| /* |
| * Copyright © 2014 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| /** |
| * DOC: Panel Self Refresh (PSR/SRD) |
| * |
| * Since Haswell Display controller supports Panel Self-Refresh on display |
| * panels witch have a remote frame buffer (RFB) implemented according to PSR |
| * spec in eDP1.3. PSR feature allows the display to go to lower standby states |
| * when system is idle but display is on as it eliminates display refresh |
| * request to DDR memory completely as long as the frame buffer for that |
| * display is unchanged. |
| * |
| * Panel Self Refresh must be supported by both Hardware (source) and |
| * Panel (sink). |
| * |
| * PSR saves power by caching the framebuffer in the panel RFB, which allows us |
| * to power down the link and memory controller. For DSI panels the same idea |
| * is called "manual mode". |
| * |
| * The implementation uses the hardware-based PSR support which automatically |
| * enters/exits self-refresh mode. The hardware takes care of sending the |
| * required DP aux message and could even retrain the link (that part isn't |
| * enabled yet though). The hardware also keeps track of any frontbuffer |
| * changes to know when to exit self-refresh mode again. Unfortunately that |
| * part doesn't work too well, hence why the i915 PSR support uses the |
| * software frontbuffer tracking to make sure it doesn't miss a screen |
| * update. For this integration intel_psr_invalidate() and intel_psr_flush() |
| * get called by the frontbuffer tracking code. Note that because of locking |
| * issues the self-refresh re-enable code is done from a work queue, which |
| * must be correctly synchronized/cancelled when shutting down the pipe." |
| */ |
| |
| #include <drm/drmP.h> |
| |
| #include "intel_drv.h" |
| #include "i915_drv.h" |
| |
| static bool is_edp_psr(struct intel_dp *intel_dp) |
| { |
| if (!intel_dp_is_edp(intel_dp)) |
| return false; |
| |
| return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED; |
| } |
| |
| static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| uint32_t val; |
| |
| val = I915_READ(VLV_PSRSTAT(pipe)) & |
| VLV_EDP_PSR_CURR_STATE_MASK; |
| return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) || |
| (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE); |
| } |
| |
| static void vlv_psr_setup_vsc(struct intel_dp *intel_dp, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); |
| uint32_t val; |
| |
| /* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */ |
| val = I915_READ(VLV_VSCSDP(crtc->pipe)); |
| val &= ~VLV_EDP_PSR_SDP_FREQ_MASK; |
| val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME; |
| I915_WRITE(VLV_VSCSDP(crtc->pipe), val); |
| } |
| |
| static void hsw_psr_setup_vsc(struct intel_dp *intel_dp, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); |
| struct edp_vsc_psr psr_vsc; |
| |
| if (dev_priv->psr.psr2_support) { |
| /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */ |
| memset(&psr_vsc, 0, sizeof(psr_vsc)); |
| psr_vsc.sdp_header.HB0 = 0; |
| psr_vsc.sdp_header.HB1 = 0x7; |
| if (dev_priv->psr.colorimetry_support && |
| dev_priv->psr.y_cord_support) { |
| psr_vsc.sdp_header.HB2 = 0x5; |
| psr_vsc.sdp_header.HB3 = 0x13; |
| } else if (dev_priv->psr.y_cord_support) { |
| psr_vsc.sdp_header.HB2 = 0x4; |
| psr_vsc.sdp_header.HB3 = 0xe; |
| } else { |
| psr_vsc.sdp_header.HB2 = 0x3; |
| psr_vsc.sdp_header.HB3 = 0xc; |
| } |
| } else { |
| /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */ |
| memset(&psr_vsc, 0, sizeof(psr_vsc)); |
| psr_vsc.sdp_header.HB0 = 0; |
| psr_vsc.sdp_header.HB1 = 0x7; |
| psr_vsc.sdp_header.HB2 = 0x2; |
