| /* |
| * arch/sparc64/mm/init.c |
| * |
| * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) |
| * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/bootmem.h> |
| #include <linux/mm.h> |
| #include <linux/hugetlb.h> |
| #include <linux/initrd.h> |
| #include <linux/swap.h> |
| #include <linux/pagemap.h> |
| #include <linux/poison.h> |
| #include <linux/fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/kprobes.h> |
| #include <linux/cache.h> |
| #include <linux/sort.h> |
| #include <linux/ioport.h> |
| #include <linux/percpu.h> |
| #include <linux/memblock.h> |
| #include <linux/mmzone.h> |
| #include <linux/gfp.h> |
| |
| #include <asm/head.h> |
| #include <asm/page.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pgtable.h> |
| #include <asm/oplib.h> |
| #include <asm/iommu.h> |
| #include <asm/io.h> |
| #include <asm/uaccess.h> |
| #include <asm/mmu_context.h> |
| #include <asm/tlbflush.h> |
| #include <asm/dma.h> |
| #include <asm/starfire.h> |
| #include <asm/tlb.h> |
| #include <asm/spitfire.h> |
| #include <asm/sections.h> |
| #include <asm/tsb.h> |
| #include <asm/hypervisor.h> |
| #include <asm/prom.h> |
| #include <asm/mdesc.h> |
| #include <asm/cpudata.h> |
| #include <asm/setup.h> |
| #include <asm/irq.h> |
| |
| #include "init_64.h" |
| |
| unsigned long kern_linear_pte_xor[4] __read_mostly; |
| static unsigned long page_cache4v_flag; |
| |
| /* A bitmap, two bits for every 256MB of physical memory. These two |
| * bits determine what page size we use for kernel linear |
| * translations. They form an index into kern_linear_pte_xor[]. The |
| * value in the indexed slot is XOR'd with the TLB miss virtual |
| * address to form the resulting TTE. The mapping is: |
| * |
| * 0 ==> 4MB |
| * 1 ==> 256MB |
| * 2 ==> 2GB |
| * 3 ==> 16GB |
| * |
| * All sun4v chips support 256MB pages. Only SPARC-T4 and later |
| * support 2GB pages, and hopefully future cpus will support the 16GB |
| * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there |
| * if these larger page sizes are not supported by the cpu. |
| * |
| * It would be nice to determine this from the machine description |
| * 'cpu' properties, but we need to have this table setup before the |
| * MDESC is initialized. |
| */ |
| |
| #ifndef CONFIG_DEBUG_PAGEALLOC |
| /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings. |
| * Space is allocated for this right after the trap table in |
| * arch/sparc64/kernel/head.S |
| */ |
| extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES]; |
| #endif |
| extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; |
| |
| static unsigned long cpu_pgsz_mask; |
| |
| #define MAX_BANKS 1024 |
| |
| static struct linux_prom64_registers pavail[MAX_BANKS]; |
| static int pavail_ents; |
| |
| u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES]; |
| |
| static int cmp_p64(const void *a, const void *b) |
| { |
| const struct linux_prom64_registers *x = a, *y = b; |
| |
| if (x->phys_addr > y->phys_addr) |
| return 1; |
| if (x->phys_addr < y->phys_addr) |
| return -1; |
| return 0; |
| } |
| |
| static void __init read_obp_memory(const char *property, |
| struct linux_prom64_registers *regs, |
| int *num_ents) |
| { |
| phandle node = prom_finddevice("/memory"); |
| int prop_size = prom_getproplen(node, property); |
| int ents, ret, i; |
| |
| ents = prop_size / sizeof(struct linux_prom64_registers); |
| if (ents > MAX_BANKS) { |
| prom_printf("The machine has more %s property entries than " |
| "this kernel can support (%d).\n", |
| property, MAX_BANKS); |
| prom_halt(); |
| } |
| |
| ret = prom_getproperty(node, property, (char *) regs, prop_size); |
| if (ret == -1) { |
| prom_printf("Couldn't get %s property from /memory.\n", |
| property); |
| prom_halt(); |
| } |
| |
| /* Sanitize what we got from the firmware, by page aligning |
