
* NAND read data and/or out-of-band data.
*/
static int nand_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
int ret;
ops->retlen = 0;
if (ops->mode != MTD_OPS_PLACE_OOB &&
ops->mode != MTD_OPS_AUTO_OOB &&
ops->mode != MTD_OPS_RAW)
return -ENOTSUPP;
nand_get_device(mtd, FL_READING);
if (!ops->datbuf)
ret = nand_do_read_oob(mtd, from, ops);
else
ret = nand_do_read_ops(mtd, from, ops);
nand_release_device(mtd);
return ret;
}
/**
* nand_write_page_raw_notsupp - dummy raw page write function
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*
* Returns -ENOTSUPP unconditionally.
*/
int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
return -ENOTSUPP;
}
/**
* nand_write_page_raw - [INTERN] raw page write function
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*
* Not for syndrome calculating ECC controllers, which use a special oob layout.
*/
int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
if (ret)
return ret;
if (oob_required) {
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
false);
if (ret)
return ret;
}
return nand_prog_page_end_op(chip);
}
EXPORT_SYMBOL(nand_write_page_raw);
/**
* nand_write_page_raw_syndrome - [INTERN] raw page write function
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*
* We need a special oob layout and handling even when ECC isn't checked.
*/
static int nand_write_page_raw_syndrome(struct nand_chip *chip,
const uint8_t *buf, int oob_required,
int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
uint8_t *oob = chip->oob_poi;
int steps, size, ret;
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
for (steps = chip->ecc.steps; steps > 0; steps--) {
ret = nand_write_data_op(chip, buf, eccsize, false);
if (ret)
return ret;
buf += eccsize;
if (chip->ecc.prepad) {
ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
false);
if (ret)
return ret;
oob += chip->ecc.prepad;
}
ret = nand_write_data_op(chip, oob, eccbytes, false);
if (ret)
return ret;
oob += eccbytes;
if (chip->ecc.postpad) {
ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
false);
if (ret)
return ret;
oob += chip->ecc.postpad;
}
}
size = mtd->oobsize - (oob - chip->oob_poi);
if (size) {
ret = nand_write_data_op(chip, oob, size, false);
if (ret)
return ret;
}
return nand_prog_page_end_op(chip);
}
/**
* nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*/
static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int i, eccsize = chip->ecc.size, ret;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *ecc_calc = chip->ecc.calc_buf;
const uint8_t *p = buf;
/* Software ECC calculation */
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
chip->ecc.calculate(chip, p, &ecc_calc[i]);
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
return chip->ecc.write_page_raw(chip, buf, 1, page);
}
/**
* nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*/
static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int i, eccsize = chip->ecc.size, ret;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *ecc_calc = chip->ecc.calc_buf;
const uint8_t *p = buf;
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(chip, NAND_ECC_WRITE);
ret = nand_write_data_op(chip, p, eccsize, false);
if (ret)
return ret;
chip->ecc.calculate(chip, p, &ecc_calc[i]);
}
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
if (ret)
return ret;
return nand_prog_page_end_op(chip);
}
/**
* nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
* @chip: nand chip info structure
* @offset: column address of subpage within the page
* @data_len: data length
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*/
static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
uint32_t data_len, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
uint8_t *oob_buf = chip->oob_poi;
uint8_t *ecc_calc = chip->ecc.calc_buf;
int ecc_size = chip->ecc.size;
int ecc_bytes = chip->ecc.bytes;
int ecc_steps = chip->ecc.steps;
uint32_t start_step = offset / ecc_size;
uint32_t end_step = (offset + data_len - 1) / ecc_size;
int oob_bytes = mtd->oobsize / ecc_steps;
int step, ret;
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
for (step = 0; step < ecc_steps; step++) {
/* configure controller for WRITE access */
chip->ecc.hwctl(chip, NAND_ECC_WRITE);
/* write data (untouched subpages already masked by 0xFF) */
ret = nand_write_data_op(chip, buf, ecc_size, false);
if (ret)
return ret;
/* mask ECC of un-touched subpages by padding 0xFF */
if ((step < start_step) || (step > end_step))
memset(ecc_calc, 0xff, ecc_bytes);
else
chip->ecc.calculate(chip, buf, ecc_calc);
/* mask OOB of un-touched subpages by padding 0xFF */
/* if oob_required, preserve OOB metadata of written subpage */
if (!oob_required || (step < start_step) || (step > end_step))
memset(oob_buf, 0xff, oob_bytes);
buf += ecc_size;
ecc_calc += ecc_bytes;
oob_buf += oob_bytes;
}
/* copy calculated ECC for whole page to chip->buffer->oob */
/* this include masked-value(0xFF) for unwritten subpages */
ecc_calc = chip->ecc.calc_buf;
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
/* write OOB buffer to NAND device */
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
if (ret)
return ret;
return nand_prog_page_end_op(chip);
}
/**
* nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
*
* The hw generator calculates the error syndrome automatically. Therefore we
* need a special oob layout and handling.
*/
static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
const uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
int ret;
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(chip, NAND_ECC_WRITE);
ret = nand_write_data_op(chip, p, eccsize, false);
if (ret)
return ret;
if (chip->ecc.prepad) {
ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
false);
if (ret)
return ret;
oob += chip->ecc.prepad;
}
chip->ecc.calculate(chip, p, oob);
ret = nand_write_data_op(chip, oob, eccbytes, false);
if (ret)
return ret;
oob += eccbytes;
if (chip->ecc.postpad) {
ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
false);
if (ret)
return ret;
oob += chip->ecc.postpad;
}
}
/* Calculate remaining oob bytes */
i = mtd->oobsize - (oob - chip->oob_poi);
if (i) {
ret = nand_write_data_op(chip, oob, i, false);
if (ret)
return ret;
}
return nand_prog_page_end_op(chip);
}
/**
* nand_write_page - write one page
* @mtd: MTD device structure
* @chip: NAND chip descriptor
* @offset: address offset within the page
* @data_len: length of actual data to be written
* @buf: the data to write
* @oob_required: must write chip->oob_poi to OOB
* @page: page number to write
* @raw: use _raw version of write_page
*/
static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
uint32_t offset, int data_len, const uint8_t *buf,
int oob_required, int page, int raw)
{
int status, subpage;
if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
chip->ecc.write_subpage)
subpage = offset || (data_len < mtd->writesize);
else
subpage = 0;
if (unlikely(raw))
status = chip->ecc.write_page_raw(chip, buf, oob_required,
page);
else if (subpage)
status = chip->ecc.write_subpage(chip, offset, data_len, buf,
oob_required, page);
else
status = chip->ecc.write_page(chip, buf, oob_required, page);
if (status < 0)
return status;
return 0;
}
/**
* nand_fill_oob - [INTERN] Transfer client buffer to oob
* @mtd: MTD device structure
* @oob: oob data buffer
* @len: oob data write length
* @ops: oob ops structure
*/
static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
struct mtd_oob_ops *ops)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int ret;
/*
* Initialise to all 0xFF, to avoid the possibility of left over OOB
* data from a previous OOB read.
*/
memset(chip->oob_poi, 0xff, mtd->oobsize);
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_RAW:
memcpy(chip->oob_poi + ops->ooboffs, oob, len);
return oob + len;
case MTD_OPS_AUTO_OOB:
ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
ops->ooboffs, len);
BUG_ON(ret);
return oob + len;
default:
BUG();
}
return NULL;
}
#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
/**
* nand_do_write_ops - [INTERN] NAND write with ECC
* @mtd: MTD device structure
* @to: offset to write to
* @ops: oob operations description structure
*
* NAND write with ECC.
