| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* net/sched/sch_taprio.c Time Aware Priority Scheduler |
| * |
| * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> |
| * |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/list.h> |
| #include <linux/errno.h> |
| #include <linux/skbuff.h> |
| #include <linux/math64.h> |
| #include <linux/module.h> |
| #include <linux/spinlock.h> |
| #include <linux/rcupdate.h> |
| #include <net/netlink.h> |
| #include <net/pkt_sched.h> |
| #include <net/pkt_cls.h> |
| #include <net/sch_generic.h> |
| #include <net/sock.h> |
| #include <net/tcp.h> |
| |
| static LIST_HEAD(taprio_list); |
| static DEFINE_SPINLOCK(taprio_list_lock); |
| |
| #define TAPRIO_ALL_GATES_OPEN -1 |
| |
| #define FLAGS_VALID(flags) (!((flags) & ~TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)) |
| #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) |
| |
| struct sched_entry { |
| struct list_head list; |
| |
| /* The instant that this entry "closes" and the next one |
| * should open, the qdisc will make some effort so that no |
| * packet leaves after this time. |
| */ |
| ktime_t close_time; |
| ktime_t next_txtime; |
| atomic_t budget; |
| int index; |
| u32 gate_mask; |
| u32 interval; |
| u8 command; |
| }; |
| |
| struct sched_gate_list { |
| struct rcu_head rcu; |
| struct list_head entries; |
| size_t num_entries; |
| ktime_t cycle_close_time; |
| s64 cycle_time; |
| s64 cycle_time_extension; |
| s64 base_time; |
| }; |
| |
| struct taprio_sched { |
| struct Qdisc **qdiscs; |
| struct Qdisc *root; |
| u32 flags; |
| enum tk_offsets tk_offset; |
| int clockid; |
| atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ |
| * speeds it's sub-nanoseconds per byte |
| */ |
| |
| /* Protects the update side of the RCU protected current_entry */ |
| spinlock_t current_entry_lock; |
| struct sched_entry __rcu *current_entry; |
| struct sched_gate_list __rcu *oper_sched; |
| struct sched_gate_list __rcu *admin_sched; |
| struct hrtimer advance_timer; |
| struct list_head taprio_list; |
| int txtime_delay; |
| }; |
| |
| static ktime_t sched_base_time(const struct sched_gate_list *sched) |
| { |
| if (!sched) |
| return KTIME_MAX; |
| |
| return ns_to_ktime(sched->base_time); |
| } |
| |
| static ktime_t taprio_get_time(struct taprio_sched *q) |
| { |
| ktime_t mono = ktime_get(); |
| |
| switch (q->tk_offset) { |
| case TK_OFFS_MAX: |
| return mono; |
| default: |
| return ktime_mono_to_any(mono, q->tk_offset); |
| } |
| |
| return KTIME_MAX; |
| } |
| |
| static void taprio_free_sched_cb(struct rcu_head *head) |
| { |
| struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); |
| struct sched_entry *entry, *n; |
| |
| if (!sched) |
| return; |
| |
| list_for_each_entry_safe(entry, n, &sched->entries, list) { |
| list_del(&entry->list); |
| kfree(entry); |
| } |
| |
| kfree(sched); |
| } |
| |
| static void switch_schedules(struct taprio_sched *q, |
| struct sched_gate_list **admin, |
| struct sched_gate_list **oper) |
| { |
| rcu_assign_pointer(q->oper_sched, *admin); |
| rcu_assign_pointer(q->admin_sched, NULL); |
| |
| if (*oper) |
| call_rcu(&(*oper)->rcu, taprio_free_sched_cb); |
| |
| *oper = *admin; |
| *admin = NULL; |
| } |
| |
| /* Get how much time has been already elapsed in the current cycle. */ |
| static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) |
| { |
| ktime_t time_since_sched_start; |
| s32 time_elapsed; |
| |
| time_since_sched_start = ktime_sub(time, sched->base_time); |
| div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); |
| |
| return time_elapsed; |
| } |
| |
| static ktime_t get_interval_end_time(struct sched_gate_list *sched, |
| struct sched_gate_list *admin, |
| struct sched_entry *entry, |
| ktime_t intv_start) |
| { |
| s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); |
| ktime_t intv_end, cycle_ext_end, cycle_end; |
| |
| cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); |
| intv_end = ktime_add_ns(intv_start, entry->interval); |
| cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); |
| |
| if (ktime_before(intv_end, cycle_end)) |
| return intv_end; |
| else if (admin && admin != sched && |
| ktime_after(admin->base_time, cycle_end) && |
| ktime_before(admin->base_time, cycle_ext_end)) |
| return admin->base_time; |
| else |
| return cycle_end; |
| } |
| |
| static int length_to_duration(struct taprio_sched *q, int len) |
| { |
| return div_u64(len * atomic64_read(&q->picos_per_byte), 1000); |
| } |
| |
| /* Returns the entry corresponding to next available interval. If |
| * validate_interval is set, it only validates whether the timestamp occurs |
| * when the gate corresponding to the skb's traffic class is open. |
| */ |
| static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, |
| struct Qdisc *sch, |
| struct sched_gate_list *sched, |
| struct sched_gate_list *admin, |
| ktime_t time, |
| ktime_t *interval_start, |
| ktime_t *interval_end, |
| bool validate_interval) |
| { |
| ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; |
| ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; |
| struct sched_entry *entry = NULL, *entry_found = NULL; |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| bool entry_available = false; |
| s32 cycle_elapsed; |
| int tc, n; |
| |
| tc = netdev_get_prio_tc_map(dev, skb->priority); |
| packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); |
| |
| *interval_start = 0; |
| *interval_end = 0; |
| |
| if (!sched) |
| return NULL; |
| |
| cycle = sched->cycle_time; |
| cycle_elapsed = get_cycle_time_elapsed(sched, time); |
| curr_intv_end = ktime_sub_ns(time, cycle_elapsed); |
| cycle_end = ktime_add_ns(curr_intv_end, cycle); |
| |
| list_for_each_entry(entry, &sched->entries, list) { |
| curr_intv_start = curr_intv_end; |
| curr_intv_end = get_interval_end_time(sched, admin, entry, |
| curr_intv_start); |
| |
| if (ktime_after(curr_intv_start, cycle_end)) |
| break; |
| |
| if (!(entry->gate_mask & BIT(tc)) || |
| packet_transmit_time > entry->interval) |
| continue; |
| |
| txtime = entry->next_txtime; |
| |
| if (ktime_before(txtime, time) || validate_interval) { |
| transmit_end_time = ktime_add_ns(time, packet_transmit_time); |
| if ((ktime_before(curr_intv_start, time) && |
| ktime_before(transmit_end_time, curr_intv_end)) || |
| (ktime_after(curr_intv_start, time) && !validate_interval)) { |
| entry_found = entry; |
| *interval_start = curr_intv_start; |
| *interval_end = curr_intv_end; |
| break; |
| } else if (!entry_available && !validate_interval) { |
| /* Here, we are just trying to find out the |
| * first available interval in the next cycle. |
| */ |
| entry_available = 1; |
| entry_found = entry; |
| *interval_start = ktime_add_ns(curr_intv_start, cycle); |
| *interval_end = ktime_add_ns(curr_intv_end, cycle); |
| } |
| } else if (ktime_before(txtime, earliest_txtime) && |
| !entry_available) { |
| earliest_txtime = txtime; |
| entry_found = entry; |
| n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); |
| *interval_start = ktime_add(curr_intv_start, n * cycle); |
| *interval_end = ktime_add(curr_intv_end, n * cycle); |
| } |
| } |
| |
| return entry_found; |
| } |
| |
| static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct sched_gate_list *sched, *admin; |
| ktime_t interval_start, interval_end; |
| struct sched_entry *entry; |
| |
| rcu_read_lock(); |
| sched = rcu_dereference(q->oper_sched); |
| admin = rcu_dereference(q->admin_sched); |
| |
| entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, |
| &interval_start, &interval_end, true); |
| rcu_read_unlock(); |
| |
| return entry; |
| } |
| |
| /* This returns the tstamp value set by TCP in terms of the set clock. */ |
| static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) |
| { |
| unsigned int offset = skb_network_offset(skb); |
| const struct ipv6hdr *ipv6h; |
| const struct iphdr *iph; |
| struct ipv6hdr _ipv6h; |
| |
| ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); |
| if (!ipv6h) |
| return 0; |
| |
| if (ipv6h->version == 4) { |
| iph = (struct iphdr *)ipv6h; |
| offset += iph->ihl * 4; |
| |
| /* special-case 6in4 tunnelling, as that is a common way to get |
| * v6 connectivity in the home |
| */ |
| if (iph->protocol == IPPROTO_IPV6) { |
| ipv6h = skb_header_pointer(skb, offset, |
| sizeof(_ipv6h), &_ipv6h); |
| |
| if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) |
| return 0; |
| } else if (iph->protocol != IPPROTO_TCP) { |
| return 0; |
| } |
| } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { |
| return 0; |
| } |
| |
| return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset); |
| } |
| |
| /* There are a few scenarios where we will have to modify the txtime from |
| * what is read from next_txtime in sched_entry. They are: |
| * 1. If txtime is in the past, |
| * a. The gate for the traffic class is currently open and packet can be |
| * transmitted before it closes, schedule the packet right away. |
| * b. If the gate corresponding to the traffic class is going to open later |
| * in the cycle, set the txtime of packet to the interval start. |
| * 2. If txtime is in the future, there are packets corresponding to the |
| * current traffic class waiting to be transmitted. So, the following |
| * possibilities exist: |
| * a. We can transmit the packet before the window containing the txtime |
| * closes. |
| * b. The window might close before the transmission can be completed |
| * successfully. So, schedule the packet in the next open window. |
| */ |
| static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) |
| { |
| ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct sched_gate_list *sched, *admin; |
| ktime_t minimum_time, now, txtime; |
| int len, packet_transmit_time; |
| struct sched_entry *entry; |
| bool sched_changed; |
| |
| now = taprio_get_time(q); |
| minimum_time = ktime_add_ns(now, q->txtime_delay); |
| |
| tcp_tstamp = get_tcp_tstamp(q, skb); |
| minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); |
| |
| rcu_read_lock(); |
| admin = rcu_dereference(q->admin_sched); |
| sched = rcu_dereference(q->oper_sched); |
| if (admin && ktime_after(minimum_time, admin->base_time)) |
| switch_schedules(q, &admin, &sched); |
| |
| /* Until the schedule starts, all the queues are open */ |
| if (!sched || ktime_before(minimum_time, sched->base_time)) { |
| txtime = minimum_time; |
| goto done; |
| } |
| |
| len = qdisc_pkt_len(skb); |
| packet_transmit_time = length_to_duration(q, len); |
| |
| do { |
| sched_changed = 0; |
| |
| entry = find_entry_to_transmit(skb, sch, sched, admin, |
| minimum_time, |
| &interval_start, &interval_end, |
| false); |
| if (!entry) { |
| txtime = 0; |
| goto done; |
| } |
| |
