| /* |
| * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the BSD-type |
| * license below: |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * |
| * Neither the name of the Network Appliance, Inc. nor the names of |
| * its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written |
| * permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /* |
| * transport.c |
| * |
| * This file contains the top-level implementation of an RPC RDMA |
| * transport. |
| * |
| * Naming convention: functions beginning with xprt_ are part of the |
| * transport switch. All others are RPC RDMA internal. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/seq_file.h> |
| #include <linux/sunrpc/addr.h> |
| |
| #include "xprt_rdma.h" |
| |
| #ifdef RPC_DEBUG |
| # define RPCDBG_FACILITY RPCDBG_TRANS |
| #endif |
| |
| MODULE_LICENSE("Dual BSD/GPL"); |
| |
| MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS"); |
| MODULE_AUTHOR("Network Appliance, Inc."); |
| |
| /* |
| * tunables |
| */ |
| |
| static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE; |
| static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE; |
| static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE; |
| static unsigned int xprt_rdma_inline_write_padding; |
| static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR; |
| int xprt_rdma_pad_optimize = 1; |
| |
| #ifdef RPC_DEBUG |
| |
| static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE; |
| static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE; |
| static unsigned int zero; |
| static unsigned int max_padding = PAGE_SIZE; |
| static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS; |
| static unsigned int max_memreg = RPCRDMA_LAST - 1; |
| |
| static struct ctl_table_header *sunrpc_table_header; |
| |
| static struct ctl_table xr_tunables_table[] = { |
| { |
| .procname = "rdma_slot_table_entries", |
| .data = &xprt_rdma_slot_table_entries, |
| .maxlen = sizeof(unsigned int), |
| .mode = 0644, |
| .proc_handler = proc_dointvec_minmax, |
| .extra1 = &min_slot_table_size, |
| .extra2 = &max_slot_table_size |
| }, |
| { |
| .procname = "rdma_max_inline_read", |
| .data = &xprt_rdma_max_inline_read, |
| .maxlen = sizeof(unsigned int), |
| .mode = 0644, |
| .proc_handler = proc_dointvec, |
| }, |
| { |
| .procname = "rdma_max_inline_write", |
| .data = &xprt_rdma_max_inline_write, |
| .maxlen = sizeof(unsigned int), |
| .mode = 0644, |
| .proc_handler = proc_dointvec, |
| }, |
| { |
| .procname = "rdma_inline_write_padding", |
| .data = &xprt_rdma_inline_write_padding, |
| .maxlen = sizeof(unsigned int), |
| .mode = 0644, |
| .proc_handler = proc_dointvec_minmax, |
| .extra1 = &zero, |
| .extra2 = &max_padding, |
| }, |
| { |
| .procname = "rdma_memreg_strategy", |
| .data = &xprt_rdma_memreg_strategy, |
| .maxlen = sizeof(unsigned int), |
| .mode = 0644, |
| .proc_handler = proc_dointvec_minmax, |
| .extra1 = &min_memreg, |
| .extra2 = &max_memreg, |
| }, |
| { |
| .procname = "rdma_pad_optimize", |
| .data = &xprt_rdma_pad_optimize, |
| .maxlen = sizeof(unsigned int), |
| .mode = 0644, |
| .proc_handler = proc_dointvec, |
| }, |
| { }, |
| }; |
| |
| static struct ctl_table sunrpc_table[] = { |
| { |
| .procname = "sunrpc", |
| .mode = 0555, |
| .child = xr_tunables_table |
| }, |
| { }, |
| }; |
| |
| #endif |
| |
| #define RPCRDMA_BIND_TO (60U * HZ) |
| #define RPCRDMA_INIT_REEST_TO (5U * HZ) |
| #define RPCRDMA_MAX_REEST_TO (30U * HZ) |
| #define RPCRDMA_IDLE_DISC_TO (5U * 60 * HZ) |
| |
| static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */ |
| |
| static void |