| * everything. |
| */ |
| for (i = 0; i < ents; i++) { |
| unsigned long base, size; |
| |
| base = regs[i].phys_addr; |
| size = regs[i].reg_size; |
| |
| size &= PAGE_MASK; |
| if (base & ~PAGE_MASK) { |
| unsigned long new_base = PAGE_ALIGN(base); |
| |
| size -= new_base - base; |
| if ((long) size < 0L) |
| size = 0UL; |
| base = new_base; |
| } |
| if (size == 0UL) { |
| /* If it is empty, simply get rid of it. |
| * This simplifies the logic of the other |
| * functions that process these arrays. |
| */ |
| memmove(®s[i], ®s[i + 1], |
| (ents - i - 1) * sizeof(regs[0])); |
| i--; |
| ents--; |
| continue; |
| } |
| regs[i].phys_addr = base; |
| regs[i].reg_size = size; |
| } |
| |
| *num_ents = ents; |
| |
| sort(regs, ents, sizeof(struct linux_prom64_registers), |
| cmp_p64, NULL); |
| } |
| |
| /* Kernel physical address base and size in bytes. */ |
| unsigned long kern_base __read_mostly; |
| unsigned long kern_size __read_mostly; |
| |
| /* Initial ramdisk setup */ |
| extern unsigned long sparc_ramdisk_image64; |
| extern unsigned int sparc_ramdisk_image; |
| extern unsigned int sparc_ramdisk_size; |
| |
| struct page *mem_map_zero __read_mostly; |
| EXPORT_SYMBOL(mem_map_zero); |
| |
| unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly; |
| |
| unsigned long sparc64_kern_pri_context __read_mostly; |
| unsigned long sparc64_kern_pri_nuc_bits __read_mostly; |
| unsigned long sparc64_kern_sec_context __read_mostly; |
| |
| int num_kernel_image_mappings; |
| |
| #ifdef CONFIG_DEBUG_DCFLUSH |
| atomic_t dcpage_flushes = ATOMIC_INIT(0); |
| #ifdef CONFIG_SMP |
| atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); |
| #endif |
| #endif |
| |
| inline void flush_dcache_page_impl(struct page *page) |
| { |
| BUG_ON(tlb_type == hypervisor); |
| #ifdef CONFIG_DEBUG_DCFLUSH |
| atomic_inc(&dcpage_flushes); |
| #endif |
| |
| #ifdef DCACHE_ALIASING_POSSIBLE |
| __flush_dcache_page(page_address(page), |
| ((tlb_type == spitfire) && |
| page_mapping(page) != NULL)); |
| #else |
| if (page_mapping(page) != NULL && |
| tlb_type == spitfire) |
| __flush_icache_page(__pa(page_address(page))); |
| #endif |
| } |
| |
| #define PG_dcache_dirty PG_arch_1 |
| #define PG_dcache_cpu_shift 32UL |
| #define PG_dcache_cpu_mask \ |
| ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL) |
| |
| #define dcache_dirty_cpu(page) \ |
| (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask) |
| |
| static inline void set_dcache_dirty(struct page *page, int this_cpu) |
| { |
| unsigned long mask = this_cpu; |
| unsigned long non_cpu_bits; |
| |
| non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift); |
| mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty); |
| |
| __asm__ __volatile__("1:\n\t" |
| "ldx [%2], %%g7\n\t" |
| "and %%g7, %1, %%g1\n\t" |
| "or %%g1, %0, %%g1\n\t" |
| "casx [%2], %%g7, %%g1\n\t" |
| "cmp %%g7, %%g1\n\t" |
| "bne,pn %%xcc, 1b\n\t" |
| " nop" |
| : /* no outputs */ |
| : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags) |
| : "g1", "g7"); |
| } |
| |
| static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu) |
| { |
| unsigned long mask = (1UL << PG_dcache_dirty); |
| |
| __asm__ __volatile__("! test_and_clear_dcache_dirty\n" |
| "1:\n\t" |
| "ldx [%2], %%g7\n\t" |
| "srlx %%g7, %4, %%g1\n\t" |
| "and %%g1, %3, %%g1\n\t" |
| "cmp %%g1, %0\n\t" |
| "bne,pn %%icc, 2f\n\t" |
| " andn %%g7, %1, %%g1\n\t" |
| "casx [%2], %%g7, %%g1\n\t" |
| "cmp %%g7, %%g1\n\t" |
| "bne,pn %%xcc, 1b\n\t" |
| " nop\n" |
| "2:" |
| : /* no outputs */ |
| : "r" (cpu), "r" (mask), "r" (&page->flags), |
| "i" (PG_dcache_cpu_mask), |
| "i" (PG_dcache_cpu_shift) |
| : "g1", "g7"); |
| } |
| |
| static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte) |
| { |
| unsigned long tsb_addr = (unsigned long) ent; |
