| /* |
| * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <rdma/ib_umem.h> |
| #include <rdma/ib_umem_odp.h> |
| #include <linux/kernel.h> |
| |
| #include "mlx5_ib.h" |
| #include "cmd.h" |
| |
| #include <linux/mlx5/eq.h> |
| |
| /* Contains the details of a pagefault. */ |
| struct mlx5_pagefault { |
| u32 bytes_committed; |
| u32 token; |
| u8 event_subtype; |
| u8 type; |
| union { |
| /* Initiator or send message responder pagefault details. */ |
| struct { |
| /* Received packet size, only valid for responders. */ |
| u32 packet_size; |
| /* |
| * Number of resource holding WQE, depends on type. |
| */ |
| u32 wq_num; |
| /* |
| * WQE index. Refers to either the send queue or |
| * receive queue, according to event_subtype. |
| */ |
| u16 wqe_index; |
| } wqe; |
| /* RDMA responder pagefault details */ |
| struct { |
| u32 r_key; |
| /* |
| * Received packet size, minimal size page fault |
| * resolution required for forward progress. |
| */ |
| u32 packet_size; |
| u32 rdma_op_len; |
| u64 rdma_va; |
| } rdma; |
| }; |
| |
| struct mlx5_ib_pf_eq *eq; |
| struct work_struct work; |
| }; |
| |
| #define MAX_PREFETCH_LEN (4*1024*1024U) |
| |
| /* Timeout in ms to wait for an active mmu notifier to complete when handling |
| * a pagefault. */ |
| #define MMU_NOTIFIER_TIMEOUT 1000 |
| |
| #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT) |
| #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT) |
| #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS) |
| #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT) |
| #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1)) |
| |
| #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT |
| |
| static u64 mlx5_imr_ksm_entries; |
| |
| static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries, |
| struct mlx5_ib_mr *imr, int flags) |
| { |
| struct mlx5_klm *end = pklm + nentries; |
| |
| if (flags & MLX5_IB_UPD_XLT_ZAP) { |
| for (; pklm != end; pklm++, idx++) { |
| pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); |
| pklm->key = cpu_to_be32(imr->dev->null_mkey); |
| pklm->va = 0; |
| } |
| return; |
| } |
| |
| /* |
| * The locking here is pretty subtle. Ideally the implicit_children |
| * xarray would be protected by the umem_mutex, however that is not |
| * possible. Instead this uses a weaker update-then-lock pattern: |
| * |
| * srcu_read_lock() |
| * xa_store() |
| * mutex_lock(umem_mutex) |
| * mlx5_ib_update_xlt() |
| * mutex_unlock(umem_mutex) |
| * destroy lkey |
| * |
| * ie any change the xarray must be followed by the locked update_xlt |
| * before destroying. |
| * |
| * The umem_mutex provides the acquire/release semantic needed to make |
| * the xa_store() visible to a racing thread. While SRCU is not |
| * technically required, using it gives consistent use of the SRCU |
| * locking around the xarray. |
| */ |
| lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex); |
| lockdep_assert_held(&imr->dev->odp_srcu); |
| |
| for (; pklm != end; pklm++, idx++) { |
| struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx); |
| |
| pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); |
| if (mtt) { |
| pklm->key = cpu_to_be32(mtt->ibmr.lkey); |
| pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE); |
| } else { |
| pklm->key = cpu_to_be32(imr->dev->null_mkey); |
| pklm->va = 0; |
| } |
| } |
| } |
| |
| static u64 umem_dma_to_mtt(dma_addr_t umem_dma) |
| { |
| u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK; |
| |
| if (umem_dma & ODP_READ_ALLOWED_BIT) |
| mtt_entry |= MLX5_IB_MTT_READ; |
| if (umem_dma & ODP_WRITE_ALLOWED_BIT) |
| mtt_entry |= MLX5_IB_MTT_WRITE; |
| |
| return mtt_entry; |
| } |
| |
| static void populate_mtt(__be64 *pas, size_t idx, size_t nentries, |
| struct mlx5_ib_mr *mr, int flags) |
| { |
| struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); |
| dma_addr_t pa; |
| size_t i; |
| |
| if (flags & MLX5_IB_UPD_XLT_ZAP) |
| return; |
| |
| for (i = 0; i < nentries; i++) { |
| pa = odp->dma_list[idx + i]; |
| pas[i] = cpu_to_be64(umem_dma_to_mtt(pa)); |
| } |
| } |
| |
| void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries, |
| struct mlx5_ib_mr *mr, int flags) |
| { |
| if (flags & MLX5_IB_UPD_XLT_INDIRECT) { |
| populate_klm(xlt, idx, nentries, mr, flags); |
| } else { |
| populate_mtt(xlt, idx, nentries, mr, flags); |
| } |
| } |
| |
| static void dma_fence_odp_mr(struct mlx5_ib_mr *mr) |
| { |
| struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); |
| |
| /* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */ |
| mutex_lock(&odp->umem_mutex); |
| if (odp->npages) { |
| mlx5_mr_cache_invalidate(mr); |
| ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp), |
| ib_umem_end(odp)); |
| WARN_ON(odp->npages); |
| } |
| odp->private = NULL; |
| mutex_unlock(&odp->umem_mutex); |
| |
| if (!mr->allocated_from_cache) { |
| mlx5_core_destroy_mkey(mr->dev->mdev, &mr->mmkey); |
| WARN_ON(mr->descs); |
| } |
| } |
| |
| /* |
| * This must be called after the mr has been removed from implicit_children |
| * and the SRCU synchronized. NOTE: The MR does not necessarily have to be |
| * empty here, parallel page faults could have raced with the free process and |
| * added pages to it. |
| */ |
| static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt) |
| { |
| struct mlx5_ib_mr *imr = mr->parent; |
| struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem); |
| struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); |
| unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; |
| int srcu_key; |
| |
| /* implicit_child_mr's are not allowed to have deferred work */ |
| WARN_ON(atomic_read(&mr->num_deferred_work)); |
| |
| if (need_imr_xlt) { |
| srcu_key = srcu_read_lock(&mr->dev->odp_srcu); |
| mutex_lock(&odp_imr->umem_mutex); |
| mlx5_ib_update_xlt(mr->parent, idx, 1, 0, |
| MLX5_IB_UPD_XLT_INDIRECT | |
| MLX5_IB_UPD_XLT_ATOMIC); |
| mutex_unlock(&odp_imr->umem_mutex); |
| srcu_read_unlock(&mr->dev->odp_srcu, srcu_key); |
| } |
| |
| dma_fence_odp_mr(mr); |
| |
| mr->parent = NULL; |
| mlx5_mr_cache_free(mr->dev, mr); |
| ib_umem_odp_release(odp); |
| atomic_dec(&imr->num_deferred_work); |
| } |
| |
| static void free_implicit_child_mr_work(struct work_struct *work) |
| { |
| struct mlx5_ib_mr *mr = |
| container_of(work, struct mlx5_ib_mr, odp_destroy.work); |
| |
| free_implicit_child_mr(mr, true); |
| } |
| |
| static void free_implicit_child_mr_rcu(struct rcu_head *head) |
| { |
| struct mlx5_ib_mr *mr = |
| container_of(head, struct mlx5_ib_mr, odp_destroy.rcu); |
| |