| xprt_rdma_format_addresses(struct rpc_xprt *xprt) |
| { |
| struct sockaddr *sap = (struct sockaddr *) |
| &rpcx_to_rdmad(xprt).addr; |
| struct sockaddr_in *sin = (struct sockaddr_in *)sap; |
| char buf[64]; |
| |
| (void)rpc_ntop(sap, buf, sizeof(buf)); |
| xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL); |
| |
| snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap)); |
| xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL); |
| |
| xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma"; |
| |
| snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr)); |
| xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); |
| |
| snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap)); |
| xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL); |
| |
| /* netid */ |
| xprt->address_strings[RPC_DISPLAY_NETID] = "rdma"; |
| } |
| |
| static void |
| xprt_rdma_free_addresses(struct rpc_xprt *xprt) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < RPC_DISPLAY_MAX; i++) |
| switch (i) { |
| case RPC_DISPLAY_PROTO: |
| case RPC_DISPLAY_NETID: |
| continue; |
| default: |
| kfree(xprt->address_strings[i]); |
| } |
| } |
| |
| static void |
| xprt_rdma_connect_worker(struct work_struct *work) |
| { |
| struct rpcrdma_xprt *r_xprt = |
| container_of(work, struct rpcrdma_xprt, rdma_connect.work); |
| struct rpc_xprt *xprt = &r_xprt->xprt; |
| int rc = 0; |
| |
| xprt_clear_connected(xprt); |
| |
| dprintk("RPC: %s: %sconnect\n", __func__, |
| r_xprt->rx_ep.rep_connected != 0 ? "re" : ""); |
| rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia); |
| if (rc) |
| xprt_wake_pending_tasks(xprt, rc); |
| |
| dprintk("RPC: %s: exit\n", __func__); |
| xprt_clear_connecting(xprt); |
| } |
| |
| /* |
| * xprt_rdma_destroy |
| * |
| * Destroy the xprt. |
| * Free all memory associated with the object, including its own. |
| * NOTE: none of the *destroy methods free memory for their top-level |
| * objects, even though they may have allocated it (they do free |
| * private memory). It's up to the caller to handle it. In this |
| * case (RDMA transport), all structure memory is inlined with the |
| * struct rpcrdma_xprt. |
| */ |
| static void |
| xprt_rdma_destroy(struct rpc_xprt *xprt) |
| { |
| struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); |
| |
| dprintk("RPC: %s: called\n", __func__); |
| |
| cancel_delayed_work_sync(&r_xprt->rdma_connect); |
| |
| xprt_clear_connected(xprt); |
| |
| rpcrdma_buffer_destroy(&r_xprt->rx_buf); |
| rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia); |
| rpcrdma_ia_close(&r_xprt->rx_ia); |
| |
| xprt_rdma_free_addresses(xprt); |
| |
| xprt_free(xprt); |
| |
| dprintk("RPC: %s: returning\n", __func__); |
| |
| module_put(THIS_MODULE); |
| } |
| |
| static const struct rpc_timeout xprt_rdma_default_timeout = { |
| .to_initval = 60 * HZ, |
| .to_maxval = 60 * HZ, |
| }; |
| |
| /** |
| * xprt_setup_rdma - Set up transport to use RDMA |
| * |
| * @args: rpc transport arguments |
| */ |
| static struct rpc_xprt * |
| xprt_setup_rdma(struct xprt_create *args) |
| { |
| struct rpcrdma_create_data_internal cdata; |
| struct rpc_xprt *xprt; |
| struct rpcrdma_xprt *new_xprt; |
| struct rpcrdma_ep *new_ep; |
| struct sockaddr_in *sin; |
| int rc; |
| |
| if (args->addrlen > sizeof(xprt->addr)) { |
| dprintk("RPC: %s: address too large\n", __func__); |
| return ERR_PTR(-EBADF); |
| } |
| |
| xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt), |
| xprt_rdma_slot_table_entries, |
| xprt_rdma_slot_table_entries); |
| if (xprt == NULL) { |
| dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n", |