| txtime = entry->next_txtime; |
| txtime = max_t(ktime_t, txtime, minimum_time); |
| txtime = max_t(ktime_t, txtime, interval_start); |
| |
| if (admin && admin != sched && |
| ktime_after(txtime, admin->base_time)) { |
| sched = admin; |
| sched_changed = 1; |
| continue; |
| } |
| |
| transmit_end_time = ktime_add(txtime, packet_transmit_time); |
| minimum_time = transmit_end_time; |
| |
| /* Update the txtime of current entry to the next time it's |
| * interval starts. |
| */ |
| if (ktime_after(transmit_end_time, interval_end)) |
| entry->next_txtime = ktime_add(interval_start, sched->cycle_time); |
| } while (sched_changed || ktime_after(transmit_end_time, interval_end)); |
| |
| entry->next_txtime = transmit_end_time; |
| |
| done: |
| rcu_read_unlock(); |
| return txtime; |
| } |
| |
| static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, |
| struct sk_buff **to_free) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct Qdisc *child; |
| int queue; |
| |
| queue = skb_get_queue_mapping(skb); |
| |
| child = q->qdiscs[queue]; |
| if (unlikely(!child)) |
| return qdisc_drop(skb, sch, to_free); |
| |
| if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) { |
| if (!is_valid_interval(skb, sch)) |
| return qdisc_drop(skb, sch, to_free); |
| } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { |
| skb->tstamp = get_packet_txtime(skb, sch); |
| if (!skb->tstamp) |
| return qdisc_drop(skb, sch, to_free); |
| } |
| |
| qdisc_qstats_backlog_inc(sch, skb); |
| sch->q.qlen++; |
| |
| return qdisc_enqueue(skb, child, to_free); |
| } |
| |
| static struct sk_buff *taprio_peek(struct Qdisc *sch) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| struct sched_entry *entry; |
| struct sk_buff *skb; |
| u32 gate_mask; |
| int i; |
| |
| rcu_read_lock(); |
| entry = rcu_dereference(q->current_entry); |
| gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; |
| rcu_read_unlock(); |
| |
| if (!gate_mask) |
| return NULL; |
| |
| for (i = 0; i < dev->num_tx_queues; i++) { |
| struct Qdisc *child = q->qdiscs[i]; |
| int prio; |
| u8 tc; |
| |
| if (unlikely(!child)) |
| continue; |
| |
| skb = child->ops->peek(child); |
| if (!skb) |
| continue; |
| |
| if (TXTIME_ASSIST_IS_ENABLED(q->flags)) |
| return skb; |
| |
| prio = skb->priority; |
| tc = netdev_get_prio_tc_map(dev, prio); |
| |
| if (!(gate_mask & BIT(tc))) |
| continue; |
| |
| return skb; |
| } |
| |
| return NULL; |
| } |
| |
| static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry) |
| { |
| atomic_set(&entry->budget, |
| div64_u64((u64)entry->interval * 1000, |
| atomic64_read(&q->picos_per_byte))); |
| } |
| |
| static struct sk_buff *taprio_dequeue(struct Qdisc *sch) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| struct sk_buff *skb = NULL; |
| struct sched_entry *entry; |
| u32 gate_mask; |
| int i; |
| |
| if (atomic64_read(&q->picos_per_byte) == -1) { |
| WARN_ONCE(1, "taprio: dequeue() called with unknown picos per byte."); |
| return NULL; |
| } |
| |
| rcu_read_lock(); |
| entry = rcu_dereference(q->current_entry); |
| /* if there's no entry, it means that the schedule didn't |
| * start yet, so force all gates to be open, this is in |
| * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 |
| * "AdminGateSates" |
| */ |
| gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; |
| |
| if (!gate_mask) |
| goto done; |
| |
| for (i = 0; i < dev->num_tx_queues; i++) { |
| struct Qdisc *child = q->qdiscs[i]; |
| ktime_t guard; |
| int prio; |
| int len; |
| u8 tc; |
| |
| if (unlikely(!child)) |
| continue; |
| |
| if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { |
| skb = child->ops->dequeue(child); |
| if (!skb) |
| continue; |
| goto skb_found; |
| } |
| |
| skb = child->ops->peek(child); |
| if (!skb) |
| continue; |
| |
| prio = skb->priority; |
| tc = netdev_get_prio_tc_map(dev, prio); |
| |
| if (!(gate_mask & BIT(tc))) |
| continue; |
| |
| len = qdisc_pkt_len(skb); |
| guard = ktime_add_ns(taprio_get_time(q), |
| length_to_duration(q, len)); |
| |
| /* In the case that there's no gate entry, there's no |
| * guard band ... |
| */ |
| if (gate_mask != TAPRIO_ALL_GATES_OPEN && |
| ktime_after(guard, entry->close_time)) |
| continue; |
| |
| /* ... and no budget. */ |
| if (gate_mask != TAPRIO_ALL_GATES_OPEN && |
| atomic_sub_return(len, &entry->budget) < 0) |
| continue; |
| |
| skb = child->ops->dequeue(child); |
| if (unlikely(!skb)) |
| goto done; |
| |
| skb_found: |
| qdisc_bstats_update(sch, skb); |
| qdisc_qstats_backlog_dec(sch, skb); |
| sch->q.qlen--; |
| |
| goto done; |
| } |
| |
| done: |
| rcu_read_unlock(); |
| |
| return skb; |
| } |
| |
| static bool should_restart_cycle(const struct sched_gate_list *oper, |
| const struct sched_entry *entry) |
| { |
| if (list_is_last(&entry->list, &oper->entries)) |
| return true; |
| |
| if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0) |
| return true; |
| |
| return false; |
| } |
| |
| static bool should_change_schedules(const struct sched_gate_list *admin, |
| const struct sched_gate_list *oper, |
| ktime_t close_time) |
| { |
| ktime_t next_base_time, extension_time; |
| |
| if (!admin) |
| return false; |
| |
| next_base_time = sched_base_time(admin); |
| |
| /* This is the simple case, the close_time would fall after |
| * the next schedule base_time. |
| */ |
| if (ktime_compare(next_base_time, close_time) <= 0) |