| /* Freeing a MR is a sleeping operation, so bounce to a work queue */ |
| INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work); |
| queue_work(system_unbound_wq, &mr->odp_destroy.work); |
| } |
| |
| static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr) |
| { |
| struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); |
| unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; |
| struct mlx5_ib_mr *imr = mr->parent; |
| |
| xa_lock(&imr->implicit_children); |
| /* |
| * This can race with mlx5_ib_free_implicit_mr(), the first one to |
| * reach the xa lock wins the race and destroys the MR. |
| */ |
| if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) != |
| mr) |
| goto out_unlock; |
| |
| atomic_inc(&imr->num_deferred_work); |
| call_srcu(&mr->dev->odp_srcu, &mr->odp_destroy.rcu, |
| free_implicit_child_mr_rcu); |
| |
| out_unlock: |
| xa_unlock(&imr->implicit_children); |
| } |
| |
| static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni, |
| const struct mmu_notifier_range *range, |
| unsigned long cur_seq) |
| { |
| struct ib_umem_odp *umem_odp = |
| container_of(mni, struct ib_umem_odp, notifier); |
| struct mlx5_ib_mr *mr; |
| const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / |
| sizeof(struct mlx5_mtt)) - 1; |
| u64 idx = 0, blk_start_idx = 0; |
| u64 invalidations = 0; |
| unsigned long start; |
| unsigned long end; |
| int in_block = 0; |
| u64 addr; |
| |
| if (!mmu_notifier_range_blockable(range)) |
| return false; |
| |
| mutex_lock(&umem_odp->umem_mutex); |
| mmu_interval_set_seq(mni, cur_seq); |
| /* |
| * If npages is zero then umem_odp->private may not be setup yet. This |
| * does not complete until after the first page is mapped for DMA. |
| */ |
| if (!umem_odp->npages) |
| goto out; |
| mr = umem_odp->private; |
| |
| start = max_t(u64, ib_umem_start(umem_odp), range->start); |
| end = min_t(u64, ib_umem_end(umem_odp), range->end); |
| |
| /* |
| * Iteration one - zap the HW's MTTs. The notifiers_count ensures that |
| * while we are doing the invalidation, no page fault will attempt to |
| * overwrite the same MTTs. Concurent invalidations might race us, |
| * but they will write 0s as well, so no difference in the end result. |
| */ |
| for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) { |
| idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; |
| /* |
| * Strive to write the MTTs in chunks, but avoid overwriting |
| * non-existing MTTs. The huristic here can be improved to |
| * estimate the cost of another UMR vs. the cost of bigger |
| * UMR. |
| */ |
| if (umem_odp->dma_list[idx] & |
| (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) { |
| if (!in_block) { |
| blk_start_idx = idx; |
| in_block = 1; |
| } |
| |
| /* Count page invalidations */ |
| invalidations += idx - blk_start_idx + 1; |
| } else { |
| u64 umr_offset = idx & umr_block_mask; |
| |
| if (in_block && umr_offset == 0) { |
| mlx5_ib_update_xlt(mr, blk_start_idx, |
| idx - blk_start_idx, 0, |
| MLX5_IB_UPD_XLT_ZAP | |
| MLX5_IB_UPD_XLT_ATOMIC); |
| in_block = 0; |
| } |
| } |
| } |
| if (in_block) |
| mlx5_ib_update_xlt(mr, blk_start_idx, |
| idx - blk_start_idx + 1, 0, |
| MLX5_IB_UPD_XLT_ZAP | |
| MLX5_IB_UPD_XLT_ATOMIC); |
| |
| mlx5_update_odp_stats(mr, invalidations, invalidations); |
| |
| /* |
| * We are now sure that the device will not access the |
| * memory. We can safely unmap it, and mark it as dirty if |
| * needed. |
| */ |
| |
| ib_umem_odp_unmap_dma_pages(umem_odp, start, end); |
| |
| if (unlikely(!umem_odp->npages && mr->parent)) |
| destroy_unused_implicit_child_mr(mr); |
| out: |
| mutex_unlock(&umem_odp->umem_mutex); |
| return true; |
| } |
| |
| const struct mmu_interval_notifier_ops mlx5_mn_ops = { |
| .invalidate = mlx5_ib_invalidate_range, |
| }; |
| |
| void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev) |
| { |
| struct ib_odp_caps *caps = &dev->odp_caps; |
| |
| memset(caps, 0, sizeof(*caps)); |
| |
| if (!MLX5_CAP_GEN(dev->mdev, pg) || |
| !mlx5_ib_can_use_umr(dev, true, 0)) |
| return; |
| |
| caps->general_caps = IB_ODP_SUPPORT; |
| |
| if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) |
| dev->odp_max_size = U64_MAX; |
| else |
| dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT); |
| |
| if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send)) |
| caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND; |
| |
| if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive)) |
| caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; |
| |
| if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send)) |
| caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND; |
| |
| if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive)) |
| caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV; |
| |
| if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write)) |
| caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE; |
| |
| if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read)) |
| caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ; |
| |
| if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic)) |
| caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; |
| |
| if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive)) |
| caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; |
| |
| if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send)) |
| caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND; |
| |
| if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive)) |
| caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV; |
| |
| if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write)) |
| caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE; |
| |
| if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read)) |
| caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ; |
| |
| if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic)) |
| caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; |
| |
| if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive)) |
| caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; |
| |
| if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) && |
| MLX5_CAP_GEN(dev->mdev, null_mkey) && |
| MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) && |
| !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled)) |
| caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT; |
| } |
| |
| static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev, |
| struct mlx5_pagefault *pfault, |
| int error) |
| { |
| int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ? |