| __func__); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* 60 second timeout, no retries */ |
| xprt->timeout = &xprt_rdma_default_timeout; |
| xprt->bind_timeout = RPCRDMA_BIND_TO; |
| xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; |
| xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO; |
| |
| xprt->resvport = 0; /* privileged port not needed */ |
| xprt->tsh_size = 0; /* RPC-RDMA handles framing */ |
| xprt->ops = &xprt_rdma_procs; |
| |
| /* |
| * Set up RDMA-specific connect data. |
| */ |
| |
| /* Put server RDMA address in local cdata */ |
| memcpy(&cdata.addr, args->dstaddr, args->addrlen); |
| |
| /* Ensure xprt->addr holds valid server TCP (not RDMA) |
| * address, for any side protocols which peek at it */ |
| xprt->prot = IPPROTO_TCP; |
| xprt->addrlen = args->addrlen; |
| memcpy(&xprt->addr, &cdata.addr, xprt->addrlen); |
| |
| sin = (struct sockaddr_in *)&cdata.addr; |
| if (ntohs(sin->sin_port) != 0) |
| xprt_set_bound(xprt); |
| |
| dprintk("RPC: %s: %pI4:%u\n", |
| __func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port)); |
| |
| /* Set max requests */ |
| cdata.max_requests = xprt->max_reqs; |
| |
| /* Set some length limits */ |
| cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */ |
| cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */ |
| |
| cdata.inline_wsize = xprt_rdma_max_inline_write; |
| if (cdata.inline_wsize > cdata.wsize) |
| cdata.inline_wsize = cdata.wsize; |
| |
| cdata.inline_rsize = xprt_rdma_max_inline_read; |
| if (cdata.inline_rsize > cdata.rsize) |
| cdata.inline_rsize = cdata.rsize; |
| |
| cdata.padding = xprt_rdma_inline_write_padding; |
| |
| /* |
| * Create new transport instance, which includes initialized |
| * o ia |
| * o endpoint |
| * o buffers |
| */ |
| |
| new_xprt = rpcx_to_rdmax(xprt); |
| |
| rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr, |
| xprt_rdma_memreg_strategy); |
| if (rc) |
| goto out1; |
| |
| /* |
| * initialize and create ep |
| */ |
| new_xprt->rx_data = cdata; |
| new_ep = &new_xprt->rx_ep; |
| new_ep->rep_remote_addr = cdata.addr; |
| |
| rc = rpcrdma_ep_create(&new_xprt->rx_ep, |
| &new_xprt->rx_ia, &new_xprt->rx_data); |
| if (rc) |
| goto out2; |
| |
| /* |
| * Allocate pre-registered send and receive buffers for headers and |
| * any inline data. Also specify any padding which will be provided |
| * from a preregistered zero buffer. |
| */ |
| rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia, |
| &new_xprt->rx_data); |
| if (rc) |
| goto out3; |
| |
| /* |
| * Register a callback for connection events. This is necessary because |
| * connection loss notification is async. We also catch connection loss |
| * when reaping receives. |
| */ |
| INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker); |
| new_ep->rep_func = rpcrdma_conn_func; |
| new_ep->rep_xprt = xprt; |
| |
| xprt_rdma_format_addresses(xprt); |
| xprt->max_payload = rpcrdma_max_payload(new_xprt); |
| dprintk("RPC: %s: transport data payload maximum: %zu bytes\n", |
| __func__, xprt->max_payload); |
| |
| if (!try_module_get(THIS_MODULE)) |
| goto out4; |
| |
| return xprt; |
| |
| out4: |
| xprt_rdma_free_addresses(xprt); |
| rc = -EINVAL; |
| out3: |
| rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia); |
| out2: |
| rpcrdma_ia_close(&new_xprt->rx_ia); |
| out1: |
| xprt_free(xprt); |
| return ERR_PTR(rc); |
| } |
| |
| /* |
| * Close a connection, during shutdown or timeout/reconnect |
| */ |
| static void |
| xprt_rdma_close(struct rpc_xprt *xprt) |
| { |
| struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); |
| |
