| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * PowerPC Memory Protection Keys management |
| * |
| * Copyright 2017, Ram Pai, IBM Corporation. |
| */ |
| |
| #include <asm/mman.h> |
| #include <asm/setup.h> |
| #include <linux/pkeys.h> |
| #include <linux/of_device.h> |
| |
| DEFINE_STATIC_KEY_TRUE(pkey_disabled); |
| bool pkey_execute_disable_supported; |
| int pkeys_total; /* Total pkeys as per device tree */ |
| bool pkeys_devtree_defined; /* pkey property exported by device tree */ |
| u32 initial_allocation_mask; /* Bits set for the initially allocated keys */ |
| u32 reserved_allocation_mask; /* Bits set for reserved keys */ |
| u64 pkey_amr_mask; /* Bits in AMR not to be touched */ |
| u64 pkey_iamr_mask; /* Bits in AMR not to be touched */ |
| u64 pkey_uamor_mask; /* Bits in UMOR not to be touched */ |
| int execute_only_key = 2; |
| |
| #define AMR_BITS_PER_PKEY 2 |
| #define AMR_RD_BIT 0x1UL |
| #define AMR_WR_BIT 0x2UL |
| #define IAMR_EX_BIT 0x1UL |
| #define PKEY_REG_BITS (sizeof(u64)*8) |
| #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY)) |
| |
| static void scan_pkey_feature(void) |
| { |
| u32 vals[2]; |
| struct device_node *cpu; |
| |
| cpu = of_find_node_by_type(NULL, "cpu"); |
| if (!cpu) |
| return; |
| |
| if (of_property_read_u32_array(cpu, |
| "ibm,processor-storage-keys", vals, 2)) |
| return; |
| |
| /* |
| * Since any pkey can be used for data or execute, we will just treat |
| * all keys as equal and track them as one entity. |
| */ |
| pkeys_total = be32_to_cpu(vals[0]); |
| pkeys_devtree_defined = true; |
| } |
| |
| static inline bool pkey_mmu_enabled(void) |
| { |
| if (firmware_has_feature(FW_FEATURE_LPAR)) |
| return pkeys_total; |
| else |
| return cpu_has_feature(CPU_FTR_PKEY); |
| } |
| |
| int pkey_initialize(void) |
| { |
| int os_reserved, i; |
| |
| /* |
| * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral |
| * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE. |
| * Ensure that the bits a distinct. |
| */ |
| BUILD_BUG_ON(PKEY_DISABLE_EXECUTE & |
| (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE)); |
| |
| /* |
| * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous |
| * in the vmaflag. Make sure that is really the case. |
| */ |
| BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) + |
| __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) |
| != (sizeof(u64) * BITS_PER_BYTE)); |
| |
| /* scan the device tree for pkey feature */ |
| scan_pkey_feature(); |
| |
| /* |
| * Let's assume 32 pkeys on P8 bare metal, if its not defined by device |
| * tree. We make this exception since skiboot forgot to expose this |
| * property on power8. |
| */ |
| if (!pkeys_devtree_defined && !firmware_has_feature(FW_FEATURE_LPAR) && |
| cpu_has_feature(CPU_FTRS_POWER8)) |
| pkeys_total = 32; |
| |
| /* |
| * Adjust the upper limit, based on the number of bits supported by |
| * arch-neutral code. |
| */ |
| pkeys_total = min_t(int, pkeys_total, |
| ((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)+1)); |
| |
| if (!pkey_mmu_enabled() || radix_enabled() || !pkeys_total) |
| static_branch_enable(&pkey_disabled); |
| else |
| static_branch_disable(&pkey_disabled); |
| |
| if (static_branch_likely(&pkey_disabled)) |
| return 0; |
| |
| /* |
| * The device tree cannot be relied to indicate support for |
| * execute_disable support. Instead we use a PVR check. |
| */ |
| if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p)) |
| pkey_execute_disable_supported = false; |
| else |
| pkey_execute_disable_supported = true; |
| |
| #ifdef CONFIG_PPC_4K_PAGES |
| /* |
| * The OS can manage only 8 pkeys due to its inability to represent them |
| * in the Linux 4K PTE. |
| */ |
| os_reserved = pkeys_total - 8; |
| #else |
| os_reserved = 0; |
| #endif |
| /* Bits are in LE format. */ |
| reserved_allocation_mask = (0x1 << 1) | (0x1 << execute_only_key); |