| pfault->wqe.wq_num : pfault->token; |
| u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { }; |
| u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = { }; |
| int err; |
| |
| MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME); |
| MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type); |
| MLX5_SET(page_fault_resume_in, in, token, pfault->token); |
| MLX5_SET(page_fault_resume_in, in, wq_number, wq_num); |
| MLX5_SET(page_fault_resume_in, in, error, !!error); |
| |
| err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out)); |
| if (err) |
| mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n", |
| wq_num, err); |
| } |
| |
| static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr, |
| unsigned long idx) |
| { |
| struct ib_umem_odp *odp; |
| struct mlx5_ib_mr *mr; |
| struct mlx5_ib_mr *ret; |
| int err; |
| |
| odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem), |
| idx * MLX5_IMR_MTT_SIZE, |
| MLX5_IMR_MTT_SIZE, &mlx5_mn_ops); |
| if (IS_ERR(odp)) |
| return ERR_CAST(odp); |
| |
| ret = mr = mlx5_mr_cache_alloc(imr->dev, MLX5_IMR_MTT_CACHE_ENTRY); |
| if (IS_ERR(mr)) |
| goto out_umem; |
| |
| mr->ibmr.pd = imr->ibmr.pd; |
| mr->access_flags = imr->access_flags; |
| mr->umem = &odp->umem; |
| mr->ibmr.lkey = mr->mmkey.key; |
| mr->ibmr.rkey = mr->mmkey.key; |
| mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE; |
| mr->parent = imr; |
| odp->private = mr; |
| |
| err = mlx5_ib_update_xlt(mr, 0, |
| MLX5_IMR_MTT_ENTRIES, |
| PAGE_SHIFT, |
| MLX5_IB_UPD_XLT_ZAP | |
| MLX5_IB_UPD_XLT_ENABLE); |
| if (err) { |
| ret = ERR_PTR(err); |
| goto out_mr; |
| } |
| |
| /* |
| * Once the store to either xarray completes any error unwind has to |
| * use synchronize_srcu(). Avoid this with xa_reserve() |
| */ |
| ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr, |
| GFP_KERNEL); |
| if (unlikely(ret)) { |
| if (xa_is_err(ret)) { |
| ret = ERR_PTR(xa_err(ret)); |
| goto out_mr; |
| } |
| /* |
| * Another thread beat us to creating the child mr, use |
| * theirs. |
| */ |
| goto out_mr; |
| } |
| |
| mlx5_ib_dbg(imr->dev, "key %x mr %p\n", mr->mmkey.key, mr); |
| return mr; |
| |
| out_mr: |
| mlx5_mr_cache_free(imr->dev, mr); |
| out_umem: |
| ib_umem_odp_release(odp); |
| return ret; |
| } |
| |
| struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd, |
| struct ib_udata *udata, |
| int access_flags) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device); |
| struct ib_umem_odp *umem_odp; |
| struct mlx5_ib_mr *imr; |
| int err; |
| |
| umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags); |
| if (IS_ERR(umem_odp)) |
| return ERR_CAST(umem_odp); |
| |
| imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY); |
| if (IS_ERR(imr)) { |
| err = PTR_ERR(imr); |
| goto out_umem; |
| } |
| |
| imr->ibmr.pd = &pd->ibpd; |
| imr->access_flags = access_flags; |
| imr->mmkey.iova = 0; |
| imr->umem = &umem_odp->umem; |
| imr->ibmr.lkey = imr->mmkey.key; |
| imr->ibmr.rkey = imr->mmkey.key; |
| imr->umem = &umem_odp->umem; |
| imr->is_odp_implicit = true; |
| atomic_set(&imr->num_deferred_work, 0); |
| xa_init(&imr->implicit_children); |
| |
| err = mlx5_ib_update_xlt(imr, 0, |
| mlx5_imr_ksm_entries, |
| MLX5_KSM_PAGE_SHIFT, |
| MLX5_IB_UPD_XLT_INDIRECT | |
| MLX5_IB_UPD_XLT_ZAP | |
| MLX5_IB_UPD_XLT_ENABLE); |
| if (err) |
| goto out_mr; |
| |
| err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key), |
| &imr->mmkey, GFP_KERNEL)); |
| if (err) |
| goto out_mr; |
| |
| mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr); |
| return imr; |
| out_mr: |
| mlx5_ib_err(dev, "Failed to register MKEY %d\n", err); |
| mlx5_mr_cache_free(dev, imr); |
| out_umem: |
| ib_umem_odp_release(umem_odp); |
| return ERR_PTR(err); |
| } |
| |
| void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr) |
| { |
| struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem); |
| struct mlx5_ib_dev *dev = imr->dev; |
| struct list_head destroy_list; |
| struct mlx5_ib_mr *mtt; |
| struct mlx5_ib_mr *tmp; |
| unsigned long idx; |
| |
| INIT_LIST_HEAD(&destroy_list); |
| |
| xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key)); |
| /* |
| * This stops the SRCU protected page fault path from touching either |
| * the imr or any children. The page fault path can only reach the |
| * children xarray via the imr. |
| */ |
| synchronize_srcu(&dev->odp_srcu); |
| |
| xa_lock(&imr->implicit_children); |
| xa_for_each (&imr->implicit_children, idx, mtt) { |
| __xa_erase(&imr->implicit_children, idx); |
| list_add(&mtt->odp_destroy.elm, &destroy_list); |
| } |
| xa_unlock(&imr->implicit_children); |
| |
| /* |
| * num_deferred_work can only be incremented inside the odp_srcu, or |
| * under xa_lock while the child is in the xarray. Thus at this point |
| * it is only decreasing, and all work holding it is now on the wq. |
| */ |
| if (atomic_read(&imr->num_deferred_work)) { |
| flush_workqueue(system_unbound_wq); |
| WARN_ON(atomic_read(&imr->num_deferred_work)); |
| } |
| |
| /* |
| * Fence the imr before we destroy the children. This allows us to |
| * skip updating the XLT of the imr during destroy of the child mkey |
| * the imr points to. |
| */ |
| mlx5_mr_cache_invalidate(imr); |
| |
| list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm) |
| free_implicit_child_mr(mtt, false); |
| |
| mlx5_mr_cache_free(dev, imr); |
| ib_umem_odp_release(odp_imr); |
| } |
| |
| /** |
| * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR |
| * @mr: to fence |
| * |
| * On return no parallel threads will be touching this MR and no DMA will be |
| * active. |
| */ |
| void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr) |
| { |
| /* Prevent new page faults and prefetch requests from succeeding */ |
| xa_erase(&mr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)); |
| |
| /* Wait for all running page-fault handlers to finish. */ |
| synchronize_srcu(&mr->dev->odp_srcu); |
| |
| if (atomic_read(&mr->num_deferred_work)) { |
| flush_workqueue(system_unbound_wq); |
| WARN_ON(atomic_read(&mr->num_deferred_work)); |
| } |
| |
| dma_fence_odp_mr(mr); |
| } |
| |
| #define MLX5_PF_FLAGS_DOWNGRADE BIT(1) |
| static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp, |
| u64 user_va, size_t bcnt, u32 *bytes_mapped, |
| u32 flags) |
| { |
| int page_shift, ret, np; |
| bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE; |
| unsigned long current_seq; |
| u64 access_mask; |
| u64 start_idx; |
| |
| page_shift = odp->page_shift; |
| start_idx = (user_va - ib_umem_start(odp)) >> page_shift; |
| access_mask = ODP_READ_ALLOWED_BIT; |
| |