| |
| if (tlb_type == cheetah_plus || tlb_type == hypervisor) |
| tsb_addr = __pa(tsb_addr); |
| |
| __tsb_insert(tsb_addr, tag, pte); |
| } |
| |
| unsigned long _PAGE_ALL_SZ_BITS __read_mostly; |
| |
| static void flush_dcache(unsigned long pfn) |
| { |
| struct page *page; |
| |
| page = pfn_to_page(pfn); |
| if (page) { |
| unsigned long pg_flags; |
| |
| pg_flags = page->flags; |
| if (pg_flags & (1UL << PG_dcache_dirty)) { |
| int cpu = ((pg_flags >> PG_dcache_cpu_shift) & |
| PG_dcache_cpu_mask); |
| int this_cpu = get_cpu(); |
| |
| /* This is just to optimize away some function calls |
| * in the SMP case. |
| */ |
| if (cpu == this_cpu) |
| flush_dcache_page_impl(page); |
| else |
| smp_flush_dcache_page_impl(page, cpu); |
| |
| clear_dcache_dirty_cpu(page, cpu); |
| |
| put_cpu(); |
| } |
| } |
| } |
| |
| /* mm->context.lock must be held */ |
| static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index, |
| unsigned long tsb_hash_shift, unsigned long address, |
| unsigned long tte) |
| { |
| struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb; |
| unsigned long tag; |
| |
| if (unlikely(!tsb)) |
| return; |
| |
| tsb += ((address >> tsb_hash_shift) & |
| (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL)); |
| tag = (address >> 22UL); |
| tsb_insert(tsb, tag, tte); |
| } |
| |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) |
| static inline bool is_hugetlb_pte(pte_t pte) |
| { |
| if ((tlb_type == hypervisor && |
| (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) || |
| (tlb_type != hypervisor && |
| (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) |
| return true; |
| return false; |
| } |
| #endif |
| |
| void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) |
| { |
| struct mm_struct *mm; |
| unsigned long flags; |
| pte_t pte = *ptep; |
| |
| if (tlb_type != hypervisor) { |
| unsigned long pfn = pte_pfn(pte); |
| |
| if (pfn_valid(pfn)) |
| flush_dcache(pfn); |
| } |
| |
| mm = vma->vm_mm; |
| |
| /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */ |
| if (!pte_accessible(mm, pte)) |
| return; |
| |
| spin_lock_irqsave(&mm->context.lock, flags); |
| |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) |
| if (mm->context.huge_pte_count && is_hugetlb_pte(pte)) |
| __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, |
| address, pte_val(pte)); |
| else |
| #endif |
| __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT, |
| address, pte_val(pte)); |
| |
| spin_unlock_irqrestore(&mm->context.lock, flags); |
| } |
| |
| void flush_dcache_page(struct page *page) |
| { |
| struct address_space *mapping; |
| int this_cpu; |
| |
| if (tlb_type == hypervisor) |
| return; |
| |
| /* Do not bother with the expensive D-cache flush if it |
| * is merely the zero page. The 'bigcore' testcase in GDB |
| * causes this case to run millions of times. |
| */ |
| if (page == ZERO_PAGE(0)) |
| return; |
| |
| this_cpu = get_cpu(); |
| |
| mapping = page_mapping(page); |
| if (mapping && !mapping_mapped(mapping)) { |
| int dirty = test_bit(PG_dcache_dirty, &page->flags); |
| if (dirty) { |
| int dirty_cpu = dcache_dirty_cpu(page); |
| |
| if (dirty_cpu == this_cpu) |
| goto out; |
| smp_flush_dcache_page_impl(page, dirty_cpu); |
| } |
| set_dcache_dirty(page, this_cpu); |
| } else { |
| /* We could delay the flush for the !page_mapping |
| * case too. But that case is for exec env/arg |
| * pages and those are %99 certainly going to get |
| * faulted into the tlb (and thus flushed) anyways. |
| */ |
| flush_dcache_page_impl(page); |
| } |
| |
| out: |
| put_cpu(); |
| } |
| EXPORT_SYMBOL(flush_dcache_page); |
| |
| void __kprobes flush_icache_range(unsigned long start, unsigned long end) |
| { |
| /* Cheetah and Hypervisor platform cpus have coherent I-cache. */ |