| psr_vsc.sdp_header.HB3 = 0x8; |
| } |
| |
| intel_dig_port->write_infoframe(&intel_dig_port->base.base, crtc_state, |
| DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc)); |
| } |
| |
| static void vlv_psr_enable_sink(struct intel_dp *intel_dp) |
| { |
| drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, |
| DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE); |
| } |
| |
| static i915_reg_t psr_aux_ctl_reg(struct drm_i915_private *dev_priv, |
| enum port port) |
| { |
| if (INTEL_INFO(dev_priv)->gen >= 9) |
| return DP_AUX_CH_CTL(port); |
| else |
| return EDP_PSR_AUX_CTL; |
| } |
| |
| static i915_reg_t psr_aux_data_reg(struct drm_i915_private *dev_priv, |
| enum port port, int index) |
| { |
| if (INTEL_INFO(dev_priv)->gen >= 9) |
| return DP_AUX_CH_DATA(port, index); |
| else |
| return EDP_PSR_AUX_DATA(index); |
| } |
| |
| static void hsw_psr_enable_sink(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| uint32_t aux_clock_divider; |
| i915_reg_t aux_ctl_reg; |
| static const uint8_t aux_msg[] = { |
| [0] = DP_AUX_NATIVE_WRITE << 4, |
| [1] = DP_SET_POWER >> 8, |
| [2] = DP_SET_POWER & 0xff, |
| [3] = 1 - 1, |
| [4] = DP_SET_POWER_D0, |
| }; |
| enum port port = dig_port->port; |
| u32 aux_ctl; |
| int i; |
| |
| BUILD_BUG_ON(sizeof(aux_msg) > 20); |
| |
| aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0); |
| |
| /* Enable AUX frame sync at sink */ |
| if (dev_priv->psr.aux_frame_sync) |
| drm_dp_dpcd_writeb(&intel_dp->aux, |
| DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF, |
| DP_AUX_FRAME_SYNC_ENABLE); |
| /* Enable ALPM at sink for psr2 */ |
| if (dev_priv->psr.psr2_support && dev_priv->psr.alpm) |
| drm_dp_dpcd_writeb(&intel_dp->aux, |
| DP_RECEIVER_ALPM_CONFIG, |
| DP_ALPM_ENABLE); |
| if (dev_priv->psr.link_standby) |
| drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, |
| DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE); |
| else |
| drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, |
| DP_PSR_ENABLE); |
| |
| aux_ctl_reg = psr_aux_ctl_reg(dev_priv, port); |
| |
| /* Setup AUX registers */ |
| for (i = 0; i < sizeof(aux_msg); i += 4) |
| I915_WRITE(psr_aux_data_reg(dev_priv, port, i >> 2), |
| intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i)); |
| |
| aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, 0, sizeof(aux_msg), |
| aux_clock_divider); |
| I915_WRITE(aux_ctl_reg, aux_ctl); |
| } |
| |
| static void vlv_psr_enable_source(struct intel_dp *intel_dp, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); |
| struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); |
| |
| /* Transition from PSR_state 0 (disabled) to PSR_state 1 (inactive) */ |
| I915_WRITE(VLV_PSRCTL(crtc->pipe), |
| VLV_EDP_PSR_MODE_SW_TIMER | |
| VLV_EDP_PSR_SRC_TRANSMITTER_STATE | |
| VLV_EDP_PSR_ENABLE); |
| } |
| |
| static void vlv_psr_activate(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_crtc *crtc = dig_port->base.base.crtc; |
| enum pipe pipe = to_intel_crtc(crtc)->pipe; |
| |
| /* |
| * Let's do the transition from PSR_state 1 (inactive) to |
| * PSR_state 2 (transition to active - static frame transmission). |
| * Then Hardware is responsible for the transition to |
| * PSR_state 3 (active - no Remote Frame Buffer (RFB) update). |
| */ |
| I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) | |
| VLV_EDP_PSR_ACTIVE_ENTRY); |
| } |
| |
| static void hsw_activate_psr1(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| uint32_t max_sleep_time = 0x1f; |
| /* |
| * Let's respect VBT in case VBT asks a higher idle_frame value. |
| * Let's use 6 as the minimum to cover all known cases including |