| if (odp->umem.writable && !downgrade) |
| access_mask |= ODP_WRITE_ALLOWED_BIT; |
| |
| current_seq = mmu_interval_read_begin(&odp->notifier); |
| |
| np = ib_umem_odp_map_dma_pages(odp, user_va, bcnt, access_mask, |
| current_seq); |
| if (np < 0) |
| return np; |
| |
| mutex_lock(&odp->umem_mutex); |
| if (!mmu_interval_read_retry(&odp->notifier, current_seq)) { |
| /* |
| * No need to check whether the MTTs really belong to |
| * this MR, since ib_umem_odp_map_dma_pages already |
| * checks this. |
| */ |
| ret = mlx5_ib_update_xlt(mr, start_idx, np, |
| page_shift, MLX5_IB_UPD_XLT_ATOMIC); |
| } else { |
| ret = -EAGAIN; |
| } |
| mutex_unlock(&odp->umem_mutex); |
| |
| if (ret < 0) { |
| if (ret != -EAGAIN) |
| mlx5_ib_err(mr->dev, |
| "Failed to update mkey page tables\n"); |
| goto out; |
| } |
| |
| if (bytes_mapped) { |
| u32 new_mappings = (np << page_shift) - |
| (user_va - round_down(user_va, 1 << page_shift)); |
| |
| *bytes_mapped += min_t(u32, new_mappings, bcnt); |
| } |
| |
| return np << (page_shift - PAGE_SHIFT); |
| |
| out: |
| return ret; |
| } |
| |
| static int pagefault_implicit_mr(struct mlx5_ib_mr *imr, |
| struct ib_umem_odp *odp_imr, u64 user_va, |
| size_t bcnt, u32 *bytes_mapped, u32 flags) |
| { |
| unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT; |
| unsigned long upd_start_idx = end_idx + 1; |
| unsigned long upd_len = 0; |
| unsigned long npages = 0; |
| int err; |
| int ret; |
| |
| if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE || |
| mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt)) |
| return -EFAULT; |
| |
| /* Fault each child mr that intersects with our interval. */ |
| while (bcnt) { |
| unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT; |
| struct ib_umem_odp *umem_odp; |
| struct mlx5_ib_mr *mtt; |
| u64 len; |
| |
| mtt = xa_load(&imr->implicit_children, idx); |
| if (unlikely(!mtt)) { |
| mtt = implicit_get_child_mr(imr, idx); |
| if (IS_ERR(mtt)) { |
| ret = PTR_ERR(mtt); |
| goto out; |
| } |
| upd_start_idx = min(upd_start_idx, idx); |
| upd_len = idx - upd_start_idx + 1; |
| } |
| |
| umem_odp = to_ib_umem_odp(mtt->umem); |
| len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) - |
| user_va; |
| |
| ret = pagefault_real_mr(mtt, umem_odp, user_va, len, |
| bytes_mapped, flags); |
| if (ret < 0) |
| goto out; |
| user_va += len; |
| bcnt -= len; |
| npages += ret; |
| } |
| |
| ret = npages; |
| |
| /* |
| * Any time the implicit_children are changed we must perform an |
| * update of the xlt before exiting to ensure the HW and the |
| * implicit_children remains synchronized. |
| */ |
| out: |
| if (likely(!upd_len)) |
| return ret; |
| |
| /* |
| * Notice this is not strictly ordered right, the KSM is updated after |
| * the implicit_children is updated, so a parallel page fault could |
| * see a MR that is not yet visible in the KSM. This is similar to a |
| * parallel page fault seeing a MR that is being concurrently removed |
| * from the KSM. Both of these improbable situations are resolved |
| * safely by resuming the HW and then taking another page fault. The |
| * next pagefault handler will see the new information. |
| */ |
| mutex_lock(&odp_imr->umem_mutex); |
| err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0, |
| MLX5_IB_UPD_XLT_INDIRECT | |
| MLX5_IB_UPD_XLT_ATOMIC); |
| mutex_unlock(&odp_imr->umem_mutex); |
| if (err) { |
| mlx5_ib_err(imr->dev, "Failed to update PAS\n"); |
| return err; |
| } |
| return ret; |
| } |
| |
| /* |
| * Returns: |
| * -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are |
| * not accessible, or the MR is no longer valid. |
| * -EAGAIN/-ENOMEM: The operation should be retried |
| * |
| * -EINVAL/others: General internal malfunction |
| * >0: Number of pages mapped |
| */ |
| static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt, |
| u32 *bytes_mapped, u32 flags) |
| { |
| struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); |
| |
| if (unlikely(io_virt < mr->mmkey.iova)) |
| return -EFAULT; |
| |
| if (!odp->is_implicit_odp) { |
| u64 user_va; |
| |
| if (check_add_overflow(io_virt - mr->mmkey.iova, |
| (u64)odp->umem.address, &user_va)) |
| return -EFAULT; |
| if (unlikely(user_va >= ib_umem_end(odp) || |
| ib_umem_end(odp) - user_va < bcnt)) |
| return -EFAULT; |
| return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped, |
| flags); |
| } |
| return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped, |
| flags); |
| } |
| |
| struct pf_frame { |
| struct pf_frame *next; |
| u32 key; |
| u64 io_virt; |
| size_t bcnt; |
| int depth; |
| }; |
| |
| static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key) |
| { |
| if (!mmkey) |
| return false; |
| if (mmkey->type == MLX5_MKEY_MW) |
| return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key); |
| return mmkey->key == key; |
| } |
| |
| static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey) |
| { |
| struct mlx5_ib_mw *mw; |
| struct mlx5_ib_devx_mr *devx_mr; |
| |
| if (mmkey->type == MLX5_MKEY_MW) { |
| mw = container_of(mmkey, struct mlx5_ib_mw, mmkey); |
| return mw->ndescs; |
| } |
| |
| devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr, |
| mmkey); |
| return devx_mr->ndescs; |
| } |
| |
| /* |
| * Handle a single data segment in a page-fault WQE or RDMA region. |
| * |
| * Returns number of OS pages retrieved on success. The caller may continue to |
| * the next data segment. |
| * Can return the following error codes: |
| * -EAGAIN to designate a temporary error. The caller will abort handling the |
| * page fault and resolve it. |
| * -EFAULT when there's an error mapping the requested pages. The caller will |
| * abort the page fault handling. |
| */ |
| static int pagefault_single_data_segment(struct mlx5_ib_dev *dev, |
| struct ib_pd *pd, u32 key, |
| u64 io_virt, size_t bcnt, |
| u32 *bytes_committed, |
| u32 *bytes_mapped) |
| { |
| int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0; |
| struct pf_frame *head = NULL, *frame; |
| struct mlx5_core_mkey *mmkey; |
| struct mlx5_ib_mr *mr; |
| struct mlx5_klm *pklm; |
| u32 *out = NULL; |
| size_t offset; |
| int ndescs; |
| |
| srcu_key = srcu_read_lock(&dev->odp_srcu); |
| |
| io_virt += *bytes_committed; |
| bcnt -= *bytes_committed; |
| |
| next_mr: |
| mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key)); |
| if (!mmkey) { |
| mlx5_ib_dbg( |
| dev, |
| "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n", |
| key); |
| if (bytes_mapped) |
| *bytes_mapped += bcnt; |
| /* |
| * The user could specify a SGL with multiple lkeys and only |
