| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Manage cache of swap slots to be used for and returned from |
| * swap. |
| * |
| * Copyright(c) 2016 Intel Corporation. |
| * |
| * Author: Tim Chen <tim.c.chen@linux.intel.com> |
| * |
| * We allocate the swap slots from the global pool and put |
| * it into local per cpu caches. This has the advantage |
| * of no needing to acquire the swap_info lock every time |
| * we need a new slot. |
| * |
| * There is also opportunity to simply return the slot |
| * to local caches without needing to acquire swap_info |
| * lock. We do not reuse the returned slots directly but |
| * move them back to the global pool in a batch. This |
| * allows the slots to coaellesce and reduce fragmentation. |
| * |
| * The swap entry allocated is marked with SWAP_HAS_CACHE |
| * flag in map_count that prevents it from being allocated |
| * again from the global pool. |
| * |
| * The swap slots cache is protected by a mutex instead of |
| * a spin lock as when we search for slots with scan_swap_map, |
| * we can possibly sleep. |
| */ |
| |
| #include <linux/swap_slots.h> |
| #include <linux/cpu.h> |
| #include <linux/cpumask.h> |
| #include <linux/vmalloc.h> |
| #include <linux/mutex.h> |
| #include <linux/mm.h> |
| |
| static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots); |
| static bool swap_slot_cache_active; |
| bool swap_slot_cache_enabled; |
| static bool swap_slot_cache_initialized; |
| static DEFINE_MUTEX(swap_slots_cache_mutex); |
| /* Serialize swap slots cache enable/disable operations */ |
| static DEFINE_MUTEX(swap_slots_cache_enable_mutex); |
| |
| static void __drain_swap_slots_cache(unsigned int type); |
| static void deactivate_swap_slots_cache(void); |
| static void reactivate_swap_slots_cache(void); |
| |
| #define use_swap_slot_cache (swap_slot_cache_active && \ |
| swap_slot_cache_enabled && swap_slot_cache_initialized) |
| #define SLOTS_CACHE 0x1 |
| #define SLOTS_CACHE_RET 0x2 |
| |
| static void deactivate_swap_slots_cache(void) |
| { |
| mutex_lock(&swap_slots_cache_mutex); |
| swap_slot_cache_active = false; |
| __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET); |
| mutex_unlock(&swap_slots_cache_mutex); |
| } |
| |
| static void reactivate_swap_slots_cache(void) |
| { |
| mutex_lock(&swap_slots_cache_mutex); |
| swap_slot_cache_active = true; |
| mutex_unlock(&swap_slots_cache_mutex); |
| } |
| |
| /* Must not be called with cpu hot plug lock */ |
| void disable_swap_slots_cache_lock(void) |
| { |
| mutex_lock(&swap_slots_cache_enable_mutex); |
| swap_slot_cache_enabled = false; |
| if (swap_slot_cache_initialized) { |
| /* serialize with cpu hotplug operations */ |
| get_online_cpus(); |
| __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET); |
| put_online_cpus(); |
| } |
| } |
| |
| static void __reenable_swap_slots_cache(void) |
| { |
| swap_slot_cache_enabled = has_usable_swap(); |
| } |
| |
| void reenable_swap_slots_cache_unlock(void) |
| { |
| __reenable_swap_slots_cache(); |
| mutex_unlock(&swap_slots_cache_enable_mutex); |
| } |
| |
| static bool check_cache_active(void) |
| { |
| long pages; |
| |
| if (!swap_slot_cache_enabled || !swap_slot_cache_initialized) |
| return false; |
| |
| pages = get_nr_swap_pages(); |
| if (!swap_slot_cache_active) { |
| if (pages > num_online_cpus() * |
| THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE) |
| reactivate_swap_slots_cache(); |
| goto out; |
| } |
| |
| /* if global pool of slot caches too low, deactivate cache */ |