| * the off-by-one issue that HW has in some cases. Also there are |
| * cases where sink should be able to train |
| * with the 5 or 6 idle patterns. |
| */ |
| uint32_t idle_frames = max(6, dev_priv->vbt.psr.idle_frames); |
| uint32_t val = EDP_PSR_ENABLE; |
| |
| val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT; |
| val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT; |
| |
| if (IS_HASWELL(dev_priv)) |
| val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES; |
| |
| if (dev_priv->psr.link_standby) |
| val |= EDP_PSR_LINK_STANDBY; |
| |
| if (dev_priv->vbt.psr.tp1_wakeup_time > 5) |
| val |= EDP_PSR_TP1_TIME_2500us; |
| else if (dev_priv->vbt.psr.tp1_wakeup_time > 1) |
| val |= EDP_PSR_TP1_TIME_500us; |
| else if (dev_priv->vbt.psr.tp1_wakeup_time > 0) |
| val |= EDP_PSR_TP1_TIME_100us; |
| else |
| val |= EDP_PSR_TP1_TIME_0us; |
| |
| if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 5) |
| val |= EDP_PSR_TP2_TP3_TIME_2500us; |
| else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 1) |
| val |= EDP_PSR_TP2_TP3_TIME_500us; |
| else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 0) |
| val |= EDP_PSR_TP2_TP3_TIME_100us; |
| else |
| val |= EDP_PSR_TP2_TP3_TIME_0us; |
| |
| if (intel_dp_source_supports_hbr2(intel_dp) && |
| drm_dp_tps3_supported(intel_dp->dpcd)) |
| val |= EDP_PSR_TP1_TP3_SEL; |
| else |
| val |= EDP_PSR_TP1_TP2_SEL; |
| |
| val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK; |
| I915_WRITE(EDP_PSR_CTL, val); |
| } |
| |
| static void hsw_activate_psr2(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| /* |
| * Let's respect VBT in case VBT asks a higher idle_frame value. |
| * Let's use 6 as the minimum to cover all known cases including |
| * the off-by-one issue that HW has in some cases. Also there are |
| * cases where sink should be able to train |
| * with the 5 or 6 idle patterns. |
| */ |
| uint32_t idle_frames = max(6, dev_priv->vbt.psr.idle_frames); |
| uint32_t val; |
| uint8_t sink_latency; |
| |
| val = idle_frames << EDP_PSR_IDLE_FRAME_SHIFT; |
| |
| /* FIXME: selective update is probably totally broken because it doesn't |
| * mesh at all with our frontbuffer tracking. And the hw alone isn't |
| * good enough. */ |
| val |= EDP_PSR2_ENABLE | |
| EDP_SU_TRACK_ENABLE; |
| |
| if (drm_dp_dpcd_readb(&intel_dp->aux, |
| DP_SYNCHRONIZATION_LATENCY_IN_SINK, |
| &sink_latency) == 1) { |
| sink_latency &= DP_MAX_RESYNC_FRAME_COUNT_MASK; |
| } else { |
| sink_latency = 0; |
| } |
| val |= EDP_PSR2_FRAME_BEFORE_SU(sink_latency + 1); |
| |
| if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 5) |
| val |= EDP_PSR2_TP2_TIME_2500; |
| else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 1) |
| val |= EDP_PSR2_TP2_TIME_500; |
| else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 0) |
| val |= EDP_PSR2_TP2_TIME_100; |
| else |
| val |= EDP_PSR2_TP2_TIME_50; |
| |
| I915_WRITE(EDP_PSR2_CTL, val); |
| } |
| |
| static void hsw_psr_activate(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| /* On HSW+ after we enable PSR on source it will activate it |
| * as soon as it match configure idle_frame count. So |
| * we just actually enable it here on activation time. |
| */ |
| |
| /* psr1 and psr2 are mutually exclusive.*/ |
| if (dev_priv->psr.psr2_support) |
| hsw_activate_psr2(intel_dp); |
| else |
| hsw_activate_psr1(intel_dp); |
| } |
| |
| void intel_psr_compute_config(struct intel_dp *intel_dp, |
| struct intel_crtc_state *crtc_state) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); |
| const struct drm_display_mode *adjusted_mode = |
| &crtc_state->base.adjusted_mode; |