| * some of them are ODP. Treat the non-ODP ones as fully |
| * faulted. |
| */ |
| ret = 0; |
| goto srcu_unlock; |
| } |
| if (!mkey_is_eq(mmkey, key)) { |
| mlx5_ib_dbg(dev, "failed to find mkey %x\n", key); |
| ret = -EFAULT; |
| goto srcu_unlock; |
| } |
| |
| switch (mmkey->type) { |
| case MLX5_MKEY_MR: |
| mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); |
| |
| ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0); |
| if (ret < 0) |
| goto srcu_unlock; |
| |
| /* |
| * When prefetching a page, page fault is generated |
| * in order to bring the page to the main memory. |
| * In the current flow, page faults are being counted. |
| */ |
| mlx5_update_odp_stats(mr, faults, ret); |
| |
| npages += ret; |
| ret = 0; |
| break; |
| |
| case MLX5_MKEY_MW: |
| case MLX5_MKEY_INDIRECT_DEVX: |
| ndescs = get_indirect_num_descs(mmkey); |
| |
| if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) { |
| mlx5_ib_dbg(dev, "indirection level exceeded\n"); |
| ret = -EFAULT; |
| goto srcu_unlock; |
| } |
| |
| outlen = MLX5_ST_SZ_BYTES(query_mkey_out) + |
| sizeof(*pklm) * (ndescs - 2); |
| |
| if (outlen > cur_outlen) { |
| kfree(out); |
| out = kzalloc(outlen, GFP_KERNEL); |
| if (!out) { |
| ret = -ENOMEM; |
| goto srcu_unlock; |
| } |
| cur_outlen = outlen; |
| } |
| |
| pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out, |
| bsf0_klm0_pas_mtt0_1); |
| |
| ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen); |
| if (ret) |
| goto srcu_unlock; |
| |
| offset = io_virt - MLX5_GET64(query_mkey_out, out, |
| memory_key_mkey_entry.start_addr); |
| |
| for (i = 0; bcnt && i < ndescs; i++, pklm++) { |
| if (offset >= be32_to_cpu(pklm->bcount)) { |
| offset -= be32_to_cpu(pklm->bcount); |
| continue; |
| } |
| |
| frame = kzalloc(sizeof(*frame), GFP_KERNEL); |
| if (!frame) { |
| ret = -ENOMEM; |
| goto srcu_unlock; |
| } |
| |
| frame->key = be32_to_cpu(pklm->key); |
| frame->io_virt = be64_to_cpu(pklm->va) + offset; |
| frame->bcnt = min_t(size_t, bcnt, |
| be32_to_cpu(pklm->bcount) - offset); |
| frame->depth = depth + 1; |
| frame->next = head; |
| head = frame; |
| |
| bcnt -= frame->bcnt; |
| offset = 0; |
| } |
| break; |
| |
| default: |
| mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type); |
| ret = -EFAULT; |
| goto srcu_unlock; |
| } |
| |
| if (head) { |
| frame = head; |
| head = frame->next; |
| |
| key = frame->key; |
| io_virt = frame->io_virt; |
| bcnt = frame->bcnt; |
| depth = frame->depth; |
| kfree(frame); |
| |
| goto next_mr; |
| } |
| |
| srcu_unlock: |
| while (head) { |
| frame = head; |
| head = frame->next; |
| kfree(frame); |
| } |
| kfree(out); |
| |
| srcu_read_unlock(&dev->odp_srcu, srcu_key); |
| *bytes_committed = 0; |
| return ret ? ret : npages; |
| } |
| |
| /** |
| * Parse a series of data segments for page fault handling. |
| * |
| * @pfault contains page fault information. |
| * @wqe points at the first data segment in the WQE. |
| * @wqe_end points after the end of the WQE. |
| * @bytes_mapped receives the number of bytes that the function was able to |
| * map. This allows the caller to decide intelligently whether |
| * enough memory was mapped to resolve the page fault |
| * successfully (e.g. enough for the next MTU, or the entire |
| * WQE). |
| * @total_wqe_bytes receives the total data size of this WQE in bytes (minus |
| * the committed bytes). |
| * |
| * Returns the number of pages loaded if positive, zero for an empty WQE, or a |
| * negative error code. |
| */ |
| static int pagefault_data_segments(struct mlx5_ib_dev *dev, |
| struct mlx5_pagefault *pfault, |
| void *wqe, |
| void *wqe_end, u32 *bytes_mapped, |
| u32 *total_wqe_bytes, bool receive_queue) |
| { |
| int ret = 0, npages = 0; |
| u64 io_virt; |
| u32 key; |
| u32 byte_count; |
| size_t bcnt; |
| int inline_segment; |
| |
| if (bytes_mapped) |
| *bytes_mapped = 0; |
| if (total_wqe_bytes) |
| *total_wqe_bytes = 0; |
| |
| while (wqe < wqe_end) { |
| struct mlx5_wqe_data_seg *dseg = wqe; |
| |
| io_virt = be64_to_cpu(dseg->addr); |
| key = be32_to_cpu(dseg->lkey); |
| byte_count = be32_to_cpu(dseg->byte_count); |
| inline_segment = !!(byte_count & MLX5_INLINE_SEG); |
| bcnt = byte_count & ~MLX5_INLINE_SEG; |
| |
| if (inline_segment) { |
| bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK; |
| wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt, |
| 16); |
| } else { |
| wqe += sizeof(*dseg); |
| } |
| |
| /* receive WQE end of sg list. */ |
| if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY && |
| io_virt == 0) |
| break; |
| |
| if (!inline_segment && total_wqe_bytes) { |
| *total_wqe_bytes += bcnt - min_t(size_t, bcnt, |
| pfault->bytes_committed); |
| } |
| |
| /* A zero length data segment designates a length of 2GB. */ |
| if (bcnt == 0) |
| bcnt = 1U << 31; |
| |
| if (inline_segment || bcnt <= pfault->bytes_committed) { |
| pfault->bytes_committed -= |
| min_t(size_t, bcnt, |
| pfault->bytes_committed); |
| continue; |
| } |
| |
| ret = pagefault_single_data_segment(dev, NULL, key, |
| io_virt, bcnt, |
| &pfault->bytes_committed, |
| bytes_mapped); |
| if (ret < 0) |
| break; |
| npages += ret; |
| } |
| |
| return ret < 0 ? ret : npages; |
| } |
| |
| /* |
| * Parse initiator WQE. Advances the wqe pointer to point at the |
| * scatter-gather list, and set wqe_end to the end of the WQE. |
| */ |
| static int mlx5_ib_mr_initiator_pfault_handler( |
| struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, |
| struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length) |
| { |
| struct mlx5_wqe_ctrl_seg *ctrl = *wqe; |
| u16 wqe_index = pfault->wqe.wqe_index; |
| struct mlx5_base_av *av; |
| unsigned ds, opcode; |
| u32 qpn = qp->trans_qp.base.mqp.qpn; |
| |
| ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK; |
| if (ds * MLX5_WQE_DS_UNITS > wqe_length) { |
| mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n", |
| ds, wqe_length); |
| return -EFAULT; |
| } |
| |
| if (ds == 0) { |
| mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n", |
| wqe_index, qpn); |
| return -EFAULT; |
| } |
| |
| *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS; |
| *wqe += sizeof(*ctrl); |
| |
| opcode = be32_to_cpu(ctrl->opmod_idx_opcode) & |
| MLX5_WQE_CTRL_OPCODE_MASK; |
| |
| if (qp->ibqp.qp_type == IB_QPT_XRC_INI) |
| *wqe += sizeof(struct mlx5_wqe_xrc_seg); |
| |
| if (qp->ibqp.qp_type == IB_QPT_UD || |
| qp->qp_sub_type == MLX5_IB_QPT_DCI) { |
| av = *wqe; |
| if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV)) |
| *wqe += sizeof(struct mlx5_av); |
| else |
| *wqe += sizeof(struct mlx5_base_av); |