| dprintk("RPC: %s: closing\n", __func__); |
| if (r_xprt->rx_ep.rep_connected > 0) |
| xprt->reestablish_timeout = 0; |
| xprt_disconnect_done(xprt); |
| rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia); |
| } |
| |
| static void |
| xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port) |
| { |
| struct sockaddr_in *sap; |
| |
| sap = (struct sockaddr_in *)&xprt->addr; |
| sap->sin_port = htons(port); |
| sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr; |
| sap->sin_port = htons(port); |
| dprintk("RPC: %s: %u\n", __func__, port); |
| } |
| |
| static void |
| xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task) |
| { |
| struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); |
| |
| if (r_xprt->rx_ep.rep_connected != 0) { |
| /* Reconnect */ |
| schedule_delayed_work(&r_xprt->rdma_connect, |
| xprt->reestablish_timeout); |
| xprt->reestablish_timeout <<= 1; |
| if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO) |
| xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO; |
| else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO) |
| xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; |
| } else { |
| schedule_delayed_work(&r_xprt->rdma_connect, 0); |
| if (!RPC_IS_ASYNC(task)) |
| flush_delayed_work(&r_xprt->rdma_connect); |
| } |
| } |
| |
| /* |
| * The RDMA allocate/free functions need the task structure as a place |
| * to hide the struct rpcrdma_req, which is necessary for the actual send/recv |
| * sequence. For this reason, the recv buffers are attached to send |
| * buffers for portions of the RPC. Note that the RPC layer allocates |
| * both send and receive buffers in the same call. We may register |
| * the receive buffer portion when using reply chunks. |
| */ |
| static void * |
| xprt_rdma_allocate(struct rpc_task *task, size_t size) |
| { |
| struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; |
| struct rpcrdma_req *req, *nreq; |
| |
| req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf); |
| if (req == NULL) |
| return NULL; |
| |
| if (size > req->rl_size) { |
| dprintk("RPC: %s: size %zd too large for buffer[%zd]: " |
| "prog %d vers %d proc %d\n", |
| __func__, size, req->rl_size, |
| task->tk_client->cl_prog, task->tk_client->cl_vers, |
| task->tk_msg.rpc_proc->p_proc); |
| /* |
| * Outgoing length shortage. Our inline write max must have |
| * been configured to perform direct i/o. |
| * |
| * This is therefore a large metadata operation, and the |
| * allocate call was made on the maximum possible message, |
| * e.g. containing long filename(s) or symlink data. In |
| * fact, while these metadata operations *might* carry |
| * large outgoing payloads, they rarely *do*. However, we |
| * have to commit to the request here, so reallocate and |
| * register it now. The data path will never require this |
| * reallocation. |
| * |
| * If the allocation or registration fails, the RPC framework |
| * will (doggedly) retry. |
| */ |
| if (task->tk_flags & RPC_TASK_SWAPPER) |
| nreq = kmalloc(sizeof *req + size, GFP_ATOMIC); |
| else |
| nreq = kmalloc(sizeof *req + size, GFP_NOFS); |
| if (nreq == NULL) |
| goto outfail; |
| |
| if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia, |
| nreq->rl_base, size + sizeof(struct rpcrdma_req) |
| - offsetof(struct rpcrdma_req, rl_base), |
| &nreq->rl_handle, &nreq->rl_iov)) { |
| kfree(nreq); |
| goto outfail; |
| } |
| rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size; |
| nreq->rl_size = size; |
| nreq->rl_niovs = 0; |
| nreq->rl_nchunks = 0; |
| nreq->rl_buffer = (struct rpcrdma_buffer *)req; |