| int psr_setup_time; |
| |
| if (!HAS_PSR(dev_priv)) |
| return; |
| |
| if (!is_edp_psr(intel_dp)) |
| return; |
| |
| if (!i915_modparams.enable_psr) { |
| DRM_DEBUG_KMS("PSR disable by flag\n"); |
| return; |
| } |
| |
| /* |
| * HSW spec explicitly says PSR is tied to port A. |
| * BDW+ platforms with DDI implementation of PSR have different |
| * PSR registers per transcoder and we only implement transcoder EDP |
| * ones. Since by Display design transcoder EDP is tied to port A |
| * we can safely escape based on the port A. |
| */ |
| if (HAS_DDI(dev_priv) && dig_port->port != PORT_A) { |
| DRM_DEBUG_KMS("PSR condition failed: Port not supported\n"); |
| return; |
| } |
| |
| if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && |
| !dev_priv->psr.link_standby) { |
| DRM_ERROR("PSR condition failed: Link off requested but not supported on this platform\n"); |
| return; |
| } |
| |
| if (IS_HASWELL(dev_priv) && |
| I915_READ(HSW_STEREO_3D_CTL(crtc_state->cpu_transcoder)) & |
| S3D_ENABLE) { |
| DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n"); |
| return; |
| } |
| |
| if (IS_HASWELL(dev_priv) && |
| adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { |
| DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n"); |
| return; |
| } |
| |
| psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd); |
| if (psr_setup_time < 0) { |
| DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n", |
| intel_dp->psr_dpcd[1]); |
| return; |
| } |
| |
| if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) > |
| adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) { |
| DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n", |
| psr_setup_time); |
| return; |
| } |
| |
| /* |
| * FIXME psr2_support is messed up. It's both computed |
| * dynamically during PSR enable, and extracted from sink |
| * caps during eDP detection. |
| */ |
| if (!dev_priv->psr.psr2_support) { |
| crtc_state->has_psr = true; |
| return; |
| } |
| |
| /* PSR2 is restricted to work with panel resolutions upto 3200x2000 */ |
| if (adjusted_mode->crtc_hdisplay > 3200 || |
| adjusted_mode->crtc_vdisplay > 2000) { |
| DRM_DEBUG_KMS("PSR2 disabled, panel resolution too big\n"); |
| return; |
| } |
| |
| /* |
| * FIXME:enable psr2 only for y-cordinate psr2 panels |
| * After gtc implementation , remove this restriction. |
| */ |
| if (!dev_priv->psr.y_cord_support) { |
| DRM_DEBUG_KMS("PSR2 disabled, panel does not support Y coordinate\n"); |
| return; |
| } |
| |
| crtc_state->has_psr = true; |
| crtc_state->has_psr2 = true; |
| } |
| |
| static void intel_psr_activate(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| if (dev_priv->psr.psr2_support) |
| WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE); |
| else |
| WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE); |
| WARN_ON(dev_priv->psr.active); |
| lockdep_assert_held(&dev_priv->psr.lock); |
| |
| dev_priv->psr.activate(intel_dp); |
| dev_priv->psr.active = true; |
| } |
| |
| static void hsw_psr_enable_source(struct intel_dp *intel_dp, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; |
| u32 chicken; |
| |
| if (dev_priv->psr.psr2_support) { |
| chicken = PSR2_VSC_ENABLE_PROG_HEADER; |
| if (dev_priv->psr.y_cord_support) |
| chicken |= PSR2_ADD_VERTICAL_LINE_COUNT; |
| I915_WRITE(CHICKEN_TRANS(cpu_transcoder), chicken); |
| |
| I915_WRITE(EDP_PSR_DEBUG_CTL, |
| EDP_PSR_DEBUG_MASK_MEMUP | |
| EDP_PSR_DEBUG_MASK_HPD | |
| EDP_PSR_DEBUG_MASK_LPSP | |
| EDP_PSR_DEBUG_MASK_MAX_SLEEP | |
| EDP_PSR_DEBUG_MASK_DISP_REG_WRITE); |
| } else { |
| /* |
| * Per Spec: Avoid continuous PSR exit by masking MEMUP |