| return true; |
| |
| /* This is the cycle_time_extension case, if the close_time |
| * plus the amount that can be extended would fall after the |
| * next schedule base_time, we can extend the current schedule |
| * for that amount. |
| */ |
| extension_time = ktime_add_ns(close_time, oper->cycle_time_extension); |
| |
| /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about |
| * how precisely the extension should be made. So after |
| * conformance testing, this logic may change. |
| */ |
| if (ktime_compare(next_base_time, extension_time) <= 0) |
| return true; |
| |
| return false; |
| } |
| |
| static enum hrtimer_restart advance_sched(struct hrtimer *timer) |
| { |
| struct taprio_sched *q = container_of(timer, struct taprio_sched, |
| advance_timer); |
| struct sched_gate_list *oper, *admin; |
| struct sched_entry *entry, *next; |
| struct Qdisc *sch = q->root; |
| ktime_t close_time; |
| |
| spin_lock(&q->current_entry_lock); |
| entry = rcu_dereference_protected(q->current_entry, |
| lockdep_is_held(&q->current_entry_lock)); |
| oper = rcu_dereference_protected(q->oper_sched, |
| lockdep_is_held(&q->current_entry_lock)); |
| admin = rcu_dereference_protected(q->admin_sched, |
| lockdep_is_held(&q->current_entry_lock)); |
| |
| if (!oper) |
| switch_schedules(q, &admin, &oper); |
| |
| /* This can happen in two cases: 1. this is the very first run |
| * of this function (i.e. we weren't running any schedule |
| * previously); 2. The previous schedule just ended. The first |
| * entry of all schedules are pre-calculated during the |
| * schedule initialization. |
| */ |
| if (unlikely(!entry || entry->close_time == oper->base_time)) { |
| next = list_first_entry(&oper->entries, struct sched_entry, |
| list); |
| close_time = next->close_time; |
| goto first_run; |
| } |
| |
| if (should_restart_cycle(oper, entry)) { |
| next = list_first_entry(&oper->entries, struct sched_entry, |
| list); |
| oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time, |
| oper->cycle_time); |
| } else { |
| next = list_next_entry(entry, list); |
| } |
| |
| close_time = ktime_add_ns(entry->close_time, next->interval); |
| close_time = min_t(ktime_t, close_time, oper->cycle_close_time); |
| |
| if (should_change_schedules(admin, oper, close_time)) { |
| /* Set things so the next time this runs, the new |
| * schedule runs. |
| */ |
| close_time = sched_base_time(admin); |
| switch_schedules(q, &admin, &oper); |
| } |
| |
| next->close_time = close_time; |
| taprio_set_budget(q, next); |
| |
| first_run: |
| rcu_assign_pointer(q->current_entry, next); |
| spin_unlock(&q->current_entry_lock); |
| |
| hrtimer_set_expires(&q->advance_timer, close_time); |
| |
| rcu_read_lock(); |
| __netif_schedule(sch); |
| rcu_read_unlock(); |
| |
| return HRTIMER_RESTART; |
| } |
| |
| static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { |
| [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, |
| [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, |
| [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, |
| [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, |
| }; |
| |
| static const struct nla_policy entry_list_policy[TCA_TAPRIO_SCHED_MAX + 1] = { |
| [TCA_TAPRIO_SCHED_ENTRY] = { .type = NLA_NESTED }, |
| }; |
| |
| static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { |
| [TCA_TAPRIO_ATTR_PRIOMAP] = { |
| .len = sizeof(struct tc_mqprio_qopt) |
| }, |
| [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, |
| [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, |
| [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, |
| [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, |
| [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 }, |
| [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, |
| }; |
| |
| static int fill_sched_entry(struct nlattr **tb, struct sched_entry *entry, |
| struct netlink_ext_ack *extack) |
| { |
| u32 interval = 0; |
| |
| if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) |
| entry->command = nla_get_u8( |
| tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); |
| |
| if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) |
| entry->gate_mask = nla_get_u32( |
| tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); |
| |
| if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) |
| interval = nla_get_u32( |
| tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); |
| |
| if (interval == 0) { |
| NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); |
| return -EINVAL; |
| } |
| |
| entry->interval = interval; |
| |
| return 0; |
| } |
| |
| static int parse_sched_entry(struct nlattr *n, struct sched_entry *entry, |
| int index, struct netlink_ext_ack *extack) |
| { |
| struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; |
| int err; |
| |
| err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, |
| entry_policy, NULL); |
| if (err < 0) { |
| NL_SET_ERR_MSG(extack, "Could not parse nested entry"); |
| return -EINVAL; |
| } |
| |
| entry->index = index; |
| |
| return fill_sched_entry(tb, entry, extack); |
| } |
| |
| static int parse_sched_list(struct nlattr *list, |
| struct sched_gate_list *sched, |
| struct netlink_ext_ack *extack) |
| { |
| struct nlattr *n; |
| int err, rem; |
| int i = 0; |
| |
| if (!list) |
| return -EINVAL; |
| |