*/
static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
int chipnr, realpage, page, column;
struct nand_chip *chip = mtd_to_nand(mtd);
uint32_t writelen = ops->len;
uint32_t oobwritelen = ops->ooblen;
uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
uint8_t *oob = ops->oobbuf;
uint8_t *buf = ops->datbuf;
int ret;
int oob_required = oob ? 1 : 0;
ops->retlen = 0;
if (!writelen)
return 0;
/* Reject writes, which are not page aligned */
if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
pr_notice("%s: attempt to write non page aligned data\n",
__func__);
return -EINVAL;
}
column = to & (mtd->writesize - 1);
chipnr = (int)(to >> chip->chip_shift);
chip->select_chip(chip, chipnr);
/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
ret = -EIO;
goto err_out;
}
realpage = (int)(to >> chip->page_shift);
page = realpage & chip->pagemask;
/* Invalidate the page cache, when we write to the cached page */
if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
chip->pagebuf = -1;
/* Don't allow multipage oob writes with offset */
if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
ret = -EINVAL;
goto err_out;
}
while (1) {
int bytes = mtd->writesize;
uint8_t *wbuf = buf;
int use_bufpoi;
int part_pagewr = (column || writelen < mtd->writesize);
if (part_pagewr)
use_bufpoi = 1;
else if (chip->options & NAND_USE_BOUNCE_BUFFER)
use_bufpoi = !virt_addr_valid(buf) ||
!IS_ALIGNED((unsigned long)buf,
chip->buf_align);
else
use_bufpoi = 0;
/* Partial page write?, or need to use bounce buffer */
if (use_bufpoi) {
pr_debug("%s: using write bounce buffer for buf@%p\n",
__func__, buf);
if (part_pagewr)
bytes = min_t(int, bytes - column, writelen);
chip->pagebuf = -1;
memset(chip->data_buf, 0xff, mtd->writesize);
memcpy(&chip->data_buf[column], buf, bytes);
wbuf = chip->data_buf;
}
if (unlikely(oob)) {
size_t len = min(oobwritelen, oobmaxlen);
oob = nand_fill_oob(mtd, oob, len, ops);
oobwritelen -= len;
} else {
/* We still need to erase leftover OOB data */
memset(chip->oob_poi, 0xff, mtd->oobsize);
}
ret = nand_write_page(mtd, chip, column, bytes, wbuf,
oob_required, page,
(ops->mode == MTD_OPS_RAW));
if (ret)
break;
writelen -= bytes;
if (!writelen)
break;
column = 0;
buf += bytes;
realpage++;
page = realpage & chip->pagemask;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
chip->select_chip(chip, -1);
chip->select_chip(chip, chipnr);
}
}
ops->retlen = ops->len - writelen;
if (unlikely(oob))
ops->oobretlen = ops->ooblen;
err_out:
chip->select_chip(chip, -1);
return ret;
}
/**
* panic_nand_write - [MTD Interface] NAND write with ECC
* @mtd: MTD device structure
* @to: offset to write to
* @len: number of bytes to write
* @retlen: pointer to variable to store the number of written bytes
* @buf: the data to write
*
* NAND write with ECC. Used when performing writes in interrupt context, this
* may for example be called by mtdoops when writing an oops while in panic.
*/
static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const uint8_t *buf)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int chipnr = (int)(to >> chip->chip_shift);
struct mtd_oob_ops ops;
int ret;
/* Grab the device */
panic_nand_get_device(chip, mtd, FL_WRITING);
chip->select_chip(chip, chipnr);
/* Wait for the device to get ready */
panic_nand_wait(chip, 400);
memset(&ops, 0, sizeof(ops));
ops.len = len;
ops.datbuf = (uint8_t *)buf;
ops.mode = MTD_OPS_PLACE_OOB;
ret = nand_do_write_ops(mtd, to, &ops);
*retlen = ops.retlen;
return ret;
}
/**
* nand_do_write_oob - [MTD Interface] NAND write out-of-band
* @mtd: MTD device structure
* @to: offset to write to
* @ops: oob operation description structure
*
* NAND write out-of-band.
*/
static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
int chipnr, page, status, len;
struct nand_chip *chip = mtd_to_nand(mtd);
pr_debug("%s: to = 0x%08x, len = %i\n",
__func__, (unsigned int)to, (int)ops->ooblen);
len = mtd_oobavail(mtd, ops);
/* Do not allow write past end of page */
if ((ops->ooboffs + ops->ooblen) > len) {
pr_debug("%s: attempt to write past end of page\n",
__func__);
return -EINVAL;
}
chipnr = (int)(to >> chip->chip_shift);
/*
* Reset the chip. Some chips (like the Toshiba TC5832DC found in one
* of my DiskOnChip 2000 test units) will clear the whole data page too
* if we don't do this. I have no clue why, but I seem to have 'fixed'
* it in the doc2000 driver in August 1999. dwmw2.
*/
nand_reset(chip, chipnr);
chip->select_chip(chip, chipnr);
/* Shift to get page */
page = (int)(to >> chip->page_shift);
/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
chip->select_chip(chip, -1);
return -EROFS;
}
/* Invalidate the page cache, if we write to the cached page */
if (page == chip->pagebuf)
chip->pagebuf = -1;
nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
if (ops->mode == MTD_OPS_RAW)
status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
else
status = chip->ecc.write_oob(chip, page & chip->pagemask);
chip->select_chip(chip, -1);
if (status)
return status;
ops->oobretlen = ops->ooblen;
return 0;
}
/**
* nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
* @mtd: MTD device structure
* @to: offset to write to
* @ops: oob operation description structure
*/
static int nand_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
int ret = -ENOTSUPP;
ops->retlen = 0;
nand_get_device(mtd, FL_WRITING);
switch (ops->mode) {
case MTD_OPS_PLACE_OOB:
case MTD_OPS_AUTO_OOB:
case MTD_OPS_RAW:
break;
default:
goto out;
}
if (!ops->datbuf)
ret = nand_do_write_oob(mtd, to, ops);
else
ret = nand_do_write_ops(mtd, to, ops);
out:
nand_release_device(mtd);
return ret;
}
/**
* single_erase - [GENERIC] NAND standard block erase command function
* @chip: NAND chip object
* @page: the page address of the block which will be erased
*
* Standard erase command for NAND chips. Returns NAND status.
*/
static int single_erase(struct nand_chip *chip, int page)
{
unsigned int eraseblock;
/* Send commands to erase a block */
eraseblock = page >> (chip->phys_erase_shift - chip->page_shift);
return nand_erase_op(chip, eraseblock);
}
/**
* nand_erase - [MTD Interface] erase block(s)
* @mtd: MTD device structure
* @instr: erase instruction
*
* Erase one ore more blocks.
*/
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
{
return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
}
/**
* nand_erase_nand - [INTERN] erase block(s)
* @chip: NAND chip object
* @instr: erase instruction
* @allowbbt: allow erasing the bbt area
*
* Erase one ore more blocks.