| * and HPD. also mask LPSP to avoid dependency on other |
| * drivers that might block runtime_pm besides |
| * preventing other hw tracking issues now we can rely |
| * on frontbuffer tracking. |
| */ |
| I915_WRITE(EDP_PSR_DEBUG_CTL, |
| EDP_PSR_DEBUG_MASK_MEMUP | |
| EDP_PSR_DEBUG_MASK_HPD | |
| EDP_PSR_DEBUG_MASK_LPSP); |
| } |
| } |
| |
| /** |
| * intel_psr_enable - Enable PSR |
| * @intel_dp: Intel DP |
| * @crtc_state: new CRTC state |
| * |
| * This function can only be called after the pipe is fully trained and enabled. |
| */ |
| void intel_psr_enable(struct intel_dp *intel_dp, |
| const struct intel_crtc_state *crtc_state) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| if (!crtc_state->has_psr) |
| return; |
| |
| WARN_ON(dev_priv->drrs.dp); |
| mutex_lock(&dev_priv->psr.lock); |
| if (dev_priv->psr.enabled) { |
| DRM_DEBUG_KMS("PSR already in use\n"); |
| goto unlock; |
| } |
| |
| dev_priv->psr.psr2_support = crtc_state->has_psr2; |
| dev_priv->psr.source_ok = true; |
| |
| dev_priv->psr.busy_frontbuffer_bits = 0; |
| |
| dev_priv->psr.setup_vsc(intel_dp, crtc_state); |
| dev_priv->psr.enable_sink(intel_dp); |
| dev_priv->psr.enable_source(intel_dp, crtc_state); |
| dev_priv->psr.enabled = intel_dp; |
| |
| if (INTEL_GEN(dev_priv) >= 9) { |
| intel_psr_activate(intel_dp); |
| } else { |
| /* |
| * FIXME: Activation should happen immediately since this |
| * function is just called after pipe is fully trained and |
| * enabled. |
| * However on some platforms we face issues when first |
| * activation follows a modeset so quickly. |
| * - On VLV/CHV we get bank screen on first activation |
| * - On HSW/BDW we get a recoverable frozen screen until |
| * next exit-activate sequence. |
| */ |
| schedule_delayed_work(&dev_priv->psr.work, |
| msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5)); |
| } |
| |
| unlock: |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| static void vlv_psr_disable(struct intel_dp *intel_dp, |
| const struct intel_crtc_state *old_crtc_state) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); |
| uint32_t val; |
| |
| if (dev_priv->psr.active) { |
| /* Put VLV PSR back to PSR_state 0 (disabled). */ |
| if (intel_wait_for_register(dev_priv, |
| VLV_PSRSTAT(crtc->pipe), |
| VLV_EDP_PSR_IN_TRANS, |
| 0, |
| 1)) |
| WARN(1, "PSR transition took longer than expected\n"); |
| |
| val = I915_READ(VLV_PSRCTL(crtc->pipe)); |
| val &= ~VLV_EDP_PSR_ACTIVE_ENTRY; |
| val &= ~VLV_EDP_PSR_ENABLE; |
| val &= ~VLV_EDP_PSR_MODE_MASK; |
| I915_WRITE(VLV_PSRCTL(crtc->pipe), val); |
| |
| dev_priv->psr.active = false; |
| } else { |
| WARN_ON(vlv_is_psr_active_on_pipe(dev, crtc->pipe)); |
| } |
| } |
| |
| static void hsw_psr_disable(struct intel_dp *intel_dp, |
| const struct intel_crtc_state *old_crtc_state) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| if (dev_priv->psr.active) { |
| i915_reg_t psr_ctl; |
| u32 psr_status_mask; |
| |
| if (dev_priv->psr.aux_frame_sync) |
| drm_dp_dpcd_writeb(&intel_dp->aux, |
| DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF, |
| 0); |
| |
| if (dev_priv->psr.psr2_support) { |
| psr_ctl = EDP_PSR2_CTL; |
| psr_status_mask = EDP_PSR2_STATUS_STATE_MASK; |
| |
| I915_WRITE(psr_ctl, |
| I915_READ(psr_ctl) & |
| ~(EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE)); |
| |
| } else { |
| psr_ctl = EDP_PSR_STATUS_CTL; |
| psr_status_mask = EDP_PSR_STATUS_STATE_MASK; |
| |
| I915_WRITE(psr_ctl, |
| I915_READ(psr_ctl) & ~EDP_PSR_ENABLE); |
| } |
| |
| /* Wait till PSR is idle */ |
| if (intel_wait_for_register(dev_priv, |
| psr_ctl, psr_status_mask, 0, |
| 2000)) |
| DRM_ERROR("Timed out waiting for PSR Idle State\n"); |