| } |
| |
| switch (opcode) { |
| case MLX5_OPCODE_RDMA_WRITE: |
| case MLX5_OPCODE_RDMA_WRITE_IMM: |
| case MLX5_OPCODE_RDMA_READ: |
| *wqe += sizeof(struct mlx5_wqe_raddr_seg); |
| break; |
| case MLX5_OPCODE_ATOMIC_CS: |
| case MLX5_OPCODE_ATOMIC_FA: |
| *wqe += sizeof(struct mlx5_wqe_raddr_seg); |
| *wqe += sizeof(struct mlx5_wqe_atomic_seg); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Parse responder WQE and set wqe_end to the end of the WQE. |
| */ |
| static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev, |
| struct mlx5_ib_srq *srq, |
| void **wqe, void **wqe_end, |
| int wqe_length) |
| { |
| int wqe_size = 1 << srq->msrq.wqe_shift; |
| |
| if (wqe_size > wqe_length) { |
| mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); |
| return -EFAULT; |
| } |
| |
| *wqe_end = *wqe + wqe_size; |
| *wqe += sizeof(struct mlx5_wqe_srq_next_seg); |
| |
| return 0; |
| } |
| |
| static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev, |
| struct mlx5_ib_qp *qp, |
| void *wqe, void **wqe_end, |
| int wqe_length) |
| { |
| struct mlx5_ib_wq *wq = &qp->rq; |
| int wqe_size = 1 << wq->wqe_shift; |
| |
| if (qp->wq_sig) { |
| mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n"); |
| return -EFAULT; |
| } |
| |
| if (wqe_size > wqe_length) { |
| mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); |
| return -EFAULT; |
| } |
| |
| *wqe_end = wqe + wqe_size; |
| |
| return 0; |
| } |
| |
| static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev, |
| u32 wq_num, int pf_type) |
| { |
| struct mlx5_core_rsc_common *common = NULL; |
| struct mlx5_core_srq *srq; |
| |
| switch (pf_type) { |
| case MLX5_WQE_PF_TYPE_RMP: |
| srq = mlx5_cmd_get_srq(dev, wq_num); |
| if (srq) |
| common = &srq->common; |
| break; |
| case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE: |
| case MLX5_WQE_PF_TYPE_RESP: |
| case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC: |
| common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP); |
| break; |
| default: |
| break; |
| } |
| |
| return common; |
| } |
| |
| static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res) |
| { |
| struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res; |
| |
| return to_mibqp(mqp); |
| } |
| |
| static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res) |
| { |
| struct mlx5_core_srq *msrq = |
| container_of(res, struct mlx5_core_srq, common); |
| |
| return to_mibsrq(msrq); |
| } |
| |
| static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev, |
| struct mlx5_pagefault *pfault) |
| { |
| bool sq = pfault->type & MLX5_PFAULT_REQUESTOR; |
| u16 wqe_index = pfault->wqe.wqe_index; |
| void *wqe, *wqe_start = NULL, *wqe_end = NULL; |
| u32 bytes_mapped, total_wqe_bytes; |
| struct mlx5_core_rsc_common *res; |
| int resume_with_error = 1; |
| struct mlx5_ib_qp *qp; |
| size_t bytes_copied; |
| int ret = 0; |
| |
| res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type); |
| if (!res) { |
| mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num); |
| return; |
| } |
| |
| if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ && |
| res->res != MLX5_RES_XSRQ) { |
| mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n", |
| pfault->type); |
| goto resolve_page_fault; |
| } |
| |
| wqe_start = (void *)__get_free_page(GFP_KERNEL); |
| if (!wqe_start) { |
| mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n"); |
| goto resolve_page_fault; |
| } |
| |
| wqe = wqe_start; |
| qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL; |
| if (qp && sq) { |
| ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE, |
| &bytes_copied); |
| if (ret) |
| goto read_user; |
| ret = mlx5_ib_mr_initiator_pfault_handler( |
| dev, pfault, qp, &wqe, &wqe_end, bytes_copied); |
| } else if (qp && !sq) { |
| ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE, |
| &bytes_copied); |
| if (ret) |
| goto read_user; |
| ret = mlx5_ib_mr_responder_pfault_handler_rq( |
| dev, qp, wqe, &wqe_end, bytes_copied); |
| } else if (!qp) { |
| struct mlx5_ib_srq *srq = res_to_srq(res); |
| |
| ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE, |
| &bytes_copied); |
| if (ret) |
| goto read_user; |
| ret = mlx5_ib_mr_responder_pfault_handler_srq( |
| dev, srq, &wqe, &wqe_end, bytes_copied); |
| } |
| |
| if (ret < 0 || wqe >= wqe_end) |
| goto resolve_page_fault; |
| |
| ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped, |
| &total_wqe_bytes, !sq); |
| if (ret == -EAGAIN) |
| goto out; |
| |
| if (ret < 0 || total_wqe_bytes > bytes_mapped) |
| goto resolve_page_fault; |
| |
| out: |
| ret = 0; |
| resume_with_error = 0; |
| |
| read_user: |
| if (ret) |
| mlx5_ib_err( |
| dev, |
| "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n", |
| ret, wqe_index, pfault->token); |
| |
| resolve_page_fault: |
| mlx5_ib_page_fault_resume(dev, pfault, resume_with_error); |
| mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n", |
| pfault->wqe.wq_num, resume_with_error, |
| pfault->type); |
| mlx5_core_res_put(res); |
| free_page((unsigned long)wqe_start); |
| } |
| |
| static int pages_in_range(u64 address, u32 length) |
| { |
| return (ALIGN(address + length, PAGE_SIZE) - |
| (address & PAGE_MASK)) >> PAGE_SHIFT; |
| } |
| |
| static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev, |
| struct mlx5_pagefault *pfault) |
| { |
| u64 address; |
| u32 length; |
| u32 prefetch_len = pfault->bytes_committed; |
| int prefetch_activated = 0; |
| u32 rkey = pfault->rdma.r_key; |
| int ret; |
| |
| /* The RDMA responder handler handles the page fault in two parts. |
| * First it brings the necessary pages for the current packet |
| * (and uses the pfault context), and then (after resuming the QP) |
| * prefetches more pages. The second operation cannot use the pfault |
| * context and therefore uses the dummy_pfault context allocated on |
| * the stack */ |
| pfault->rdma.rdma_va += pfault->bytes_committed; |
| pfault->rdma.rdma_op_len -= min(pfault->bytes_committed, |
| pfault->rdma.rdma_op_len); |
| pfault->bytes_committed = 0; |
| |
| address = pfault->rdma.rdma_va; |
| length = pfault->rdma.rdma_op_len; |
| |
| /* For some operations, the hardware cannot tell the exact message |
| * length, and in those cases it reports zero. Use prefetch |
| * logic. */ |
| if (length == 0) { |
| prefetch_activated = 1; |
| length = pfault->rdma.packet_size; |
| prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len); |
| } |
| |
| ret = pagefault_single_data_segment(dev, NULL, rkey, address, length, |
| &pfault->bytes_committed, NULL); |
| if (ret == -EAGAIN) { |