*/
int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
int allowbbt)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int page, status, pages_per_block, ret, chipnr;
loff_t len;
pr_debug("%s: start = 0x%012llx, len = %llu\n",
__func__, (unsigned long long)instr->addr,
(unsigned long long)instr->len);
if (check_offs_len(mtd, instr->addr, instr->len))
return -EINVAL;
/* Grab the lock and see if the device is available */
nand_get_device(mtd, FL_ERASING);
/* Shift to get first page */
page = (int)(instr->addr >> chip->page_shift);
chipnr = (int)(instr->addr >> chip->chip_shift);
/* Calculate pages in each block */
pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
/* Select the NAND device */
chip->select_chip(chip, chipnr);
/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
pr_debug("%s: device is write protected!\n",
__func__);
ret = -EIO;
goto erase_exit;
}
/* Loop through the pages */
len = instr->len;
while (len) {
/* Check if we have a bad block, we do not erase bad blocks! */
if (nand_block_checkbad(mtd, ((loff_t) page) <<
chip->page_shift, allowbbt)) {
pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
__func__, page);
ret = -EIO;
goto erase_exit;
}
/*
* Invalidate the page cache, if we erase the block which
* contains the current cached page.
*/
if (page <= chip->pagebuf && chip->pagebuf <
(page + pages_per_block))
chip->pagebuf = -1;
if (chip->legacy.erase)
status = chip->legacy.erase(chip,
page & chip->pagemask);
else
status = single_erase(chip, page & chip->pagemask);
/* See if block erase succeeded */
if (status) {
pr_debug("%s: failed erase, page 0x%08x\n",
__func__, page);
ret = -EIO;
instr->fail_addr =
((loff_t)page << chip->page_shift);
goto erase_exit;
}
/* Increment page address and decrement length */
len -= (1ULL << chip->phys_erase_shift);
page += pages_per_block;
/* Check, if we cross a chip boundary */
if (len && !(page & chip->pagemask)) {
chipnr++;
chip->select_chip(chip, -1);
chip->select_chip(chip, chipnr);
}
}
ret = 0;
erase_exit:
/* Deselect and wake up anyone waiting on the device */
chip->select_chip(chip, -1);
nand_release_device(mtd);
/* Return more or less happy */
return ret;
}
/**
* nand_sync - [MTD Interface] sync
* @mtd: MTD device structure
*
* Sync is actually a wait for chip ready function.
*/
static void nand_sync(struct mtd_info *mtd)
{
pr_debug("%s: called\n", __func__);
/* Grab the lock and see if the device is available */
nand_get_device(mtd, FL_SYNCING);
/* Release it and go back */
nand_release_device(mtd);
}
/**
* nand_block_isbad - [MTD Interface] Check if block at offset is bad
* @mtd: MTD device structure
* @offs: offset relative to mtd start
*/
static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int chipnr = (int)(offs >> chip->chip_shift);
int ret;
/* Select the NAND device */
nand_get_device(mtd, FL_READING);
chip->select_chip(chip, chipnr);
ret = nand_block_checkbad(mtd, offs, 0);
chip->select_chip(chip, -1);
nand_release_device(mtd);
return ret;
}
/**
* nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
* @mtd: MTD device structure
* @ofs: offset relative to mtd start
*/
static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
int ret;
ret = nand_block_isbad(mtd, ofs);
if (ret) {
/* If it was bad already, return success and do nothing */
if (ret > 0)
return 0;
return ret;
}
return nand_block_markbad_lowlevel(mtd, ofs);
}
/**
* nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd
* @mtd: MTD device structure
* @ofs: offset relative to mtd start
* @len: length of mtd
*/
static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
u32 part_start_block;
u32 part_end_block;
u32 part_start_die;
u32 part_end_die;
/*
* max_bb_per_die and blocks_per_die used to determine
* the maximum bad block count.
*/
if (!chip->max_bb_per_die || !chip->blocks_per_die)
return -ENOTSUPP;
/* Get the start and end of the partition in erase blocks. */
part_start_block = mtd_div_by_eb(ofs, mtd);
part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1;
/* Get the start and end LUNs of the partition. */
part_start_die = part_start_block / chip->blocks_per_die;
part_end_die = part_end_block / chip->blocks_per_die;
/*
* Look up the bad blocks per unit and multiply by the number of units
* that the partition spans.
*/
return chip->max_bb_per_die * (part_end_die - part_start_die + 1);
}
/**
* nand_suspend - [MTD Interface] Suspend the NAND flash
* @mtd: MTD device structure
*/
static int nand_suspend(struct mtd_info *mtd)
{
return nand_get_device(mtd, FL_PM_SUSPENDED);
}
/**
* nand_resume - [MTD Interface] Resume the NAND flash
* @mtd: MTD device structure
*/
static void nand_resume(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (chip->state == FL_PM_SUSPENDED)
nand_release_device(mtd);
else
pr_err("%s called for a chip which is not in suspended state\n",
__func__);
}
/**
* nand_shutdown - [MTD Interface] Finish the current NAND operation and
* prevent further operations
* @mtd: MTD device structure
*/
static void nand_shutdown(struct mtd_info *mtd)
{
nand_get_device(mtd, FL_PM_SUSPENDED);
}
/* Set default functions */
static void nand_set_defaults(struct nand_chip *chip)
{
nand_legacy_set_defaults(chip);
if (!chip->controller) {
chip->controller = &chip->dummy_controller;
nand_controller_init(chip->controller);
}
if (!chip->buf_align)
chip->buf_align = 1;
}
/* Sanitize ONFI strings so we can safely print them */
void sanitize_string(uint8_t *s, size_t len)
{
ssize_t i;
/* Null terminate */
s[len - 1] = 0;
/* Remove non printable chars */
for (i = 0; i < len - 1; i++) {
if (s[i] < ' ' || s[i] > 127)
s[i] = '?';
}
/* Remove trailing spaces */
strim(s);
}
/*
* nand_id_has_period - Check if an ID string has a given wraparound period
* @id_data: the ID string
* @arrlen: the length of the @id_data array
* @period: the period of repitition
*
* Check if an ID string is repeated within a given sequence of bytes at
* specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
* period of 3). This is a helper function for nand_id_len(). Returns non-zero
* if the repetition has a period of @period; otherwise, returns zero.
*/
static int nand_id_has_period(u8 *id_data, int arrlen, int period)
{
int i, j;
for (i = 0; i < period; i++)
for (j = i + period; j < arrlen; j += period)
if (id_data[i] != id_data[j])
return 0;
return 1;
}
/*
* nand_id_len - Get the length of an ID string returned by CMD_READID
* @id_data: the ID string
* @arrlen: the length of the @id_data array
* Returns the length of the ID string, according to known wraparound/trailing
* zero patterns. If no pattern exists, returns the length of the array.
*/
static int nand_id_len(u8 *id_data, int arrlen)
{
int last_nonzero, period;
/* Find last non-zero byte */
for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
if (id_data[last_nonzero])
break;
/* All zeros */
if (last_nonzero < 0)
return 0;
/* Calculate wraparound period */
for (period = 1; period < arrlen; period++)
if (nand_id_has_period(id_data, arrlen, period))
break;
/* There's a repeated pattern */
if (period < arrlen)
return period;
/* There are trailing zeros */
if (last_nonzero < arrlen - 1)
return last_nonzero + 1;
/* No pattern detected */
return arrlen;
}
/* Extract the bits of per cell from the 3rd byte of the extended ID */
static int nand_get_bits_per_cell(u8 cellinfo)
{
int bits;
bits = cellinfo & NAND_CI_CELLTYPE_MSK;
bits >>= NAND_CI_CELLTYPE_SHIFT;
return bits + 1;
}
/*
* Many new NAND share similar device ID codes, which represent the size of the
* chip. The rest of the parameters must be decoded according to generic or
* manufacturer-specific "extended ID" decoding patterns.