| if (tlb_type == spitfire) { |
| unsigned long kaddr; |
| |
| /* This code only runs on Spitfire cpus so this is |
| * why we can assume _PAGE_PADDR_4U. |
| */ |
| for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) { |
| unsigned long paddr, mask = _PAGE_PADDR_4U; |
| |
| if (kaddr >= PAGE_OFFSET) |
| paddr = kaddr & mask; |
| else { |
| pgd_t *pgdp = pgd_offset_k(kaddr); |
| pud_t *pudp = pud_offset(pgdp, kaddr); |
| pmd_t *pmdp = pmd_offset(pudp, kaddr); |
| pte_t *ptep = pte_offset_kernel(pmdp, kaddr); |
| |
| paddr = pte_val(*ptep) & mask; |
| } |
| __flush_icache_page(paddr); |
| } |
| } |
| } |
| EXPORT_SYMBOL(flush_icache_range); |
| |
| void mmu_info(struct seq_file *m) |
| { |
| static const char *pgsz_strings[] = { |
| "8K", "64K", "512K", "4MB", "32MB", |
| "256MB", "2GB", "16GB", |
| }; |
| int i, printed; |
| |
| if (tlb_type == cheetah) |
| seq_printf(m, "MMU Type\t: Cheetah\n"); |
| else if (tlb_type == cheetah_plus) |
| seq_printf(m, "MMU Type\t: Cheetah+\n"); |
| else if (tlb_type == spitfire) |
| seq_printf(m, "MMU Type\t: Spitfire\n"); |
| else if (tlb_type == hypervisor) |
| seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n"); |
| else |
| seq_printf(m, "MMU Type\t: ???\n"); |
| |
| seq_printf(m, "MMU PGSZs\t: "); |
| printed = 0; |
| for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) { |
| if (cpu_pgsz_mask & (1UL << i)) { |
| seq_printf(m, "%s%s", |
| printed ? "," : "", pgsz_strings[i]); |
| printed++; |
| } |
| } |
| seq_putc(m, '\n'); |
| |
| #ifdef CONFIG_DEBUG_DCFLUSH |
| seq_printf(m, "DCPageFlushes\t: %d\n", |
| atomic_read(&dcpage_flushes)); |
| #ifdef CONFIG_SMP |
| seq_printf(m, "DCPageFlushesXC\t: %d\n", |
| atomic_read(&dcpage_flushes_xcall)); |
| #endif /* CONFIG_SMP */ |
| #endif /* CONFIG_DEBUG_DCFLUSH */ |
| } |
| |
| struct linux_prom_translation prom_trans[512] __read_mostly; |
| unsigned int prom_trans_ents __read_mostly; |
| |
| unsigned long kern_locked_tte_data; |
| |
| /* The obp translations are saved based on 8k pagesize, since obp can |
| * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS -> |
| * HI_OBP_ADDRESS range are handled in ktlb.S. |
| */ |
| static inline int in_obp_range(unsigned long vaddr) |
| { |
| return (vaddr >= LOW_OBP_ADDRESS && |
| vaddr < HI_OBP_ADDRESS); |
| } |
| |
| static int cmp_ptrans(const void *a, const void *b) |
| { |
| const struct linux_prom_translation *x = a, *y = b; |
| |
| if (x->virt > y->virt) |
| return 1; |
| if (x->virt < y->virt) |
| return -1; |
| return 0; |
| } |
| |
| /* Read OBP translations property into 'prom_trans[]'. */ |
| static void __init read_obp_translations(void) |
| { |
| int n, node, ents, first, last, i; |
| |
| node = prom_finddevice("/virtual-memory"); |
| n = prom_getproplen(node, "translations"); |
| if (unlikely(n == 0 || n == -1)) { |
| prom_printf("prom_mappings: Couldn't get size.\n"); |
| prom_halt(); |
| } |
| if (unlikely(n > sizeof(prom_trans))) { |
| prom_printf("prom_mappings: Size %d is too big.\n", n); |
| prom_halt(); |
| } |
| |
| if ((n = prom_getproperty(node, "translations", |
| (char *)&prom_trans[0], |
| sizeof(prom_trans))) == -1) { |
| prom_printf("prom_mappings: Couldn't get property.\n"); |
| prom_halt(); |
| } |
| |
| n = n / sizeof(struct linux_prom_translation); |
| |
| ents = n; |
| |
| sort(prom_trans, ents, sizeof(struct linux_prom_translation), |
| cmp_ptrans, NULL); |
| |
| /* Now kick out all the non-OBP entries. */ |
| for (i = 0; i < ents; i++) { |
| if (in_obp_range(prom_trans[i].virt)) |
| break; |
| } |
| first = i; |
| for (; i < ents; i++) { |
| if (!in_obp_range(prom_trans[i].virt)) |
| break; |
| } |
| last = i; |
| |
| for (i = 0; i < (last - first); i++) { |
| struct linux_prom_translation *src = &prom_trans[i + first]; |
| struct linux_prom_translation *dest = &prom_trans[i]; |