| /* We're racing with an invalidation, don't prefetch */ |
| prefetch_activated = 0; |
| } else if (ret < 0 || pages_in_range(address, length) > ret) { |
| mlx5_ib_page_fault_resume(dev, pfault, 1); |
| if (ret != -ENOENT) |
| mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n", |
| ret, pfault->token, pfault->type); |
| return; |
| } |
| |
| mlx5_ib_page_fault_resume(dev, pfault, 0); |
| mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n", |
| pfault->token, pfault->type, |
| prefetch_activated); |
| |
| /* At this point, there might be a new pagefault already arriving in |
| * the eq, switch to the dummy pagefault for the rest of the |
| * processing. We're still OK with the objects being alive as the |
| * work-queue is being fenced. */ |
| |
| if (prefetch_activated) { |
| u32 bytes_committed = 0; |
| |
| ret = pagefault_single_data_segment(dev, NULL, rkey, address, |
| prefetch_len, |
| &bytes_committed, NULL); |
| if (ret < 0 && ret != -EAGAIN) { |
| mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n", |
| ret, pfault->token, address, prefetch_len); |
| } |
| } |
| } |
| |
| static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault) |
| { |
| u8 event_subtype = pfault->event_subtype; |
| |
| switch (event_subtype) { |
| case MLX5_PFAULT_SUBTYPE_WQE: |
| mlx5_ib_mr_wqe_pfault_handler(dev, pfault); |
| break; |
| case MLX5_PFAULT_SUBTYPE_RDMA: |
| mlx5_ib_mr_rdma_pfault_handler(dev, pfault); |
| break; |
| default: |
| mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n", |
| event_subtype); |
| mlx5_ib_page_fault_resume(dev, pfault, 1); |
| } |
| } |
| |
| static void mlx5_ib_eqe_pf_action(struct work_struct *work) |
| { |
| struct mlx5_pagefault *pfault = container_of(work, |
| struct mlx5_pagefault, |
| work); |
| struct mlx5_ib_pf_eq *eq = pfault->eq; |
| |
| mlx5_ib_pfault(eq->dev, pfault); |
| mempool_free(pfault, eq->pool); |
| } |
| |
| static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq) |
| { |
| struct mlx5_eqe_page_fault *pf_eqe; |
| struct mlx5_pagefault *pfault; |
| struct mlx5_eqe *eqe; |
| int cc = 0; |
| |
| while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) { |
| pfault = mempool_alloc(eq->pool, GFP_ATOMIC); |
| if (!pfault) { |
| schedule_work(&eq->work); |
| break; |
| } |
| |
| pf_eqe = &eqe->data.page_fault; |
| pfault->event_subtype = eqe->sub_type; |
| pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed); |
| |
| mlx5_ib_dbg(eq->dev, |
| "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n", |
| eqe->sub_type, pfault->bytes_committed); |
| |
| switch (eqe->sub_type) { |
| case MLX5_PFAULT_SUBTYPE_RDMA: |
| /* RDMA based event */ |
| pfault->type = |
| be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24; |
| pfault->token = |
| be32_to_cpu(pf_eqe->rdma.pftype_token) & |
| MLX5_24BIT_MASK; |
| pfault->rdma.r_key = |
| be32_to_cpu(pf_eqe->rdma.r_key); |
| pfault->rdma.packet_size = |
| be16_to_cpu(pf_eqe->rdma.packet_length); |
| pfault->rdma.rdma_op_len = |
| be32_to_cpu(pf_eqe->rdma.rdma_op_len); |
| pfault->rdma.rdma_va = |
| be64_to_cpu(pf_eqe->rdma.rdma_va); |
| mlx5_ib_dbg(eq->dev, |
| "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n", |
| pfault->type, pfault->token, |
| pfault->rdma.r_key); |
| mlx5_ib_dbg(eq->dev, |
| "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n", |
| pfault->rdma.rdma_op_len, |
| pfault->rdma.rdma_va); |
| break; |
| |
| case MLX5_PFAULT_SUBTYPE_WQE: |
| /* WQE based event */ |
| pfault->type = |
| (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7; |
| pfault->token = |
| be32_to_cpu(pf_eqe->wqe.token); |
| pfault->wqe.wq_num = |
| be32_to_cpu(pf_eqe->wqe.pftype_wq) & |
| MLX5_24BIT_MASK; |
| pfault->wqe.wqe_index = |
| be16_to_cpu(pf_eqe->wqe.wqe_index); |
| pfault->wqe.packet_size = |
| be16_to_cpu(pf_eqe->wqe.packet_length); |
| mlx5_ib_dbg(eq->dev, |
| "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n", |
| pfault->type, pfault->token, |
| pfault->wqe.wq_num, |
| pfault->wqe.wqe_index); |
| break; |
| |
| default: |
| mlx5_ib_warn(eq->dev, |
| "Unsupported page fault event sub-type: 0x%02hhx\n", |
| eqe->sub_type); |
| /* Unsupported page faults should still be |
| * resolved by the page fault handler |
| */ |
| } |
| |
| pfault->eq = eq; |
| INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action); |
| queue_work(eq->wq, &pfault->work); |
| |
| cc = mlx5_eq_update_cc(eq->core, ++cc); |
| } |
| |
| mlx5_eq_update_ci(eq->core, cc, 1); |
| } |
| |
| static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type, |
| void *data) |
| { |
| struct mlx5_ib_pf_eq *eq = |
| container_of(nb, struct mlx5_ib_pf_eq, irq_nb); |
| unsigned long flags; |
| |
| if (spin_trylock_irqsave(&eq->lock, flags)) { |
| mlx5_ib_eq_pf_process(eq); |
| spin_unlock_irqrestore(&eq->lock, flags); |
| } else { |
| schedule_work(&eq->work); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* mempool_refill() was proposed but unfortunately wasn't accepted |
| * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html |
| * Cheap workaround. |
| */ |
| static void mempool_refill(mempool_t *pool) |
| { |
| while (pool->curr_nr < pool->min_nr) |
| mempool_free(mempool_alloc(pool, GFP_KERNEL), pool); |
| } |
| |
| static void mlx5_ib_eq_pf_action(struct work_struct *work) |
| { |
| struct mlx5_ib_pf_eq *eq = |
| container_of(work, struct mlx5_ib_pf_eq, work); |
| |
| mempool_refill(eq->pool); |
| |
| spin_lock_irq(&eq->lock); |
| mlx5_ib_eq_pf_process(eq); |
| spin_unlock_irq(&eq->lock); |
| } |
| |
| enum { |
| MLX5_IB_NUM_PF_EQE = 0x1000, |
| MLX5_IB_NUM_PF_DRAIN = 64, |
| }; |
| |
| static int |
| mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) |
| { |
| struct mlx5_eq_param param = {}; |
| int err; |
| |
| INIT_WORK(&eq->work, mlx5_ib_eq_pf_action); |
| spin_lock_init(&eq->lock); |
| eq->dev = dev; |
| |
| eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN, |
| sizeof(struct mlx5_pagefault)); |
| if (!eq->pool) |
| return -ENOMEM; |
| |
| eq->wq = alloc_workqueue("mlx5_ib_page_fault", |
| WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM, |
| MLX5_NUM_CMD_EQE); |
| if (!eq->wq) { |
| err = -ENOMEM; |
| goto err_mempool; |
| } |
| |
| eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int; |
| param = (struct mlx5_eq_param) { |
| .irq_index = 0, |
| .nent = MLX5_IB_NUM_PF_EQE, |
| }; |
| param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT; |
| eq->core = mlx5_eq_create_generic(dev->mdev, ¶m); |
| if (IS_ERR(eq->core)) { |
| err = PTR_ERR(eq->core); |
| goto err_wq; |
| } |
| err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb); |