| nla_for_each_nested(n, list, rem) { |
| struct sched_entry *entry; |
| |
| if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { |
| NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); |
| continue; |
| } |
| |
| entry = kzalloc(sizeof(*entry), GFP_KERNEL); |
| if (!entry) { |
| NL_SET_ERR_MSG(extack, "Not enough memory for entry"); |
| return -ENOMEM; |
| } |
| |
| err = parse_sched_entry(n, entry, i, extack); |
| if (err < 0) { |
| kfree(entry); |
| return err; |
| } |
| |
| list_add_tail(&entry->list, &sched->entries); |
| i++; |
| } |
| |
| sched->num_entries = i; |
| |
| return i; |
| } |
| |
| static int parse_taprio_schedule(struct nlattr **tb, |
| struct sched_gate_list *new, |
| struct netlink_ext_ack *extack) |
| { |
| int err = 0; |
| |
| if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { |
| NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); |
| return -ENOTSUPP; |
| } |
| |
| if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) |
| new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); |
| |
| if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) |
| new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); |
| |
| if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) |
| new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); |
| |
| if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) |
| err = parse_sched_list( |
| tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], new, extack); |
| if (err < 0) |
| return err; |
| |
| if (!new->cycle_time) { |
| struct sched_entry *entry; |
| ktime_t cycle = 0; |
| |
| list_for_each_entry(entry, &new->entries, list) |
| cycle = ktime_add_ns(cycle, entry->interval); |
| new->cycle_time = cycle; |
| } |
| |
| return 0; |
| } |
| |
| static int taprio_parse_mqprio_opt(struct net_device *dev, |
| struct tc_mqprio_qopt *qopt, |
| struct netlink_ext_ack *extack, |
| u32 taprio_flags) |
| { |
| int i, j; |
| |
| if (!qopt && !dev->num_tc) { |
| NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); |
| return -EINVAL; |
| } |
| |
| /* If num_tc is already set, it means that the user already |
| * configured the mqprio part |
| */ |
| if (dev->num_tc) |
| return 0; |
| |
| /* Verify num_tc is not out of max range */ |
| if (qopt->num_tc > TC_MAX_QUEUE) { |
| NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range"); |
| return -EINVAL; |
| } |
| |
| /* taprio imposes that traffic classes map 1:n to tx queues */ |
| if (qopt->num_tc > dev->num_tx_queues) { |
| NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); |
| return -EINVAL; |
| } |
| |
| /* Verify priority mapping uses valid tcs */ |
| for (i = 0; i < TC_BITMASK + 1; i++) { |
| if (qopt->prio_tc_map[i] >= qopt->num_tc) { |
| NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping"); |
| return -EINVAL; |
| } |
| } |
| |
| for (i = 0; i < qopt->num_tc; i++) { |
| unsigned int last = qopt->offset[i] + qopt->count[i]; |
| |
| /* Verify the queue count is in tx range being equal to the |
| * real_num_tx_queues indicates the last queue is in use. |
| */ |
| if (qopt->offset[i] >= dev->num_tx_queues || |
| !qopt->count[i] || |
| last > dev->real_num_tx_queues) { |
| NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping"); |
| return -EINVAL; |
| } |
| |
| if (TXTIME_ASSIST_IS_ENABLED(taprio_flags)) |
| continue; |
| |
| /* Verify that the offset and counts do not overlap */ |
| for (j = i + 1; j < qopt->num_tc; j++) { |
| if (last > qopt->offset[j]) { |
| NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping"); |
| return -EINVAL; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int taprio_get_start_time(struct Qdisc *sch, |
| struct sched_gate_list *sched, |
| ktime_t *start) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| ktime_t now, base, cycle; |
| s64 n; |
| |
| base = sched_base_time(sched); |
| now = taprio_get_time(q); |
| |
| if (ktime_after(base, now)) { |
| *start = base; |
| return 0; |
| } |
| |
| cycle = sched->cycle_time; |
| |
| /* The qdisc is expected to have at least one sched_entry. Moreover, |
| * any entry must have 'interval' > 0. Thus if the cycle time is zero, |
| * something went really wrong. In that case, we should warn about this |
| * inconsistent state and return error. |
| */ |
| if (WARN_ON(!cycle)) |
| return -EFAULT; |
| |
| /* Schedule the start time for the beginning of the next |
| * cycle. |
| */ |
| n = div64_s64(ktime_sub_ns(now, base), cycle); |
| *start = ktime_add_ns(base, (n + 1) * cycle); |
| return 0; |
| } |
| |
| static void setup_first_close_time(struct taprio_sched *q, |
| struct sched_gate_list *sched, ktime_t base) |
| { |
| struct sched_entry *first; |
| ktime_t cycle; |
| |
| first = list_first_entry(&sched->entries, |
| struct sched_entry, list); |
| |
| cycle = sched->cycle_time; |
| |
| /* FIXME: find a better place to do this */ |
| sched->cycle_close_time = ktime_add_ns(base, cycle); |
| |
| first->close_time = ktime_add_ns(base, first->interval); |
| taprio_set_budget(q, first); |
| rcu_assign_pointer(q->current_entry, NULL); |
| } |
| |
| static void taprio_start_sched(struct Qdisc *sch, |
| ktime_t start, struct sched_gate_list *new) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| ktime_t expires; |
| |
| expires = hrtimer_get_expires(&q->advance_timer); |
| if (expires == 0) |
| expires = KTIME_MAX; |
| |