*/
void nand_decode_ext_id(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int extid;
u8 *id_data = chip->id.data;
/* The 3rd id byte holds MLC / multichip data */
chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
/* The 4th id byte is the important one */
extid = id_data[3];
/* Calc pagesize */
mtd->writesize = 1024 << (extid & 0x03);
extid >>= 2;
/* Calc oobsize */
mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
extid >>= 2;
/* Calc blocksize. Blocksize is multiples of 64KiB */
mtd->erasesize = (64 * 1024) << (extid & 0x03);
extid >>= 2;
/* Get buswidth information */
if (extid & 0x1)
chip->options |= NAND_BUSWIDTH_16;
}
EXPORT_SYMBOL_GPL(nand_decode_ext_id);
/*
* Old devices have chip data hardcoded in the device ID table. nand_decode_id
* decodes a matching ID table entry and assigns the MTD size parameters for
* the chip.
*/
static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
{
struct mtd_info *mtd = nand_to_mtd(chip);
mtd->erasesize = type->erasesize;
mtd->writesize = type->pagesize;
mtd->oobsize = mtd->writesize / 32;
/* All legacy ID NAND are small-page, SLC */
chip->bits_per_cell = 1;
}
/*
* Set the bad block marker/indicator (BBM/BBI) patterns according to some
* heuristic patterns using various detected parameters (e.g., manufacturer,
* page size, cell-type information).
*/
static void nand_decode_bbm_options(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
/* Set the bad block position */
if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
else
chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
}
static inline bool is_full_id_nand(struct nand_flash_dev *type)
{
return type->id_len;
}
static bool find_full_id_nand(struct nand_chip *chip,
struct nand_flash_dev *type)
{
struct mtd_info *mtd = nand_to_mtd(chip);
u8 *id_data = chip->id.data;
if (!strncmp(type->id, id_data, type->id_len)) {
mtd->writesize = type->pagesize;
mtd->erasesize = type->erasesize;
mtd->oobsize = type->oobsize;
chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
chip->chipsize = (uint64_t)type->chipsize << 20;
chip->options |= type->options;
chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
chip->ecc_step_ds = NAND_ECC_STEP(type);
chip->onfi_timing_mode_default =
type->onfi_timing_mode_default;
chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
if (!chip->parameters.model)
return false;
return true;
}
return false;
}
/*
* Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
* compliant and does not have a full-id or legacy-id entry in the nand_ids
* table.
*/
static void nand_manufacturer_detect(struct nand_chip *chip)
{
/*
* Try manufacturer detection if available and use
* nand_decode_ext_id() otherwise.
*/
if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
chip->manufacturer.desc->ops->detect) {
/* The 3rd id byte holds MLC / multichip data */
chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
chip->manufacturer.desc->ops->detect(chip);
} else {
nand_decode_ext_id(chip);
}
}
/*
* Manufacturer initialization. This function is called for all NANDs including
* ONFI and JEDEC compliant ones.
* Manufacturer drivers should put all their specific initialization code in
* their ->init() hook.
*/
static int nand_manufacturer_init(struct nand_chip *chip)
{
if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
!chip->manufacturer.desc->ops->init)
return 0;
return chip->manufacturer.desc->ops->init(chip);
}
/*
* Manufacturer cleanup. This function is called for all NANDs including
* ONFI and JEDEC compliant ones.
* Manufacturer drivers should put all their specific cleanup code in their
* ->cleanup() hook.
*/
static void nand_manufacturer_cleanup(struct nand_chip *chip)
{
/* Release manufacturer private data */
if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
chip->manufacturer.desc->ops->cleanup)
chip->manufacturer.desc->ops->cleanup(chip);
}
static const char *
nand_manufacturer_name(const struct nand_manufacturer *manufacturer)
{
return manufacturer ? manufacturer->name : "Unknown";
}
/*
* Get the flash and manufacturer id and lookup if the type is supported.
*/
static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
{
const struct nand_manufacturer *manufacturer;
struct mtd_info *mtd = nand_to_mtd(chip);
int busw, ret;
u8 *id_data = chip->id.data;
u8 maf_id, dev_id;
/*
* Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
* after power-up.
*/
ret = nand_reset(chip, 0);
if (ret)
return ret;
/* Select the device */
chip->select_chip(chip, 0);
/* Send the command for reading device ID */
ret = nand_readid_op(chip, 0, id_data, 2);
if (ret)
return ret;
/* Read manufacturer and device IDs */
maf_id = id_data[0];
dev_id = id_data[1];
/*
* Try again to make sure, as some systems the bus-hold or other
* interface concerns can cause random data which looks like a
* possibly credible NAND flash to appear. If the two results do
* not match, ignore the device completely.
*/
/* Read entire ID string */
ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
if (ret)
return ret;
if (id_data[0] != maf_id || id_data[1] != dev_id) {
pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
maf_id, dev_id, id_data[0], id_data[1]);
return -ENODEV;
}
chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
/* Try to identify manufacturer */
manufacturer = nand_get_manufacturer(maf_id);
chip->manufacturer.desc = manufacturer;
if (!type)
type = nand_flash_ids;
/*
* Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
* override it.
* This is required to make sure initial NAND bus width set by the
* NAND controller driver is coherent with the real NAND bus width
* (extracted by auto-detection code).
*/
busw = chip->options & NAND_BUSWIDTH_16;
/*
* The flag is only set (never cleared), reset it to its default value
* before starting auto-detection.
*/
chip->options &= ~NAND_BUSWIDTH_16;
for (; type->name != NULL; type++) {
if (is_full_id_nand(type)) {
if (find_full_id_nand(chip, type))
goto ident_done;
} else if (dev_id == type->dev_id) {
break;
}
}
if (!type->name || !type->pagesize) {
/* Check if the chip is ONFI compliant */
ret = nand_onfi_detect(chip);
if (ret < 0)
return ret;
else if (ret)
goto ident_done;
/* Check if the chip is JEDEC compliant */
ret = nand_jedec_detect(chip);
if (ret < 0)
return ret;
else if (ret)
goto ident_done;
}
if (!type->name)
return -ENODEV;
chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
if (!chip->parameters.model)
return -ENOMEM;
chip->chipsize = (uint64_t)type->chipsize << 20;
if (!type->pagesize)
nand_manufacturer_detect(chip);
else
nand_decode_id(chip, type);
/* Get chip options */
chip->options |= type->options;
ident_done:
if (!mtd->name)
mtd->name = chip->parameters.model;
if (chip->options & NAND_BUSWIDTH_AUTO) {
WARN_ON(busw & NAND_BUSWIDTH_16);
nand_set_defaults(chip);
} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
/*
* Check, if buswidth is correct. Hardware drivers should set
* chip correct!