| if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE) |
| deactivate_swap_slots_cache(); |
| out: |
| return swap_slot_cache_active; |
| } |
| |
| static int alloc_swap_slot_cache(unsigned int cpu) |
| { |
| struct swap_slots_cache *cache; |
| swp_entry_t *slots, *slots_ret; |
| |
| /* |
| * Do allocation outside swap_slots_cache_mutex |
| * as kvzalloc could trigger reclaim and get_swap_page, |
| * which can lock swap_slots_cache_mutex. |
| */ |
| slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t), |
| GFP_KERNEL); |
| if (!slots) |
| return -ENOMEM; |
| |
| slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t), |
| GFP_KERNEL); |
| if (!slots_ret) { |
| kvfree(slots); |
| return -ENOMEM; |
| } |
| |
| mutex_lock(&swap_slots_cache_mutex); |
| cache = &per_cpu(swp_slots, cpu); |
| if (cache->slots || cache->slots_ret) { |
| /* cache already allocated */ |
| mutex_unlock(&swap_slots_cache_mutex); |
| |
| kvfree(slots); |
| kvfree(slots_ret); |
| |
| return 0; |
| } |
| |
| if (!cache->lock_initialized) { |
| mutex_init(&cache->alloc_lock); |
| spin_lock_init(&cache->free_lock); |
| cache->lock_initialized = true; |
| } |
| cache->nr = 0; |
| cache->cur = 0; |
| cache->n_ret = 0; |
| /* |
| * We initialized alloc_lock and free_lock earlier. We use |
| * !cache->slots or !cache->slots_ret to know if it is safe to acquire |
| * the corresponding lock and use the cache. Memory barrier below |
| * ensures the assumption. |
| */ |
| mb(); |
| cache->slots = slots; |
| cache->slots_ret = slots_ret; |
| mutex_unlock(&swap_slots_cache_mutex); |
| return 0; |
| } |
| |
| static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type, |
| bool free_slots) |
| { |
| struct swap_slots_cache *cache; |
| swp_entry_t *slots = NULL; |
| |
| cache = &per_cpu(swp_slots, cpu); |
| if ((type & SLOTS_CACHE) && cache->slots) { |
| mutex_lock(&cache->alloc_lock); |
| swapcache_free_entries(cache->slots + cache->cur, cache->nr); |
| cache->cur = 0; |
| cache->nr = 0; |
| if (free_slots && cache->slots) { |
| kvfree(cache->slots); |
| cache->slots = NULL; |
| } |
| mutex_unlock(&cache->alloc_lock); |
| } |
| if ((type & SLOTS_CACHE_RET) && cache->slots_ret) { |
| spin_lock_irq(&cache->free_lock); |
| swapcache_free_entries(cache->slots_ret, cache->n_ret); |
| cache->n_ret = 0; |
| if (free_slots && cache->slots_ret) { |
| slots = cache->slots_ret; |
| cache->slots_ret = NULL; |
| } |
| spin_unlock_irq(&cache->free_lock); |
| if (slots) |
| kvfree(slots); |
| } |
| } |
| |
| static void __drain_swap_slots_cache(unsigned int type) |
| { |
| unsigned int cpu; |
| |
| /* |
| * This function is called during |
| * 1) swapoff, when we have to make sure no |
| * left over slots are in cache when we remove |
| * a swap device; |
| * 2) disabling of swap slot cache, when we run low |
| * on swap slots when allocating memory and need |
| * to return swap slots to global pool. |
| * |
| * We cannot acquire cpu hot plug lock here as |
| * this function can be invoked in the cpu |
| * hot plug path: |
| * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback |
| * -> memory allocation -> direct reclaim -> get_swap_page |
| * -> drain_swap_slots_cache |
| * |
| * Hence the loop over current online cpu below could miss cpu that |
| * is being brought online but not yet marked as online. |
| * That is okay as we do not schedule and run anything on a |
| * cpu before it has been marked online. Hence, we will not |