| /* If the new schedule starts before the next expiration, we |
| * reprogram it to the earliest one, so we change the admin |
| * schedule to the operational one at the right time. |
| */ |
| start = min_t(ktime_t, start, expires); |
| |
| hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); |
| } |
| |
| static void taprio_set_picos_per_byte(struct net_device *dev, |
| struct taprio_sched *q) |
| { |
| struct ethtool_link_ksettings ecmd; |
| int picos_per_byte = -1; |
| |
| if (!__ethtool_get_link_ksettings(dev, &ecmd) && |
| ecmd.base.speed != SPEED_UNKNOWN) |
| picos_per_byte = div64_s64(NSEC_PER_SEC * 1000LL * 8, |
| ecmd.base.speed * 1000 * 1000); |
| |
| atomic64_set(&q->picos_per_byte, picos_per_byte); |
| netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", |
| dev->name, (long long)atomic64_read(&q->picos_per_byte), |
| ecmd.base.speed); |
| } |
| |
| static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, |
| void *ptr) |
| { |
| struct net_device *dev = netdev_notifier_info_to_dev(ptr); |
| struct net_device *qdev; |
| struct taprio_sched *q; |
| bool found = false; |
| |
| ASSERT_RTNL(); |
| |
| if (event != NETDEV_UP && event != NETDEV_CHANGE) |
| return NOTIFY_DONE; |
| |
| spin_lock(&taprio_list_lock); |
| list_for_each_entry(q, &taprio_list, taprio_list) { |
| qdev = qdisc_dev(q->root); |
| if (qdev == dev) { |
| found = true; |
| break; |
| } |
| } |
| spin_unlock(&taprio_list_lock); |
| |
| if (found) |
| taprio_set_picos_per_byte(dev, q); |
| |
| return NOTIFY_DONE; |
| } |
| |
| static void setup_txtime(struct taprio_sched *q, |
| struct sched_gate_list *sched, ktime_t base) |
| { |
| struct sched_entry *entry; |
| u32 interval = 0; |
| |
| list_for_each_entry(entry, &sched->entries, list) { |
| entry->next_txtime = ktime_add_ns(base, interval); |
| interval += entry->interval; |
| } |
| } |
| |
| static int taprio_change(struct Qdisc *sch, struct nlattr *opt, |
| struct netlink_ext_ack *extack) |
| { |
| struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; |
| struct sched_gate_list *oper, *admin, *new_admin; |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| struct tc_mqprio_qopt *mqprio = NULL; |
| u32 taprio_flags = 0; |
| int i, err, clockid; |
| unsigned long flags; |
| ktime_t start; |
| |
| err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, |
| taprio_policy, extack); |
| if (err < 0) |
| return err; |
| |
| if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) |
| mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); |
| |
| if (tb[TCA_TAPRIO_ATTR_FLAGS]) { |
| taprio_flags = nla_get_u32(tb[TCA_TAPRIO_ATTR_FLAGS]); |
| |
| if (q->flags != 0 && q->flags != taprio_flags) { |
| NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); |
| return -EOPNOTSUPP; |
| } else if (!FLAGS_VALID(taprio_flags)) { |
| NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid"); |
| return -EINVAL; |
| } |
| |
| q->flags = taprio_flags; |
| } |
| |
| err = taprio_parse_mqprio_opt(dev, mqprio, extack, taprio_flags); |
| if (err < 0) |
| return err; |
| |
| new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); |
| if (!new_admin) { |
| NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); |
| return -ENOMEM; |
| } |
| INIT_LIST_HEAD(&new_admin->entries); |
| |
| rcu_read_lock(); |
| oper = rcu_dereference(q->oper_sched); |
| admin = rcu_dereference(q->admin_sched); |
| rcu_read_unlock(); |
| |
| if (mqprio && (oper || admin)) { |
| NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); |
| err = -ENOTSUPP; |
| goto free_sched; |
| } |
| |
| err = parse_taprio_schedule(tb, new_admin, extack); |
| if (err < 0) |
| goto free_sched; |
| |
| if (new_admin->num_entries == 0) { |
| NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); |
| err = -EINVAL; |
| goto free_sched; |
| } |
| |
| if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { |
| clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); |
| |
| /* We only support static clockids and we don't allow |
| * for it to be modified after the first init. |
| */ |
| if (clockid < 0 || |
| (q->clockid != -1 && q->clockid != clockid)) { |
| NL_SET_ERR_MSG(extack, "Changing the 'clockid' of a running schedule is not supported"); |
| err = -ENOTSUPP; |
| goto free_sched; |
| } |
| |
| q->clockid = clockid; |
| } |
| |
| if (q->clockid == -1 && !tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { |
| NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); |
| err = -EINVAL; |
| goto free_sched; |
| } |
| |
| taprio_set_picos_per_byte(dev, q); |
| |
| /* Protects against enqueue()/dequeue() */ |
| spin_lock_bh(qdisc_lock(sch)); |
| |
| if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { |
| if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { |
| NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); |
| err = -EINVAL; |
| goto unlock; |
| } |
| |
| q->txtime_delay = nla_get_s32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); |
| } |
| |
| if (!TXTIME_ASSIST_IS_ENABLED(taprio_flags) && |
| !hrtimer_active(&q->advance_timer)) { |
| hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); |
| q->advance_timer.function = advance_sched; |
| } |
| |
| if (mqprio) { |
| netdev_set_num_tc(dev, mqprio->num_tc); |
| for (i = 0; i < mqprio->num_tc; i++) |
| netdev_set_tc_queue(dev, i, |
| mqprio->count[i], |
| mqprio->offset[i]); |
| |
| /* Always use supplied priority mappings */ |