| if (err) { |
| mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err); |
| goto err_eq; |
| } |
| |
| return 0; |
| err_eq: |
| mlx5_eq_destroy_generic(dev->mdev, eq->core); |
| err_wq: |
| destroy_workqueue(eq->wq); |
| err_mempool: |
| mempool_destroy(eq->pool); |
| return err; |
| } |
| |
| static int |
| mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) |
| { |
| int err; |
| |
| mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb); |
| err = mlx5_eq_destroy_generic(dev->mdev, eq->core); |
| cancel_work_sync(&eq->work); |
| destroy_workqueue(eq->wq); |
| mempool_destroy(eq->pool); |
| |
| return err; |
| } |
| |
| void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent) |
| { |
| if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) |
| return; |
| |
| switch (ent->order - 2) { |
| case MLX5_IMR_MTT_CACHE_ENTRY: |
| ent->page = PAGE_SHIFT; |
| ent->xlt = MLX5_IMR_MTT_ENTRIES * |
| sizeof(struct mlx5_mtt) / |
| MLX5_IB_UMR_OCTOWORD; |
| ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; |
| ent->limit = 0; |
| break; |
| |
| case MLX5_IMR_KSM_CACHE_ENTRY: |
| ent->page = MLX5_KSM_PAGE_SHIFT; |
| ent->xlt = mlx5_imr_ksm_entries * |
| sizeof(struct mlx5_klm) / |
| MLX5_IB_UMR_OCTOWORD; |
| ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM; |
| ent->limit = 0; |
| break; |
| } |
| } |
| |
| static const struct ib_device_ops mlx5_ib_dev_odp_ops = { |
| .advise_mr = mlx5_ib_advise_mr, |
| }; |
| |
| int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev) |
| { |
| int ret = 0; |
| |
| if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) |
| return ret; |
| |
| ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops); |
| |
| if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) { |
| ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey); |
| if (ret) { |
| mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret); |
| return ret; |
| } |
| } |
| |
| ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq); |
| |
| return ret; |
| } |
| |
| void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev) |
| { |
| if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) |
| return; |
| |
| mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq); |
| } |
| |
| int mlx5_ib_odp_init(void) |
| { |
| mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) - |
| MLX5_IMR_MTT_BITS); |
| |
| return 0; |
| } |
| |
| struct prefetch_mr_work { |
| struct work_struct work; |
| u32 pf_flags; |
| u32 num_sge; |
| struct { |
| u64 io_virt; |
| struct mlx5_ib_mr *mr; |
| size_t length; |
| } frags[]; |
| }; |
| |
| static void destroy_prefetch_work(struct prefetch_mr_work *work) |
| { |
| u32 i; |
| |
| for (i = 0; i < work->num_sge; ++i) |
| atomic_dec(&work->frags[i].mr->num_deferred_work); |
| kvfree(work); |
| } |
| |
| static struct mlx5_ib_mr * |
| get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, |
| u32 lkey) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(pd->device); |
| struct mlx5_core_mkey *mmkey; |
| struct ib_umem_odp *odp; |
| struct mlx5_ib_mr *mr; |
| |
| lockdep_assert_held(&dev->odp_srcu); |
| |
| mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey)); |
| if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR) |
| return NULL; |
| |
| mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); |
| |
| if (mr->ibmr.pd != pd) |
| return NULL; |
| |
| odp = to_ib_umem_odp(mr->umem); |
| |
| /* prefetch with write-access must be supported by the MR */ |
| if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && |
| !odp->umem.writable) |
| return NULL; |
| |
| return mr; |
| } |
| |
| static void mlx5_ib_prefetch_mr_work(struct work_struct *w) |
| { |
| struct prefetch_mr_work *work = |
| container_of(w, struct prefetch_mr_work, work); |
| u32 bytes_mapped = 0; |
| u32 i; |
| |
| for (i = 0; i < work->num_sge; ++i) |
| pagefault_mr(work->frags[i].mr, work->frags[i].io_virt, |
| work->frags[i].length, &bytes_mapped, |
| work->pf_flags); |
| |
| destroy_prefetch_work(work); |
| } |
| |
| static bool init_prefetch_work(struct ib_pd *pd, |
| enum ib_uverbs_advise_mr_advice advice, |
| u32 pf_flags, struct prefetch_mr_work *work, |
| struct ib_sge *sg_list, u32 num_sge) |
| { |
| u32 i; |
| |
| INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work); |
| work->pf_flags = pf_flags; |
| |
| for (i = 0; i < num_sge; ++i) { |
| work->frags[i].io_virt = sg_list[i].addr; |
| work->frags[i].length = sg_list[i].length; |
| work->frags[i].mr = |
| get_prefetchable_mr(pd, advice, sg_list[i].lkey); |
| if (!work->frags[i].mr) { |
| work->num_sge = i - 1; |
| if (i) |
| destroy_prefetch_work(work); |
| return false; |
| } |
| |
| /* Keep the MR pointer will valid outside the SRCU */ |
| atomic_inc(&work->frags[i].mr->num_deferred_work); |
| } |
| work->num_sge = num_sge; |
| return true; |
| } |
| |
| static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, |
| enum ib_uverbs_advise_mr_advice advice, |
| u32 pf_flags, struct ib_sge *sg_list, |
| u32 num_sge) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(pd->device); |
| u32 bytes_mapped = 0; |
| int srcu_key; |
| int ret = 0; |
| u32 i; |
| |
| srcu_key = srcu_read_lock(&dev->odp_srcu); |
| for (i = 0; i < num_sge; ++i) { |
| struct mlx5_ib_mr *mr; |
| |
| mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey); |
| if (!mr) { |
| ret = -ENOENT; |
| goto out; |
| } |
| ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length, |
| &bytes_mapped, pf_flags); |
| if (ret < 0) |
| goto out; |
| } |
| ret = 0; |
| |
| out: |
| srcu_read_unlock(&dev->odp_srcu, srcu_key); |
| return ret; |
| } |
| |
| int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd, |
| enum ib_uverbs_advise_mr_advice advice, |
| u32 flags, struct ib_sge *sg_list, u32 num_sge) |
| { |
| struct mlx5_ib_dev *dev = to_mdev(pd->device); |
| u32 pf_flags = 0; |
| struct prefetch_mr_work *work; |
| int srcu_key; |
| |
| if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH) |
| pf_flags |= MLX5_PF_FLAGS_DOWNGRADE; |
| |
| if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH) |
| return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list, |
| num_sge); |
| |
| work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL); |
| if (!work) |
| return -ENOMEM; |
| |
| srcu_key = srcu_read_lock(&dev->odp_srcu); |
| if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) { |
| srcu_read_unlock(&dev->odp_srcu, srcu_key); |
| return -EINVAL; |
| } |
| queue_work(system_unbound_wq, &work->work); |
| srcu_read_unlock(&dev->odp_srcu, srcu_key); |
| return 0; |
| } |