| * fill any swap slots in slots cache of such cpu. |
| * There are no slots on such cpu that need to be drained. |
| */ |
| for_each_online_cpu(cpu) |
| drain_slots_cache_cpu(cpu, type, false); |
| } |
| |
| static int free_slot_cache(unsigned int cpu) |
| { |
| mutex_lock(&swap_slots_cache_mutex); |
| drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true); |
| mutex_unlock(&swap_slots_cache_mutex); |
| return 0; |
| } |
| |
| int enable_swap_slots_cache(void) |
| { |
| mutex_lock(&swap_slots_cache_enable_mutex); |
| if (!swap_slot_cache_initialized) { |
| int ret; |
| |
| ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache", |
| alloc_swap_slot_cache, free_slot_cache); |
| if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating " |
| "without swap slots cache.\n", __func__)) |
| goto out_unlock; |
| |
| swap_slot_cache_initialized = true; |
| } |
| |
| __reenable_swap_slots_cache(); |
| out_unlock: |
| mutex_unlock(&swap_slots_cache_enable_mutex); |
| return 0; |
| } |
| |
| /* called with swap slot cache's alloc lock held */ |
| static int refill_swap_slots_cache(struct swap_slots_cache *cache) |
| { |
| if (!use_swap_slot_cache || cache->nr) |
| return 0; |
| |
| cache->cur = 0; |
| if (swap_slot_cache_active) |
| cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE, |
| cache->slots, 1); |
| |
| return cache->nr; |
| } |
| |
| int free_swap_slot(swp_entry_t entry) |
| { |
| struct swap_slots_cache *cache; |
| |
| cache = raw_cpu_ptr(&swp_slots); |
| if (likely(use_swap_slot_cache && cache->slots_ret)) { |
| spin_lock_irq(&cache->free_lock); |
| /* Swap slots cache may be deactivated before acquiring lock */ |
| if (!use_swap_slot_cache || !cache->slots_ret) { |
| spin_unlock_irq(&cache->free_lock); |
| goto direct_free; |
| } |
| if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) { |
| /* |
| * Return slots to global pool. |
| * The current swap_map value is SWAP_HAS_CACHE. |
| * Set it to 0 to indicate it is available for |
| * allocation in global pool |
| */ |
| swapcache_free_entries(cache->slots_ret, cache->n_ret); |
| cache->n_ret = 0; |
| } |
| cache->slots_ret[cache->n_ret++] = entry; |
| spin_unlock_irq(&cache->free_lock); |
| } else { |
| direct_free: |
| swapcache_free_entries(&entry, 1); |
| } |
| |
| return 0; |
| } |
| |
| swp_entry_t get_swap_page(struct page *page) |
| { |
| swp_entry_t entry; |
| struct swap_slots_cache *cache; |
| |
| entry.val = 0; |
| |
| if (PageTransHuge(page)) { |
| if (IS_ENABLED(CONFIG_THP_SWAP)) |
| get_swap_pages(1, &entry, HPAGE_PMD_NR); |
| goto out; |
| } |
| |
| /* |
| * Preemption is allowed here, because we may sleep |
| * in refill_swap_slots_cache(). But it is safe, because |
| * accesses to the per-CPU data structure are protected by the |
| * mutex cache->alloc_lock. |
| * |
| * The alloc path here does not touch cache->slots_ret |
| * so cache->free_lock is not taken. |
| */ |
| cache = raw_cpu_ptr(&swp_slots); |
| |
| if (likely(check_cache_active() && cache->slots)) { |
| mutex_lock(&cache->alloc_lock); |
| if (cache->slots) { |
| repeat: |
| if (cache->nr) { |
| entry = cache->slots[cache->cur]; |
| cache->slots[cache->cur++].val = 0; |
| cache->nr--; |
| } else if (refill_swap_slots_cache(cache)) { |
| goto repeat; |
| } |
| } |
| mutex_unlock(&cache->alloc_lock); |
| if (entry.val) |
| goto out; |
| } |
| |
| get_swap_pages(1, &entry, 1); |
| out: |
| if (mem_cgroup_try_charge_swap(page, entry)) { |
| put_swap_page(page, entry); |
| entry.val = 0; |
| } |
| return entry; |
| } |