| |
| /* register mask is in BE format */ |
| pkey_amr_mask = ~0x0ul; |
| pkey_amr_mask &= ~(0x3ul << pkeyshift(0)); |
| |
| pkey_iamr_mask = ~0x0ul; |
| pkey_iamr_mask &= ~(0x3ul << pkeyshift(0)); |
| pkey_iamr_mask &= ~(0x3ul << pkeyshift(execute_only_key)); |
| |
| pkey_uamor_mask = ~0x0ul; |
| pkey_uamor_mask &= ~(0x3ul << pkeyshift(0)); |
| pkey_uamor_mask &= ~(0x3ul << pkeyshift(execute_only_key)); |
| |
| /* mark the rest of the keys as reserved and hence unavailable */ |
| for (i = (pkeys_total - os_reserved); i < pkeys_total; i++) { |
| reserved_allocation_mask |= (0x1 << i); |
| pkey_uamor_mask &= ~(0x3ul << pkeyshift(i)); |
| } |
| initial_allocation_mask = reserved_allocation_mask | (0x1 << 0); |
| |
| if (unlikely((pkeys_total - os_reserved) <= execute_only_key)) { |
| /* |
| * Insufficient number of keys to support |
| * execute only key. Mark it unavailable. |
| * Any AMR, UAMOR, IAMR bit set for |
| * this key is irrelevant since this key |
| * can never be allocated. |
| */ |
| execute_only_key = -1; |
| } |
| |
| return 0; |
| } |
| |
| arch_initcall(pkey_initialize); |
| |
| void pkey_mm_init(struct mm_struct *mm) |
| { |
| if (static_branch_likely(&pkey_disabled)) |
| return; |
| mm_pkey_allocation_map(mm) = initial_allocation_mask; |
| mm->context.execute_only_pkey = execute_only_key; |
| } |
| |
| static inline u64 read_amr(void) |
| { |
| return mfspr(SPRN_AMR); |
| } |
| |
| static inline void write_amr(u64 value) |
| { |
| mtspr(SPRN_AMR, value); |
| } |
| |
| static inline u64 read_iamr(void) |
| { |
| if (!likely(pkey_execute_disable_supported)) |
| return 0x0UL; |
| |
| return mfspr(SPRN_IAMR); |
| } |
| |
| static inline void write_iamr(u64 value) |
| { |
| if (!likely(pkey_execute_disable_supported)) |
| return; |
| |
| mtspr(SPRN_IAMR, value); |
| } |
| |
| static inline u64 read_uamor(void) |
| { |
| return mfspr(SPRN_UAMOR); |
| } |
| |
| static inline void write_uamor(u64 value) |
| { |
| mtspr(SPRN_UAMOR, value); |
| } |
| |
| static bool is_pkey_enabled(int pkey) |
| { |
| u64 uamor = read_uamor(); |
| u64 pkey_bits = 0x3ul << pkeyshift(pkey); |
| u64 uamor_pkey_bits = (uamor & pkey_bits); |
| |
| /* |
| * Both the bits in UAMOR corresponding to the key should be set or |
| * reset. |
| */ |
| WARN_ON(uamor_pkey_bits && (uamor_pkey_bits != pkey_bits)); |
| return !!(uamor_pkey_bits); |
| } |
| |
| static inline void init_amr(int pkey, u8 init_bits) |
| { |
| u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey)); |
| u64 old_amr = read_amr() & ~((u64)(0x3ul) << pkeyshift(pkey)); |
| |
| write_amr(old_amr | new_amr_bits); |
| } |
| |
| static inline void init_iamr(int pkey, u8 init_bits) |
| { |
| u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey)); |
| u64 old_iamr = read_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey)); |
| |
| write_iamr(old_iamr | new_iamr_bits); |
| } |
| |
| /* |
| * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that |
| * specified in @init_val. |
| */ |
| int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey, |
| unsigned long init_val) |
| { |
| u64 new_amr_bits = 0x0ul; |
| u64 new_iamr_bits = 0x0ul; |
| |
| if (!is_pkey_enabled(pkey)) |
| return -EINVAL; |
| |
| if (init_val & PKEY_DISABLE_EXECUTE) { |
| if (!pkey_execute_disable_supported) |
| return -EINVAL; |
| new_iamr_bits |= IAMR_EX_BIT; |
| } |
| init_iamr(pkey, new_iamr_bits); |
| |
| /* Set the bits we need in AMR: */ |
| if (init_val & PKEY_DISABLE_ACCESS) |
| new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT; |
| else if (init_val & PKEY_DISABLE_WRITE) |
| new_amr_bits |= AMR_WR_BIT; |
| |
| init_amr(pkey, new_amr_bits); |
| return 0; |
| } |
| |
| void thread_pkey_regs_save(struct thread_struct *thread) |
| { |
| if (static_branch_likely(&pkey_disabled)) |
| return; |
| |
| /* |
| * TODO: Skip saving registers if @thread hasn't used any keys yet. |
| */ |