| |
| dev_priv->psr.active = false; |
| } else { |
| if (dev_priv->psr.psr2_support) |
| WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE); |
| else |
| WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE); |
| } |
| } |
| |
| /** |
| * intel_psr_disable - Disable PSR |
| * @intel_dp: Intel DP |
| * @old_crtc_state: old CRTC state |
| * |
| * This function needs to be called before disabling pipe. |
| */ |
| void intel_psr_disable(struct intel_dp *intel_dp, |
| const struct intel_crtc_state *old_crtc_state) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| if (!old_crtc_state->has_psr) |
| return; |
| |
| mutex_lock(&dev_priv->psr.lock); |
| if (!dev_priv->psr.enabled) { |
| mutex_unlock(&dev_priv->psr.lock); |
| return; |
| } |
| |
| dev_priv->psr.disable_source(intel_dp, old_crtc_state); |
| |
| /* Disable PSR on Sink */ |
| drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0); |
| |
| dev_priv->psr.enabled = NULL; |
| mutex_unlock(&dev_priv->psr.lock); |
| |
| cancel_delayed_work_sync(&dev_priv->psr.work); |
| } |
| |
| static void intel_psr_work(struct work_struct *work) |
| { |
| struct drm_i915_private *dev_priv = |
| container_of(work, typeof(*dev_priv), psr.work.work); |
| struct intel_dp *intel_dp = dev_priv->psr.enabled; |
| struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; |
| enum pipe pipe = to_intel_crtc(crtc)->pipe; |
| |
| /* We have to make sure PSR is ready for re-enable |
| * otherwise it keeps disabled until next full enable/disable cycle. |
| * PSR might take some time to get fully disabled |
| * and be ready for re-enable. |
| */ |
| if (HAS_DDI(dev_priv)) { |
| if (dev_priv->psr.psr2_support) { |
| if (intel_wait_for_register(dev_priv, |
| EDP_PSR2_STATUS_CTL, |
| EDP_PSR2_STATUS_STATE_MASK, |
| 0, |
| 50)) { |
| DRM_ERROR("Timed out waiting for PSR2 Idle for re-enable\n"); |
| return; |
| } |
| } else { |
| if (intel_wait_for_register(dev_priv, |
| EDP_PSR_STATUS_CTL, |
| EDP_PSR_STATUS_STATE_MASK, |
| 0, |
| 50)) { |
| DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n"); |
| return; |
| } |
| } |
| } else { |
| if (intel_wait_for_register(dev_priv, |
| VLV_PSRSTAT(pipe), |
| VLV_EDP_PSR_IN_TRANS, |
| 0, |
| 1)) { |
| DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n"); |
| return; |
| } |
| } |
| mutex_lock(&dev_priv->psr.lock); |
| intel_dp = dev_priv->psr.enabled; |
| |
| if (!intel_dp) |
| goto unlock; |
| |
| /* |
| * The delayed work can race with an invalidate hence we need to |
| * recheck. Since psr_flush first clears this and then reschedules we |
| * won't ever miss a flush when bailing out here. |
| */ |
| if (dev_priv->psr.busy_frontbuffer_bits) |
| goto unlock; |
| |
| intel_psr_activate(intel_dp); |
| unlock: |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| static void intel_psr_exit(struct drm_i915_private *dev_priv) |
| { |
| struct intel_dp *intel_dp = dev_priv->psr.enabled; |
| struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; |
| enum pipe pipe = to_intel_crtc(crtc)->pipe; |
| u32 val; |
| |
| if (!dev_priv->psr.active) |
| return; |
| |
| if (HAS_DDI(dev_priv)) { |
| if (dev_priv->psr.aux_frame_sync) |
| drm_dp_dpcd_writeb(&intel_dp->aux, |
| DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF, |
| 0); |
| if (dev_priv->psr.psr2_support) { |
| val = I915_READ(EDP_PSR2_CTL); |
| WARN_ON(!(val & EDP_PSR2_ENABLE)); |
| I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE); |
| } else { |
| val = I915_READ(EDP_PSR_CTL); |
| WARN_ON(!(val & EDP_PSR_ENABLE)); |
| I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE); |
| } |
| } else { |
| val = I915_READ(VLV_PSRCTL(pipe)); |