| nreq->rl_reply = req->rl_reply; |
| memcpy(nreq->rl_segments, |
| req->rl_segments, sizeof nreq->rl_segments); |
| /* flag the swap with an unused field */ |
| nreq->rl_iov.length = 0; |
| req->rl_reply = NULL; |
| req = nreq; |
| } |
| dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req); |
| req->rl_connect_cookie = 0; /* our reserved value */ |
| return req->rl_xdr_buf; |
| |
| outfail: |
| rpcrdma_buffer_put(req); |
| rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++; |
| return NULL; |
| } |
| |
| /* |
| * This function returns all RDMA resources to the pool. |
| */ |
| static void |
| xprt_rdma_free(void *buffer) |
| { |
| struct rpcrdma_req *req; |
| struct rpcrdma_xprt *r_xprt; |
| struct rpcrdma_rep *rep; |
| int i; |
| |
| if (buffer == NULL) |
| return; |
| |
| req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]); |
| if (req->rl_iov.length == 0) { /* see allocate above */ |
| r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer, |
| struct rpcrdma_xprt, rx_buf); |
| } else |
| r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf); |
| rep = req->rl_reply; |
| |
| dprintk("RPC: %s: called on 0x%p%s\n", |
| __func__, rep, (rep && rep->rr_func) ? " (with waiter)" : ""); |
| |
| /* |
| * Finish the deregistration. The process is considered |
| * complete when the rr_func vector becomes NULL - this |
| * was put in place during rpcrdma_reply_handler() - the wait |
| * call below will not block if the dereg is "done". If |
| * interrupted, our framework will clean up. |
| */ |
| for (i = 0; req->rl_nchunks;) { |
| --req->rl_nchunks; |
| i += rpcrdma_deregister_external( |
| &req->rl_segments[i], r_xprt); |
| } |
| |
| if (req->rl_iov.length == 0) { /* see allocate above */ |
| struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer; |
| oreq->rl_reply = req->rl_reply; |
| (void) rpcrdma_deregister_internal(&r_xprt->rx_ia, |
| req->rl_handle, |
| &req->rl_iov); |
| kfree(req); |
| req = oreq; |
| } |
| |
| /* Put back request+reply buffers */ |
| rpcrdma_buffer_put(req); |
| } |
| |
| /* |
| * send_request invokes the meat of RPC RDMA. It must do the following: |
| * 1. Marshal the RPC request into an RPC RDMA request, which means |
| * putting a header in front of data, and creating IOVs for RDMA |
| * from those in the request. |
| * 2. In marshaling, detect opportunities for RDMA, and use them. |
| * 3. Post a recv message to set up asynch completion, then send |
| * the request (rpcrdma_ep_post). |
| * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP). |
| */ |
| |
| static int |
| xprt_rdma_send_request(struct rpc_task *task) |
| { |
| struct rpc_rqst *rqst = task->tk_rqstp; |
| struct rpc_xprt *xprt = rqst->rq_xprt; |
| struct rpcrdma_req *req = rpcr_to_rdmar(rqst); |
| struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); |
| int rc = 0; |
| |
| if (req->rl_niovs == 0) |
| rc = rpcrdma_marshal_req(rqst); |
| else if (r_xprt->rx_ia.ri_memreg_strategy != RPCRDMA_ALLPHYSICAL) |
| rc = rpcrdma_marshal_chunks(rqst, 0); |
| if (rc < 0) |
| goto failed_marshal; |
| |
| if (req->rl_reply == NULL) /* e.g. reconnection */ |
| rpcrdma_recv_buffer_get(req); |
| |
| if (req->rl_reply) { |
| req->rl_reply->rr_func = rpcrdma_reply_handler; |
| /* this need only be done once, but... */ |
| req->rl_reply->rr_xprt = xprt; |
| } |
| |
| /* Must suppress retransmit to maintain credits */ |
| if (req->rl_connect_cookie == xprt->connect_cookie) |
| goto drop_connection; |
| req->rl_connect_cookie = xprt->connect_cookie; |
| |
| if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req)) |
| goto drop_connection; |
| |
| rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len; |
| rqst->rq_bytes_sent = 0; |
| return 0; |
| |
| failed_marshal: |
| r_xprt->rx_stats.failed_marshal_count++; |
| dprintk("RPC: %s: rpcrdma_marshal_req failed, status %i\n", |
| __func__, rc); |
| if (rc == -EIO) |
| return -EIO; |
| drop_connection: |
| xprt_disconnect_done(xprt); |
| return -ENOTCONN; /* implies disconnect */ |
| } |
| |
| static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) |
| { |
| struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); |
| long idle_time = 0; |
| |
| if (xprt_connected(xprt)) |
| idle_time = (long)(jiffies - xprt->last_used) / HZ; |
| |
| seq_printf(seq, |
| "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu " |
| "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n", |
| |
| 0, /* need a local port? */ |
| xprt->stat.bind_count, |
| xprt->stat.connect_count, |
| xprt->stat.connect_time, |
| idle_time, |
| xprt->stat.sends, |
| xprt->stat.recvs, |
| xprt->stat.bad_xids, |
| xprt->stat.req_u, |
| xprt->stat.bklog_u, |
| |
| r_xprt->rx_stats.read_chunk_count, |
| r_xprt->rx_stats.write_chunk_count, |
| r_xprt->rx_stats.reply_chunk_count, |
| r_xprt->rx_stats.total_rdma_request, |
| r_xprt->rx_stats.total_rdma_reply, |
| r_xprt->rx_stats.pullup_copy_count, |
| r_xprt->rx_stats.fixup_copy_count, |
| r_xprt->rx_stats.hardway_register_count, |
| r_xprt->rx_stats.failed_marshal_count, |
| r_xprt->rx_stats.bad_reply_count); |
| } |
| |
| /* |
| * Plumbing for rpc transport switch and kernel module |
| */ |
| |
| static struct rpc_xprt_ops xprt_rdma_procs = { |
| .reserve_xprt = xprt_reserve_xprt_cong, |
| .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */ |
| .alloc_slot = xprt_alloc_slot, |
| .release_request = xprt_release_rqst_cong, /* ditto */ |
| .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */ |
| .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */ |
| .set_port = xprt_rdma_set_port, |
| .connect = xprt_rdma_connect, |
| .buf_alloc = xprt_rdma_allocate, |
| .buf_free = xprt_rdma_free, |
| .send_request = xprt_rdma_send_request, |
| .close = xprt_rdma_close, |
| .destroy = xprt_rdma_destroy, |
| .print_stats = xprt_rdma_print_stats |
| }; |
| |
| static struct xprt_class xprt_rdma = { |
| .list = LIST_HEAD_INIT(xprt_rdma.list), |
| .name = "rdma", |
| .owner = THIS_MODULE, |
| .ident = XPRT_TRANSPORT_RDMA, |
| .setup = xprt_setup_rdma, |
| }; |
| |
| static void __exit xprt_rdma_cleanup(void) |
| { |
| int rc; |
| |
| dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n"); |
| #ifdef RPC_DEBUG |
| if (sunrpc_table_header) { |
| unregister_sysctl_table(sunrpc_table_header); |
| sunrpc_table_header = NULL; |
| } |
| #endif |
| rc = xprt_unregister_transport(&xprt_rdma); |
| if (rc) |
| dprintk("RPC: %s: xprt_unregister returned %i\n", |
| __func__, rc); |
| } |
| |
| static int __init xprt_rdma_init(void) |
| { |
| int rc; |
| |
| rc = xprt_register_transport(&xprt_rdma); |
| |
| if (rc) |
| return rc; |
| |
| dprintk("RPCRDMA Module Init, register RPC RDMA transport\n"); |
| |
| dprintk("Defaults:\n"); |
| dprintk("\tSlots %d\n" |
| "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n", |
| xprt_rdma_slot_table_entries, |
| xprt_rdma_max_inline_read, xprt_rdma_max_inline_write); |
| dprintk("\tPadding %d\n\tMemreg %d\n", |
| xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy); |
| |
| #ifdef RPC_DEBUG |
| if (!sunrpc_table_header) |
| sunrpc_table_header = register_sysctl_table(sunrpc_table); |
| #endif |
| return 0; |
| } |
| |
| module_init(xprt_rdma_init); |
| module_exit(xprt_rdma_cleanup); |