| thread->amr = read_amr(); |
| thread->iamr = read_iamr(); |
| thread->uamor = read_uamor(); |
| } |
| |
| void thread_pkey_regs_restore(struct thread_struct *new_thread, |
| struct thread_struct *old_thread) |
| { |
| if (static_branch_likely(&pkey_disabled)) |
| return; |
| |
| if (old_thread->amr != new_thread->amr) |
| write_amr(new_thread->amr); |
| if (old_thread->iamr != new_thread->iamr) |
| write_iamr(new_thread->iamr); |
| if (old_thread->uamor != new_thread->uamor) |
| write_uamor(new_thread->uamor); |
| } |
| |
| void thread_pkey_regs_init(struct thread_struct *thread) |
| { |
| if (static_branch_likely(&pkey_disabled)) |
| return; |
| |
| thread->amr = pkey_amr_mask; |
| thread->iamr = pkey_iamr_mask; |
| thread->uamor = pkey_uamor_mask; |
| |
| write_uamor(pkey_uamor_mask); |
| write_amr(pkey_amr_mask); |
| write_iamr(pkey_iamr_mask); |
| } |
| |
| static inline bool pkey_allows_readwrite(int pkey) |
| { |
| int pkey_shift = pkeyshift(pkey); |
| |
| if (!is_pkey_enabled(pkey)) |
| return true; |
| |
| return !(read_amr() & ((AMR_RD_BIT|AMR_WR_BIT) << pkey_shift)); |
| } |
| |
| int __execute_only_pkey(struct mm_struct *mm) |
| { |
| return mm->context.execute_only_pkey; |
| } |
| |
| static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma) |
| { |
| /* Do this check first since the vm_flags should be hot */ |
| if ((vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) != VM_EXEC) |
| return false; |
| |
| return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey); |
| } |
| |
| /* |
| * This should only be called for *plain* mprotect calls. |
| */ |
| int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot, |
| int pkey) |
| { |
| /* |
| * If the currently associated pkey is execute-only, but the requested |
| * protection is not execute-only, move it back to the default pkey. |
| */ |
| if (vma_is_pkey_exec_only(vma) && (prot != PROT_EXEC)) |
| return 0; |
| |
| /* |
| * The requested protection is execute-only. Hence let's use an |
| * execute-only pkey. |
| */ |
| if (prot == PROT_EXEC) { |
| pkey = execute_only_pkey(vma->vm_mm); |
| if (pkey > 0) |
| return pkey; |
| } |
| |
| /* Nothing to override. */ |
| return vma_pkey(vma); |
| } |
| |
| static bool pkey_access_permitted(int pkey, bool write, bool execute) |
| { |
| int pkey_shift; |
| u64 amr; |
| |
| if (!is_pkey_enabled(pkey)) |
| return true; |
| |
| pkey_shift = pkeyshift(pkey); |
| if (execute && !(read_iamr() & (IAMR_EX_BIT << pkey_shift))) |
| return true; |
| |
| amr = read_amr(); /* Delay reading amr until absolutely needed */ |
| return ((!write && !(amr & (AMR_RD_BIT << pkey_shift))) || |
| (write && !(amr & (AMR_WR_BIT << pkey_shift)))); |
| } |
| |
| bool arch_pte_access_permitted(u64 pte, bool write, bool execute) |
| { |
| if (static_branch_likely(&pkey_disabled)) |
| return true; |
| |
| return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute); |
| } |
| |
| /* |
| * We only want to enforce protection keys on the current thread because we |
| * effectively have no access to AMR/IAMR for other threads or any way to tell |
| * which AMR/IAMR in a threaded process we could use. |
| * |
| * So do not enforce things if the VMA is not from the current mm, or if we are |
| * in a kernel thread. |
| */ |
| static inline bool vma_is_foreign(struct vm_area_struct *vma) |
| { |
| if (!current->mm) |
| return true; |
| |
| /* if it is not our ->mm, it has to be foreign */ |
| if (current->mm != vma->vm_mm) |
| return true; |
| |
| return false; |
| } |
| |
| bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write, |
| bool execute, bool foreign) |
| { |
| if (static_branch_likely(&pkey_disabled)) |
| return true; |
| /* |
| * Do not enforce our key-permissions on a foreign vma. |
| */ |
| if (foreign || vma_is_foreign(vma)) |
| return true; |
| |
| return pkey_access_permitted(vma_pkey(vma), write, execute); |
| } |