| |
| /* |
| * Here we do the transition drirectly from |
| * PSR_state 3 (active - no Remote Frame Buffer (RFB) update) to |
| * PSR_state 5 (exit). |
| * PSR State 4 (active with single frame update) can be skipped. |
| * On PSR_state 5 (exit) Hardware is responsible to transition |
| * back to PSR_state 1 (inactive). |
| * Now we are at Same state after vlv_psr_enable_source. |
| */ |
| val &= ~VLV_EDP_PSR_ACTIVE_ENTRY; |
| I915_WRITE(VLV_PSRCTL(pipe), val); |
| |
| /* |
| * Send AUX wake up - Spec says after transitioning to PSR |
| * active we have to send AUX wake up by writing 01h in DPCD |
| * 600h of sink device. |
| * XXX: This might slow down the transition, but without this |
| * HW doesn't complete the transition to PSR_state 1 and we |
| * never get the screen updated. |
| */ |
| drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, |
| DP_SET_POWER_D0); |
| } |
| |
| dev_priv->psr.active = false; |
| } |
| |
| /** |
| * intel_psr_single_frame_update - Single Frame Update |
| * @dev_priv: i915 device |
| * @frontbuffer_bits: frontbuffer plane tracking bits |
| * |
| * Some platforms support a single frame update feature that is used to |
| * send and update only one frame on Remote Frame Buffer. |
| * So far it is only implemented for Valleyview and Cherryview because |
| * hardware requires this to be done before a page flip. |
| */ |
| void intel_psr_single_frame_update(struct drm_i915_private *dev_priv, |
| unsigned frontbuffer_bits) |
| { |
| struct drm_crtc *crtc; |
| enum pipe pipe; |
| u32 val; |
| |
| if (!HAS_PSR(dev_priv)) |
| return; |
| |
| /* |
| * Single frame update is already supported on BDW+ but it requires |
| * many W/A and it isn't really needed. |
| */ |
| if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) |
| return; |
| |
| mutex_lock(&dev_priv->psr.lock); |
| if (!dev_priv->psr.enabled) { |
| mutex_unlock(&dev_priv->psr.lock); |
| return; |
| } |
| |
| crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc; |
| pipe = to_intel_crtc(crtc)->pipe; |
| |
| if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) { |
| val = I915_READ(VLV_PSRCTL(pipe)); |
| |
| /* |
| * We need to set this bit before writing registers for a flip. |
| * This bit will be self-clear when it gets to the PSR active state. |
| */ |
| I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE); |
| } |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| /** |
| * intel_psr_invalidate - Invalidade PSR |
| * @dev_priv: i915 device |
| * @frontbuffer_bits: frontbuffer plane tracking bits |
| * |
| * Since the hardware frontbuffer tracking has gaps we need to integrate |
| * with the software frontbuffer tracking. This function gets called every |
| * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be |
| * disabled if the frontbuffer mask contains a buffer relevant to PSR. |
| * |
| * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits." |
| */ |
| void intel_psr_invalidate(struct drm_i915_private *dev_priv, |
| unsigned frontbuffer_bits) |
| { |
| struct drm_crtc *crtc; |
| enum pipe pipe; |
| |
| if (!HAS_PSR(dev_priv)) |
| return; |
| |
| mutex_lock(&dev_priv->psr.lock); |
| if (!dev_priv->psr.enabled) { |
| mutex_unlock(&dev_priv->psr.lock); |
| return; |
| } |
| |
| crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc; |
| pipe = to_intel_crtc(crtc)->pipe; |
| |
| frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); |
| dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits; |
| |
| if (frontbuffer_bits) |
| intel_psr_exit(dev_priv); |
| |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| /** |
| * intel_psr_flush - Flush PSR |