| for (i = 0; i < TC_BITMASK + 1; i++) |
| netdev_set_prio_tc_map(dev, i, |
| mqprio->prio_tc_map[i]); |
| } |
| |
| switch (q->clockid) { |
| case CLOCK_REALTIME: |
| q->tk_offset = TK_OFFS_REAL; |
| break; |
| case CLOCK_MONOTONIC: |
| q->tk_offset = TK_OFFS_MAX; |
| break; |
| case CLOCK_BOOTTIME: |
| q->tk_offset = TK_OFFS_BOOT; |
| break; |
| case CLOCK_TAI: |
| q->tk_offset = TK_OFFS_TAI; |
| break; |
| default: |
| NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); |
| err = -EINVAL; |
| goto unlock; |
| } |
| |
| err = taprio_get_start_time(sch, new_admin, &start); |
| if (err < 0) { |
| NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); |
| goto unlock; |
| } |
| |
| if (TXTIME_ASSIST_IS_ENABLED(taprio_flags)) { |
| setup_txtime(q, new_admin, start); |
| |
| if (!oper) { |
| rcu_assign_pointer(q->oper_sched, new_admin); |
| err = 0; |
| new_admin = NULL; |
| goto unlock; |
| } |
| |
| rcu_assign_pointer(q->admin_sched, new_admin); |
| if (admin) |
| call_rcu(&admin->rcu, taprio_free_sched_cb); |
| } else { |
| setup_first_close_time(q, new_admin, start); |
| |
| /* Protects against advance_sched() */ |
| spin_lock_irqsave(&q->current_entry_lock, flags); |
| |
| taprio_start_sched(sch, start, new_admin); |
| |
| rcu_assign_pointer(q->admin_sched, new_admin); |
| if (admin) |
| call_rcu(&admin->rcu, taprio_free_sched_cb); |
| |
| spin_unlock_irqrestore(&q->current_entry_lock, flags); |
| } |
| |
| new_admin = NULL; |
| err = 0; |
| |
| unlock: |
| spin_unlock_bh(qdisc_lock(sch)); |
| |
| free_sched: |
| kfree(new_admin); |
| |
| return err; |
| } |
| |
| static void taprio_destroy(struct Qdisc *sch) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| unsigned int i; |
| |
| spin_lock(&taprio_list_lock); |
| list_del(&q->taprio_list); |
| spin_unlock(&taprio_list_lock); |
| |
| hrtimer_cancel(&q->advance_timer); |
| |
| if (q->qdiscs) { |
| for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++) |
| qdisc_put(q->qdiscs[i]); |
| |
| kfree(q->qdiscs); |
| } |
| q->qdiscs = NULL; |
| |
| netdev_set_num_tc(dev, 0); |
| |
| if (q->oper_sched) |
| call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb); |
| |
| if (q->admin_sched) |
| call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb); |
| } |
| |
| static int taprio_init(struct Qdisc *sch, struct nlattr *opt, |
| struct netlink_ext_ack *extack) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| int i; |
| |
| spin_lock_init(&q->current_entry_lock); |
| |
| hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); |
| q->advance_timer.function = advance_sched; |
| |
| q->root = sch; |
| |
| /* We only support static clockids. Use an invalid value as default |
| * and get the valid one on taprio_change(). |
| */ |
| q->clockid = -1; |
| |
| if (sch->parent != TC_H_ROOT) |
| return -EOPNOTSUPP; |
| |
| if (!netif_is_multiqueue(dev)) |
| return -EOPNOTSUPP; |
| |
| /* pre-allocate qdisc, attachment can't fail */ |
| q->qdiscs = kcalloc(dev->num_tx_queues, |
| sizeof(q->qdiscs[0]), |
| GFP_KERNEL); |
| |
| if (!q->qdiscs) |
| return -ENOMEM; |
| |
| if (!opt) |
| return -EINVAL; |
| |
| spin_lock(&taprio_list_lock); |
| list_add(&q->taprio_list, &taprio_list); |
| spin_unlock(&taprio_list_lock); |
| |
| for (i = 0; i < dev->num_tx_queues; i++) { |
| struct netdev_queue *dev_queue; |
| struct Qdisc *qdisc; |
| |
| dev_queue = netdev_get_tx_queue(dev, i); |
| qdisc = qdisc_create_dflt(dev_queue, |
| &pfifo_qdisc_ops, |
| TC_H_MAKE(TC_H_MAJ(sch->handle), |
| TC_H_MIN(i + 1)), |
| extack); |
| if (!qdisc) |
| return -ENOMEM; |
| |
| if (i < dev->real_num_tx_queues) |
| qdisc_hash_add(qdisc, false); |
| |
| q->qdiscs[i] = qdisc; |
| } |
| |
| return taprio_change(sch, opt, extack); |
| } |
| |
| static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, |
| unsigned long cl) |
| { |
| struct net_device *dev = qdisc_dev(sch); |
| unsigned long ntx = cl - 1; |
| |
| if (ntx >= dev->num_tx_queues) |
| return NULL; |
| |
| return netdev_get_tx_queue(dev, ntx); |
| } |
| |
| static int taprio_graft(struct Qdisc *sch, unsigned long cl, |
| struct Qdisc *new, struct Qdisc **old, |
| struct netlink_ext_ack *extack) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); |
| |
| if (!dev_queue) |
| return -EINVAL; |
| |
| if (dev->flags & IFF_UP) |
| dev_deactivate(dev); |
| |
| *old = q->qdiscs[cl - 1]; |
| q->qdiscs[cl - 1] = new; |
| |
| if (new) |
| new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; |
| |
| if (dev->flags & IFF_UP) |
| dev_activate(dev); |
| |
| return 0; |
| } |
| |
| static int dump_entry(struct sk_buff *msg, |
| const struct sched_entry *entry) |
| { |
| struct nlattr *item; |
| |
| item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); |
| if (!item) |
| return -ENOSPC; |
| |
| if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) |
| goto nla_put_failure; |
| |
| if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, |
| entry->gate_mask)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, |
| entry->interval)) |
| goto nla_put_failure; |
| |
| return nla_nest_end(msg, item); |
| |
| nla_put_failure: |
| nla_nest_cancel(msg, item); |
| return -1; |
| } |
| |
| static int dump_schedule(struct sk_buff *msg, |
| const struct sched_gate_list *root) |
| { |
| struct nlattr *entry_list; |
| struct sched_entry *entry; |
| |