*/
pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
maf_id, dev_id);
pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
mtd->name);
pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
ret = -EINVAL;
goto free_detect_allocation;
}
nand_decode_bbm_options(chip);
/* Calculate the address shift from the page size */
chip->page_shift = ffs(mtd->writesize) - 1;
/* Convert chipsize to number of pages per chip -1 */
chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
chip->bbt_erase_shift = chip->phys_erase_shift =
ffs(mtd->erasesize) - 1;
if (chip->chipsize & 0xffffffff)
chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
else {
chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
chip->chip_shift += 32 - 1;
}
if (chip->chip_shift - chip->page_shift > 16)
chip->options |= NAND_ROW_ADDR_3;
chip->badblockbits = 8;
nand_legacy_adjust_cmdfunc(chip);
pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
maf_id, dev_id);
pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
chip->parameters.model);
pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
return 0;
free_detect_allocation:
kfree(chip->parameters.model);
return ret;
}
static const char * const nand_ecc_modes[] = {
[NAND_ECC_NONE] = "none",
[NAND_ECC_SOFT] = "soft",
[NAND_ECC_HW] = "hw",
[NAND_ECC_HW_SYNDROME] = "hw_syndrome",
[NAND_ECC_HW_OOB_FIRST] = "hw_oob_first",
[NAND_ECC_ON_DIE] = "on-die",
};
static int of_get_nand_ecc_mode(struct device_node *np)
{
const char *pm;
int err, i;
err = of_property_read_string(np, "nand-ecc-mode", &pm);
if (err < 0)
return err;
for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
if (!strcasecmp(pm, nand_ecc_modes[i]))
return i;
/*
* For backward compatibility we support few obsoleted values that don't
* have their mappings into nand_ecc_modes_t anymore (they were merged
* with other enums).
*/
if (!strcasecmp(pm, "soft_bch"))
return NAND_ECC_SOFT;
return -ENODEV;
}
static const char * const nand_ecc_algos[] = {
[NAND_ECC_HAMMING] = "hamming",
[NAND_ECC_BCH] = "bch",
[NAND_ECC_RS] = "rs",
};
static int of_get_nand_ecc_algo(struct device_node *np)
{
const char *pm;
int err, i;
err = of_property_read_string(np, "nand-ecc-algo", &pm);
if (!err) {
for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
if (!strcasecmp(pm, nand_ecc_algos[i]))
return i;
return -ENODEV;
}
/*
* For backward compatibility we also read "nand-ecc-mode" checking
* for some obsoleted values that were specifying ECC algorithm.
*/
err = of_property_read_string(np, "nand-ecc-mode", &pm);
if (err < 0)
return err;
if (!strcasecmp(pm, "soft"))
return NAND_ECC_HAMMING;
else if (!strcasecmp(pm, "soft_bch"))
return NAND_ECC_BCH;
return -ENODEV;
}
static int of_get_nand_ecc_step_size(struct device_node *np)
{
int ret;
u32 val;
ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
return ret ? ret : val;
}
static int of_get_nand_ecc_strength(struct device_node *np)
{
int ret;
u32 val;
ret = of_property_read_u32(np, "nand-ecc-strength", &val);
return ret ? ret : val;
}
static int of_get_nand_bus_width(struct device_node *np)
{
u32 val;
if (of_property_read_u32(np, "nand-bus-width", &val))
return 8;
switch (val) {
case 8:
case 16:
return val;
default:
return -EIO;
}
}
static bool of_get_nand_on_flash_bbt(struct device_node *np)
{
return of_property_read_bool(np, "nand-on-flash-bbt");
}
static int nand_dt_init(struct nand_chip *chip)
{
struct device_node *dn = nand_get_flash_node(chip);
int ecc_mode, ecc_algo, ecc_strength, ecc_step;
if (!dn)
return 0;
if (of_get_nand_bus_width(dn) == 16)
chip->options |= NAND_BUSWIDTH_16;
if (of_property_read_bool(dn, "nand-is-boot-medium"))
chip->options |= NAND_IS_BOOT_MEDIUM;
if (of_get_nand_on_flash_bbt(dn))
chip->bbt_options |= NAND_BBT_USE_FLASH;
ecc_mode = of_get_nand_ecc_mode(dn);
ecc_algo = of_get_nand_ecc_algo(dn);
ecc_strength = of_get_nand_ecc_strength(dn);
ecc_step = of_get_nand_ecc_step_size(dn);
if (ecc_mode >= 0)
chip->ecc.mode = ecc_mode;
if (ecc_algo >= 0)
chip->ecc.algo = ecc_algo;
if (ecc_strength >= 0)
chip->ecc.strength = ecc_strength;
if (ecc_step > 0)
chip->ecc.size = ecc_step;
if (of_property_read_bool(dn, "nand-ecc-maximize"))
chip->ecc.options |= NAND_ECC_MAXIMIZE;
return 0;
}
/**
* nand_scan_ident - Scan for the NAND device
* @chip: NAND chip object
* @maxchips: number of chips to scan for
* @table: alternative NAND ID table
*
* This is the first phase of the normal nand_scan() function. It reads the
* flash ID and sets up MTD fields accordingly.
*
* This helper used to be called directly from controller drivers that needed
* to tweak some ECC-related parameters before nand_scan_tail(). This separation
* prevented dynamic allocations during this phase which was unconvenient and
* as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
*/
static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
struct nand_flash_dev *table)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int nand_maf_id, nand_dev_id;
unsigned int i;
int ret;
/* Enforce the right timings for reset/detection */
onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
ret = nand_dt_init(chip);
if (ret)
return ret;
if (!mtd->name && mtd->dev.parent)
mtd->name = dev_name(mtd->dev.parent);
if (chip->exec_op && !chip->select_chip) {
pr_err("->select_chip() is mandatory when implementing ->exec_op()\n");
return -EINVAL;
}
ret = nand_legacy_check_hooks(chip);
if (ret)
return ret;
/* Set the default functions */
nand_set_defaults(chip);
/* Read the flash type */
ret = nand_detect(chip, table);
if (ret) {
if (!(chip->options & NAND_SCAN_SILENT_NODEV))
pr_warn("No NAND device found\n");
chip->select_chip(chip, -1);
return ret;
}
nand_maf_id = chip->id.data[0];
nand_dev_id = chip->id.data[1];
chip->select_chip(chip, -1);
/* Check for a chip array */
for (i = 1; i < maxchips; i++) {
u8 id[2];
/* See comment in nand_get_flash_type for reset */
nand_reset(chip, i);
chip->select_chip(chip, i);
/* Send the command for reading device ID */
nand_readid_op(chip, 0, id, sizeof(id));
/* Read manufacturer and device IDs */
if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
chip->select_chip(chip, -1);
break;
}
chip->select_chip(chip, -1);
}
if (i > 1)
pr_info("%d chips detected\n", i);
/* Store the number of chips and calc total size for mtd */
chip->numchips = i;
mtd->size = i * chip->chipsize;
return 0;
}
static void nand_scan_ident_cleanup(struct nand_chip *chip)
{
kfree(chip->parameters.model);
kfree(chip->parameters.onfi);
}
static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &chip->ecc;
if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
return -EINVAL;
switch (ecc->algo) {
case NAND_ECC_HAMMING:
ecc->calculate = nand_calculate_ecc;
ecc->correct = nand_correct_data;
ecc->read_page = nand_read_page_swecc;
ecc->read_subpage = nand_read_subpage;
ecc->write_page = nand_write_page_swecc;
ecc->read_page_raw = nand_read_page_raw;
ecc->write_page_raw = nand_write_page_raw;
ecc->read_oob = nand_read_oob_std;
ecc->write_oob = nand_write_oob_std;
if (!ecc->size)
ecc->size = 256;
ecc->bytes = 3;
ecc->strength = 1;
if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC))
ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
return 0;
case NAND_ECC_BCH:
if (!mtd_nand_has_bch()) {
WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
return -EINVAL;
}
ecc->calculate = nand_bch_calculate_ecc;
ecc->correct = nand_bch_correct_data;
ecc->read_page = nand_read_page_swecc;
ecc->read_subpage = nand_read_subpage;
ecc->write_page = nand_write_page_swecc;
ecc->read_page_raw = nand_read_page_raw;
ecc->write_page_raw = nand_write_page_raw;
ecc->read_oob = nand_read_oob_std;
ecc->write_oob = nand_write_oob_std;
/*
* Board driver should supply ecc.size and ecc.strength
* values to select how many bits are correctable.