| * @dev_priv: i915 device |
| * @frontbuffer_bits: frontbuffer plane tracking bits |
| * @origin: which operation caused the flush |
| * |
| * Since the hardware frontbuffer tracking has gaps we need to integrate |
| * with the software frontbuffer tracking. This function gets called every |
| * time frontbuffer rendering has completed and flushed out to memory. PSR |
| * can be enabled again if no other frontbuffer relevant to PSR is dirty. |
| * |
| * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits. |
| */ |
| void intel_psr_flush(struct drm_i915_private *dev_priv, |
| unsigned frontbuffer_bits, enum fb_op_origin origin) |
| { |
| struct drm_crtc *crtc; |
| enum pipe pipe; |
| |
| if (!HAS_PSR(dev_priv)) |
| return; |
| |
| mutex_lock(&dev_priv->psr.lock); |
| if (!dev_priv->psr.enabled) { |
| mutex_unlock(&dev_priv->psr.lock); |
| return; |
| } |
| |
| crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc; |
| pipe = to_intel_crtc(crtc)->pipe; |
| |
| frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); |
| dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits; |
| |
| /* By definition flush = invalidate + flush */ |
| if (frontbuffer_bits) |
| intel_psr_exit(dev_priv); |
| |
| if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits) |
| if (!work_busy(&dev_priv->psr.work.work)) |
| schedule_delayed_work(&dev_priv->psr.work, |
| msecs_to_jiffies(100)); |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| /** |
| * intel_psr_init - Init basic PSR work and mutex. |
| * @dev_priv: i915 device private |
| * |
| * This function is called only once at driver load to initialize basic |
| * PSR stuff. |
| */ |
| void intel_psr_init(struct drm_i915_private *dev_priv) |
| { |
| if (!HAS_PSR(dev_priv)) |
| return; |
| |
| dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ? |
| HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE; |
| |
| /* Per platform default: all disabled. */ |
| if (i915_modparams.enable_psr == -1) |
| i915_modparams.enable_psr = 0; |
| |
| /* Set link_standby x link_off defaults */ |
| if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) |
| /* HSW and BDW require workarounds that we don't implement. */ |
| dev_priv->psr.link_standby = false; |
| else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) |
| /* On VLV and CHV only standby mode is supported. */ |
| dev_priv->psr.link_standby = true; |
| else |
| /* For new platforms let's respect VBT back again */ |
| dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link; |
| |
| /* Override link_standby x link_off defaults */ |
| if (i915_modparams.enable_psr == 2 && !dev_priv->psr.link_standby) { |
| DRM_DEBUG_KMS("PSR: Forcing link standby\n"); |
| dev_priv->psr.link_standby = true; |
| } |
| if (i915_modparams.enable_psr == 3 && dev_priv->psr.link_standby) { |
| DRM_DEBUG_KMS("PSR: Forcing main link off\n"); |
| dev_priv->psr.link_standby = false; |
| } |
| |
| INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work); |
| mutex_init(&dev_priv->psr.lock); |
| |
| if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { |
| dev_priv->psr.enable_source = vlv_psr_enable_source; |
| dev_priv->psr.disable_source = vlv_psr_disable; |
| dev_priv->psr.enable_sink = vlv_psr_enable_sink; |
| dev_priv->psr.activate = vlv_psr_activate; |
| dev_priv->psr.setup_vsc = vlv_psr_setup_vsc; |
| } else { |
| dev_priv->psr.enable_source = hsw_psr_enable_source; |
| dev_priv->psr.disable_source = hsw_psr_disable; |
| dev_priv->psr.enable_sink = hsw_psr_enable_sink; |
| dev_priv->psr.activate = hsw_psr_activate; |
| dev_priv->psr.setup_vsc = hsw_psr_setup_vsc; |
| } |
| } |