| if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, |
| root->base_time, TCA_TAPRIO_PAD)) |
| return -1; |
| |
| if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, |
| root->cycle_time, TCA_TAPRIO_PAD)) |
| return -1; |
| |
| if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, |
| root->cycle_time_extension, TCA_TAPRIO_PAD)) |
| return -1; |
| |
| entry_list = nla_nest_start_noflag(msg, |
| TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); |
| if (!entry_list) |
| goto error_nest; |
| |
| list_for_each_entry(entry, &root->entries, list) { |
| if (dump_entry(msg, entry) < 0) |
| goto error_nest; |
| } |
| |
| nla_nest_end(msg, entry_list); |
| return 0; |
| |
| error_nest: |
| nla_nest_cancel(msg, entry_list); |
| return -1; |
| } |
| |
| static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| struct sched_gate_list *oper, *admin; |
| struct tc_mqprio_qopt opt = { 0 }; |
| struct nlattr *nest, *sched_nest; |
| unsigned int i; |
| |
| rcu_read_lock(); |
| oper = rcu_dereference(q->oper_sched); |
| admin = rcu_dereference(q->admin_sched); |
| |
| opt.num_tc = netdev_get_num_tc(dev); |
| memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map)); |
| |
| for (i = 0; i < netdev_get_num_tc(dev); i++) { |
| opt.count[i] = dev->tc_to_txq[i].count; |
| opt.offset[i] = dev->tc_to_txq[i].offset; |
| } |
| |
| nest = nla_nest_start_noflag(skb, TCA_OPTIONS); |
| if (!nest) |
| goto start_error; |
| |
| if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) |
| goto options_error; |
| |
| if (nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) |
| goto options_error; |
| |
| if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) |
| goto options_error; |
| |
| if (q->txtime_delay && |
| nla_put_s32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) |
| goto options_error; |
| |
| if (oper && dump_schedule(skb, oper)) |
| goto options_error; |
| |
| if (!admin) |
| goto done; |
| |
| sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); |
| if (!sched_nest) |
| goto options_error; |
| |
| if (dump_schedule(skb, admin)) |
| goto admin_error; |
| |
| nla_nest_end(skb, sched_nest); |
| |
| done: |
| rcu_read_unlock(); |
| |
| return nla_nest_end(skb, nest); |
| |
| admin_error: |
| nla_nest_cancel(skb, sched_nest); |
| |
| options_error: |
| nla_nest_cancel(skb, nest); |
| |
| start_error: |
| rcu_read_unlock(); |
| return -ENOSPC; |
| } |
| |
| static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) |
| { |
| struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); |
| |
| if (!dev_queue) |
| return NULL; |
| |
| return dev_queue->qdisc_sleeping; |
| } |
| |
| static unsigned long taprio_find(struct Qdisc *sch, u32 classid) |
| { |
| unsigned int ntx = TC_H_MIN(classid); |
| |
| if (!taprio_queue_get(sch, ntx)) |
| return 0; |
| return ntx; |
| } |
| |
| static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, |
| struct sk_buff *skb, struct tcmsg *tcm) |
| { |
| struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); |
| |
| tcm->tcm_parent = TC_H_ROOT; |
| tcm->tcm_handle |= TC_H_MIN(cl); |
| tcm->tcm_info = dev_queue->qdisc_sleeping->handle; |
| |
| return 0; |
| } |
| |
| static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, |
| struct gnet_dump *d) |
| __releases(d->lock) |
| __acquires(d->lock) |
| { |
| struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); |
| |
| sch = dev_queue->qdisc_sleeping; |
| if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 || |
| qdisc_qstats_copy(d, sch) < 0) |
| return -1; |
| return 0; |
| } |
| |
| static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) |
| { |
| struct net_device *dev = qdisc_dev(sch); |
| unsigned long ntx; |
| |
| if (arg->stop) |
| return; |
| |
| arg->count = arg->skip; |
| for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { |
| if (arg->fn(sch, ntx + 1, arg) < 0) { |
| arg->stop = 1; |
| break; |
| } |
| arg->count++; |
| } |
| } |
| |
| static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, |
| struct tcmsg *tcm) |
| { |
| return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); |
| } |
| |
| static const struct Qdisc_class_ops taprio_class_ops = { |
| .graft = taprio_graft, |
| .leaf = taprio_leaf, |
| .find = taprio_find, |
| .walk = taprio_walk, |
| .dump = taprio_dump_class, |
| .dump_stats = taprio_dump_class_stats, |
| .select_queue = taprio_select_queue, |
| }; |
| |
| static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { |
| .cl_ops = &taprio_class_ops, |
| .id = "taprio", |
| .priv_size = sizeof(struct taprio_sched), |
| .init = taprio_init, |
| .change = taprio_change, |
| .destroy = taprio_destroy, |
| .peek = taprio_peek, |
| .dequeue = taprio_dequeue, |
| .enqueue = taprio_enqueue, |
| .dump = taprio_dump, |
| .owner = THIS_MODULE, |
| }; |
| |
| static struct notifier_block taprio_device_notifier = { |
| .notifier_call = taprio_dev_notifier, |
| }; |
| |
| static int __init taprio_module_init(void) |
| { |
| int err = register_netdevice_notifier(&taprio_device_notifier); |
| |
| if (err) |
| return err; |
| |
| return register_qdisc(&taprio_qdisc_ops); |
| } |
| |
| static void __exit taprio_module_exit(void) |
| { |
| unregister_qdisc(&taprio_qdisc_ops); |
| unregister_netdevice_notifier(&taprio_device_notifier); |
| } |
| |
| module_init(taprio_module_init); |
| module_exit(taprio_module_exit); |
| MODULE_LICENSE("GPL"); |