* Otherwise, default to 4 bits for large page devices.
*/
if (!ecc->size && (mtd->oobsize >= 64)) {
ecc->size = 512;
ecc->strength = 4;
}
/*
* if no ecc placement scheme was provided pickup the default
* large page one.
*/
if (!mtd->ooblayout) {
/* handle large page devices only */
if (mtd->oobsize < 64) {
WARN(1, "OOB layout is required when using software BCH on small pages\n");
return -EINVAL;
}
mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
}
/*
* We can only maximize ECC config when the default layout is
* used, otherwise we don't know how many bytes can really be
* used.
*/
if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
ecc->options & NAND_ECC_MAXIMIZE) {
int steps, bytes;
/* Always prefer 1k blocks over 512bytes ones */
ecc->size = 1024;
steps = mtd->writesize / ecc->size;
/* Reserve 2 bytes for the BBM */
bytes = (mtd->oobsize - 2) / steps;
ecc->strength = bytes * 8 / fls(8 * ecc->size);
}
/* See nand_bch_init() for details. */
ecc->bytes = 0;
ecc->priv = nand_bch_init(mtd);
if (!ecc->priv) {
WARN(1, "BCH ECC initialization failed!\n");
return -EINVAL;
}
return 0;
default:
WARN(1, "Unsupported ECC algorithm!\n");
return -EINVAL;
}
}
/**
* nand_check_ecc_caps - check the sanity of preset ECC settings
* @chip: nand chip info structure
* @caps: ECC caps info structure
* @oobavail: OOB size that the ECC engine can use
*
* When ECC step size and strength are already set, check if they are supported
* by the controller and the calculated ECC bytes fit within the chip's OOB.
* On success, the calculated ECC bytes is set.
*/
static int
nand_check_ecc_caps(struct nand_chip *chip,
const struct nand_ecc_caps *caps, int oobavail)
{
struct mtd_info *mtd = nand_to_mtd(chip);
const struct nand_ecc_step_info *stepinfo;
int preset_step = chip->ecc.size;
int preset_strength = chip->ecc.strength;
int ecc_bytes, nsteps = mtd->writesize / preset_step;
int i, j;
for (i = 0; i < caps->nstepinfos; i++) {
stepinfo = &caps->stepinfos[i];
if (stepinfo->stepsize != preset_step)
continue;
for (j = 0; j < stepinfo->nstrengths; j++) {
if (stepinfo->strengths[j] != preset_strength)
continue;
ecc_bytes = caps->calc_ecc_bytes(preset_step,
preset_strength);
if (WARN_ON_ONCE(ecc_bytes < 0))
return ecc_bytes;
if (ecc_bytes * nsteps > oobavail) {
pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
preset_step, preset_strength);
return -ENOSPC;
}
chip->ecc.bytes = ecc_bytes;
return 0;
}
}
pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
preset_step, preset_strength);
return -ENOTSUPP;
}
/**
* nand_match_ecc_req - meet the chip's requirement with least ECC bytes
* @chip: nand chip info structure
* @caps: ECC engine caps info structure
* @oobavail: OOB size that the ECC engine can use
*
* If a chip's ECC requirement is provided, try to meet it with the least
* number of ECC bytes (i.e. with the largest number of OOB-free bytes).
* On success, the chosen ECC settings are set.
*/
static int
nand_match_ecc_req(struct nand_chip *chip,
const struct nand_ecc_caps *caps, int oobavail)
{
struct mtd_info *mtd = nand_to_mtd(chip);
const struct nand_ecc_step_info *stepinfo;
int req_step = chip->ecc_step_ds;
int req_strength = chip->ecc_strength_ds;
int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
int best_step, best_strength, best_ecc_bytes;
int best_ecc_bytes_total = INT_MAX;
int i, j;
/* No information provided by the NAND chip */
if (!req_step || !req_strength)
return -ENOTSUPP;
/* number of correctable bits the chip requires in a page */
req_corr = mtd->writesize / req_step * req_strength;
for (i = 0; i < caps->nstepinfos; i++) {
stepinfo = &caps->stepinfos[i];
step_size = stepinfo->stepsize;
for (j = 0; j < stepinfo->nstrengths; j++) {
strength = stepinfo->strengths[j];
/*
* If both step size and strength are smaller than the
* chip's requirement, it is not easy to compare the
* resulted reliability.
*/
if (step_size < req_step && strength < req_strength)
continue;
if (mtd->writesize % step_size)
continue;
nsteps = mtd->writesize / step_size;
ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
if (WARN_ON_ONCE(ecc_bytes < 0))
continue;
ecc_bytes_total = ecc_bytes * nsteps;
if (ecc_bytes_total > oobavail ||
strength * nsteps < req_corr)
continue;
/*
* We assume the best is to meet the chip's requrement
* with the least number of ECC bytes.
*/
if (ecc_bytes_total < best_ecc_bytes_total) {
best_ecc_bytes_total = ecc_bytes_total;
best_step = step_size;
best_strength = strength;
best_ecc_bytes = ecc_bytes;
}
}
}
if (best_ecc_bytes_total == INT_MAX)
return -ENOTSUPP;
chip->ecc.size = best_step;
chip->ecc.strength = best_strength;
chip->ecc.bytes = best_ecc_bytes;
return 0;
}
/**
* nand_maximize_ecc - choose the max ECC strength available
* @chip: nand chip info structure
* @caps: ECC engine caps info structure
* @oobavail: OOB size that the ECC engine can use
*
* Choose the max ECC strength that is supported on the controller, and can fit
* within the chip's OOB. On success, the chosen ECC settings are set.
*/
static int
nand_maximize_ecc(struct nand_chip *chip,
const struct nand_ecc_caps *caps, int oobavail)
{
struct mtd_info *mtd = nand_to_mtd(chip);
const struct nand_ecc_step_info *stepinfo;
int step_size, strength, nsteps, ecc_bytes, corr;
int best_corr = 0;
int best_step = 0;
int best_strength, best_ecc_bytes;
int i, j;
for (i = 0; i < caps->nstepinfos; i++) {
stepinfo = &caps->stepinfos[i];
step_size = stepinfo->stepsize;
/* If chip->ecc.size is already set, respect it */
if (chip->ecc.size && step_size != chip->ecc.size)
continue;
for (j = 0; j < stepinfo->nstrengths; j++) {
strength = stepinfo->strengths[j];
if (mtd->writesize % step_size)
continue;
nsteps = mtd->writesize / step_size;
ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
if (WARN_ON_ONCE(ecc_bytes < 0))
continue;
if (ecc_bytes * nsteps > oobavail)
continue;
corr = strength * nsteps;
/*
* If the number of correctable bits is the same,
* bigger step_size has more reliability.
*/
if (corr > best_corr ||
(corr == best_corr && step_size > best_step)) {
best_corr = corr;
best_step = step_size;
best_strength = strength;
best_ecc_bytes = ecc_bytes;
}
}
}
if (!best_corr)
return -ENOTSUPP;
chip->ecc.size = best_step;
chip->ecc.strength = best_strength;
chip->ecc.bytes = best_ecc_bytes;
return 0;
}
/**
* nand_ecc_choose_conf - Set the ECC strength and ECC step size
* @chip: nand chip info structure
* @caps: ECC engine caps info structure
* @oobavail: OOB size that the ECC engine can use
*
* Choose the ECC configuration according to following logic
*
* 1. If both ECC step size and ECC strength are already set (usually by DT)
* then check if it is supported by this controller.
* 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength.
* 3. Otherwise, try to match the ECC step size and ECC strength closest
* to the chip's requirement. If available OOB size can't fit the chip
* requirement then fallback to the maximum ECC step size and ECC strength.
*
* On success, the chosen ECC settings are set.
*/
int nand_ecc_choose_conf(struct nand_chip *chip,
const struct nand_ecc_caps *caps, int oobavail)
{
struct mtd_info *mtd = nand_to_mtd(chip);
if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
return -EINVAL;
if (chip->ecc.size && chip->ecc.strength)
return nand_check_ecc_caps(chip, caps, oobavail);
if (chip->ecc.options & NAND_ECC_MAXIMIZE)
return nand_maximize_ecc(chip, caps, oobavail);
if (!nand_match_ecc_req(chip, caps, oobavail))
return 0;
return nand_maximize_ecc(chip, caps, oobavail);
}
EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
/*
* Check if the chip configuration meet the datasheet requirements.
* If our configuration corrects A bits per B bytes and the minimum
* required correction level is X bits per Y bytes, then we must ensure
* both of the following are true:
*
* (1) A / B >= X / Y
* (2) A >= X
*
* Requirement (1) ensures we can correct for the required bitflip density.
* Requirement (2) ensures we can correct even when all bitflips are clumped
* in the same sector.
*/
static bool nand_ecc_strength_good(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int corr, ds_corr;
if (ecc->size == 0 || chip->ecc_step_ds == 0)
/* Not enough information */
return true;
/*
* We get the number of corrected bits per page to compare
* the correction density.
*/
corr = (mtd->writesize * ecc->strength) / ecc->size;
ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
}
/**
* nand_scan_tail - Scan for the NAND device
* @chip: NAND chip object
*
* This is the second phase of the normal nand_scan() function. It fills out
* all the uninitialized function pointers with the defaults and scans for a
* bad block table if appropriate.
*/
static int nand_scan_tail(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int ret, i;
/* New bad blocks should be marked in OOB, flash-based BBT, or both */
if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
!(chip->bbt_options & NAND_BBT_USE_FLASH))) {
return -EINVAL;
}
chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
if (!chip->data_buf)
return -ENOMEM;
/*
* FIXME: some NAND manufacturer drivers expect the first die to be
* selected when manufacturer->init() is called. They should be fixed
* to explictly select the relevant die when interacting with the NAND
* chip.
*/
chip->select_chip(chip, 0);
ret = nand_manufacturer_init(chip);
chip->select_chip(chip, -1);
if (ret)
goto err_free_buf;
/* Set the internal oob buffer location, just after the page data */
chip->oob_poi = chip->data_buf + mtd->writesize;
/*
* If no default placement scheme is given, select an appropriate one.
*/
if (!mtd->ooblayout &&
!(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
switch (mtd->oobsize) {
case 8:
case 16:
mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
break;
case 64:
case 128:
mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
break;
default:
/*
* Expose the whole OOB area to users if ECC_NONE
* is passed. We could do that for all kind of
* ->oobsize, but we must keep the old large/small
* page with ECC layout when ->oobsize <= 128 for
* compatibility reasons.
*/
if (ecc->mode == NAND_ECC_NONE) {
mtd_set_ooblayout(mtd,
&nand_ooblayout_lp_ops);
break;
}
WARN(1, "No oob scheme defined for oobsize %d\n",
mtd->oobsize);
ret = -EINVAL;
goto err_nand_manuf_cleanup;
}
}
/*
* Check ECC mode, default to software if 3byte/512byte hardware ECC is
* selected and we have 256 byte pagesize fallback to software ECC
*/
switch (ecc->mode) {
case NAND_ECC_HW_OOB_FIRST:
/* Similar to NAND_ECC_HW, but a separate read_page handle */
if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
ret = -EINVAL;
goto err_nand_manuf_cleanup;
}
if (!ecc->read_page)
ecc->read_page = nand_read_page_hwecc_oob_first;
case NAND_ECC_HW:
/* Use standard hwecc read page function? */
if (!ecc->read_page)
ecc->read_page = nand_read_page_hwecc;
if (!ecc->write_page)
ecc->write_page = nand_write_page_hwecc;
if (!ecc->read_page_raw)
ecc->read_page_raw = nand_read_page_raw;
if (!ecc->write_page_raw)
ecc->write_page_raw = nand_write_page_raw;
if (!ecc->read_oob)
ecc->read_oob = nand_read_oob_std;
if (!ecc->write_oob)
ecc->write_oob = nand_write_oob_std;
if (!ecc->read_subpage)
ecc->read_subpage = nand_read_subpage;
if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
ecc->write_subpage = nand_write_subpage_hwecc;
case NAND_ECC_HW_SYNDROME:
if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
(!ecc->read_page ||
ecc->read_page == nand_read_page_hwecc ||
!ecc->write_page ||
ecc->write_page == nand_write_page_hwecc)) {
WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
ret = -EINVAL;
goto err_nand_manuf_cleanup;
}
/* Use standard syndrome read/write page function? */
if (!ecc->read_page)
ecc->read_page = nand_read_page_syndrome;
if (!ecc->write_page)
ecc->write_page = nand_write_page_syndrome;
if (!ecc->read_page_raw)
ecc->read_page_raw = nand_read_page_raw_syndrome;
if (!ecc->write_page_raw)
ecc->write_page_raw = nand_write_page_raw_syndrome;
if (!ecc->read_oob)
ecc->read_oob = nand_read_oob_syndrome;
if (!ecc->write_oob)
ecc->write_oob = nand_write_oob_syndrome;
if (mtd->writesize >= ecc->size) {
if (!ecc->strength) {
WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
ret = -EINVAL;
goto err_nand_manuf_cleanup;
}
break;
}
pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
ecc->size, mtd->writesize);
ecc->mode = NAND_ECC_SOFT;
ecc->algo = NAND_ECC_HAMMING;
case NAND_ECC_SOFT:
ret = nand_set_ecc_soft_ops(mtd);
if (ret) {
ret = -EINVAL;
goto err_nand_manuf_cleanup;
}
break;
case NAND_ECC_ON_DIE:
if (!ecc->read_page || !ecc->write_page) {
WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
ret = -EINVAL;
goto err_nand_manuf_cleanup;
}
if (!ecc->read_oob)
ecc->read_oob = nand_read_oob_std;
if (!ecc->write_oob)
ecc->write_oob = nand_write_oob_std;
break;
case NAND_ECC_NONE:
pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
ecc->read_page = nand_read_page_raw;
ecc->write_page = nand_write_page_raw;
ecc->read_oob = nand_read_oob_std;
ecc->read_page_raw = nand_read_page_raw;
ecc->write_page_raw = nand_write_page_raw;
ecc->write_oob = nand_write_oob_std;
ecc->size = mtd->writesize;
ecc->bytes = 0;
ecc->strength = 0;
break;
default:
WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
ret = -EINVAL;
goto err_nand_manuf_cleanup;
}
if (ecc->correct || ecc->calculate) {
ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
if (!ecc->calc_buf || !ecc->code_buf) {
ret = -ENOMEM;
goto err_nand_manuf_cleanup;
}
}
/* For many systems, the standard OOB write also works for raw */
if (!ecc->read_oob_raw)
ecc->read_oob_raw = ecc->read_oob;
if (!ecc->write_oob_raw)
ecc->write_oob_raw = ecc->write_oob;
/* propagate ecc info to mtd_info */
mtd->ecc_strength = ecc->strength;
mtd->ecc_step_size = ecc->size;
/*
* Set the number of read / write steps for one page depending on ECC
* mode.
*/
ecc->steps = mtd->writesize / ecc->size;
if (ecc->steps * ecc->size != mtd->writesize) {
WARN(1, "Invalid ECC parameters\n");
ret = -EINVAL;
goto err_nand_manuf_cleanup;
}
ecc->total = ecc->steps * ecc->bytes;
if (ecc->total > mtd->oobsize) {
WARN(1, "Total number of ECC bytes exceeded oobsize\n");
ret = -EINVAL;
goto err_nand_manuf_cleanup;
}
/*
* The number of bytes available for a client to place data into
* the out of band area.
*/
ret = mtd_ooblayout_count_freebytes(mtd);
if (ret < 0)
ret = 0;
mtd->oobavail = ret;
/* ECC sanity check: warn if it's too weak */
if (!nand_ecc_strength_good(mtd))
pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
mtd->name);
/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
switch (ecc->steps) {
case 2:
mtd->subpage_sft = 1;
break;
case 4:
case 8:
case 16:
mtd->subpage_sft = 2;
break;
}
}
chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
/* Initialize state */
chip->state = FL_READY;
/* Invalidate the pagebuffer reference */
chip->pagebuf = -1;
/* Large page NAND with SOFT_ECC should support subpage reads */
switch (ecc->mode) {
case NAND_ECC_SOFT:
if (chip->page_shift > 9)
chip->options |= NAND_SUBPAGE_READ;
break;
default:
break;
}
/* Fill in remaining MTD driver data */
mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
MTD_CAP_NANDFLASH;
mtd->_erase = nand_erase;
mtd->_point = NULL;
mtd->_unpoint = NULL;
mtd->_panic_write = panic_nand_write;
mtd->_read_oob = nand_read_oob;
mtd->_write_oob = nand_write_oob;
mtd->_sync = nand_sync;
mtd->_lock = NULL;
mtd->_unlock = NULL;
mtd->_suspend = nand_suspend;
mtd->_resume = nand_resume;
mtd->_reboot = nand_shutdown;
mtd->_block_isreserved = nand_block_isreserved;
mtd->_block_isbad = nand_block_isbad;
mtd->_block_markbad = nand_block_markbad;
mtd->_max_bad_blocks = nand_max_bad_blocks;
mtd->writebufsize = mtd->writesize;
/*
* Initialize bitflip_threshold to its default prior scan_bbt() call.
* scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
* properly set.
*/
if (!mtd->bitflip_threshold)
mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
/* Initialize the ->data_interface field. */
ret = nand_init_data_interface(chip);
if (ret)
goto err_nand_manuf_cleanup;
/* Enter fastest possible mode on all dies. */
for (i = 0; i < chip->numchips; i++) {
ret = nand_setup_data_interface(chip, i);
if (ret)
goto err_nand_manuf_cleanup;
}
/* Check, if we should skip the bad block table scan */
if (chip->options & NAND_SKIP_BBTSCAN)
return 0;
/* Build bad block table */
ret = nand_create_bbt(chip);
if (ret)
goto err_nand_manuf_cleanup;
return 0;
err_nand_manuf_cleanup:
nand_manufacturer_cleanup(chip);
err_free_buf:
kfree(chip->data_buf);
kfree(ecc->code_buf);
kfree(ecc->calc_buf);
return ret;
}
static int nand_attach(struct nand_chip *chip)
{
if (chip->controller->ops && chip->controller->ops->attach_chip)
return chip->controller->ops->attach_chip(chip);
return 0;
}
static void nand_detach(struct nand_chip *chip)
{
if (chip->controller->ops && chip->controller->ops->detach_chip)
chip->controller->ops->detach_chip(chip);
}
/**
* nand_scan_with_ids - [NAND Interface] Scan for the NAND device
* @chip: NAND chip object
* @maxchips: number of chips to scan for.
* @ids: optional flash IDs table
*
* This fills out all the uninitialized function pointers with the defaults.
* The flash ID is read and the mtd/chip structures are filled with the
* appropriate values.
*/
int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
struct nand_flash_dev *ids)
{
int ret;
if (!maxchips)
return -EINVAL;
ret = nand_scan_ident(chip, maxchips, ids);
if (ret)
return ret;
ret = nand_attach(chip);
if (ret)
goto cleanup_ident;
ret = nand_scan_tail(chip);
if (ret)
goto detach_chip;
return 0;
detach_chip:
nand_detach(chip);
cleanup_ident:
nand_scan_ident_cleanup(chip);
return ret;
}
EXPORT_SYMBOL(nand_scan_with_ids);
/**
* nand_cleanup - [NAND Interface] Free resources held by the NAND device
* @chip: NAND chip object
*/
void nand_cleanup(struct nand_chip *chip)
{
if (chip->ecc.mode == NAND_ECC_SOFT &&
chip->ecc.algo == NAND_ECC_BCH)
nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
/* Free bad block table memory */
kfree(chip->bbt);
kfree(chip->data_buf);
kfree(chip->ecc.code_buf);
kfree(chip->ecc.calc_buf);
/* Free bad block descriptor memory */
if (chip->badblock_pattern && chip->badblock_pattern->options
& NAND_BBT_DYNAMICSTRUCT)
kfree(chip->badblock_pattern);
/* Free manufacturer priv data. */
nand_manufacturer_cleanup(chip);
/* Free controller specific allocations after chip identification */
nand_detach(chip);
/* Free identification phase allocations */
nand_scan_ident_cleanup(chip);
}
EXPORT_SYMBOL_GPL(nand_cleanup);
/**
* nand_release - [NAND Interface] Unregister the MTD device and free resources
* held by the NAND device
* @chip: NAND chip object
*/
void nand_release(struct nand_chip *chip)
{
mtd_device_unregister(nand_to_mtd(chip));
nand_cleanup(chip);
}
EXPORT_SYMBOL_GPL(nand_release);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
MODULE_DESCRIPTION("Generic NAND flash driver code");