| |
| *dest = *src; |
| } |
| for (; i < ents; i++) { |
| struct linux_prom_translation *dest = &prom_trans[i]; |
| dest->virt = dest->size = dest->data = 0x0UL; |
| } |
| |
| prom_trans_ents = last - first; |
| |
| if (tlb_type == spitfire) { |
| /* Clear diag TTE bits. */ |
| for (i = 0; i < prom_trans_ents; i++) |
| prom_trans[i].data &= ~0x0003fe0000000000UL; |
| } |
| |
| /* Force execute bit on. */ |
| for (i = 0; i < prom_trans_ents; i++) |
| prom_trans[i].data |= (tlb_type == hypervisor ? |
| _PAGE_EXEC_4V : _PAGE_EXEC_4U); |
| } |
| |
| static void __init hypervisor_tlb_lock(unsigned long vaddr, |
| unsigned long pte, |
| unsigned long mmu) |
| { |
| unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu); |
| |
| if (ret != 0) { |
| prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: " |
| "errors with %lx\n", vaddr, 0, pte, mmu, ret); |
| prom_halt(); |
| } |
| } |
| |
| static unsigned long kern_large_tte(unsigned long paddr); |
| |
| static void __init remap_kernel(void) |
| { |
| unsigned long phys_page, tte_vaddr, tte_data; |
| int i, tlb_ent = sparc64_highest_locked_tlbent(); |
| |
| tte_vaddr = (unsigned long) KERNBASE; |
| phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; |
| tte_data = kern_large_tte(phys_page); |
| |
| kern_locked_tte_data = tte_data; |
| |
| /* Now lock us into the TLBs via Hypervisor or OBP. */ |
| if (tlb_type == hypervisor) { |
| for (i = 0; i < num_kernel_image_mappings; i++) { |
| hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); |
| hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); |
| tte_vaddr += 0x400000; |
| tte_data += 0x400000; |
| } |
| } else { |
| for (i = 0; i < num_kernel_image_mappings; i++) { |
| prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr); |
| prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr); |
| tte_vaddr += 0x400000; |
| tte_data += 0x400000; |
| } |
| sparc64_highest_unlocked_tlb_ent = tlb_ent - i; |
| } |
| if (tlb_type == cheetah_plus) { |
| sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 | |
| CTX_CHEETAH_PLUS_NUC); |
| sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC; |
| sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0; |
| } |
| } |
| |
| |
| static void __init inherit_prom_mappings(void) |
| { |
| /* Now fixup OBP's idea about where we really are mapped. */ |
| printk("Remapping the kernel... "); |
| remap_kernel(); |
| printk("done.\n"); |
| } |
| |
| void prom_world(int enter) |
| { |
| if (!enter) |
| set_fs(get_fs()); |
| |
| __asm__ __volatile__("flushw"); |
| } |
| |
| void __flush_dcache_range(unsigned long start, unsigned long end) |
| { |
| unsigned long va; |
| |
| if (tlb_type == spitfire) { |
| int n = 0; |
| |
| for (va = start; va < end; va += 32) { |
| spitfire_put_dcache_tag(va & 0x3fe0, 0x0); |
| if (++n >= 512) |
| break; |
| } |
| } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { |
| start = __pa(start); |
| end = __pa(end); |
| for (va = start; va < end; va += 32) |
| __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (va), |
| "i" (ASI_DCACHE_INVALIDATE)); |
| } |
| } |
| EXPORT_SYMBOL(__flush_dcache_range); |
| |
| /* get_new_mmu_context() uses "cache + 1". */ |
| DEFINE_SPINLOCK(ctx_alloc_lock); |
| unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1; |
| #define MAX_CTX_NR (1UL << CTX_NR_BITS) |
| #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR) |
| DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR); |
| |
| /* Caller does TLB context flushing on local CPU if necessary. |
| * The caller also ensures that CTX_VALID(mm->context) is false. |
| * |
| * We must be careful about boundary cases so that we never |
| * let the user have CTX 0 (nucleus) or we ever use a CTX |
| * version of zero (and thus NO_CONTEXT would not be caught |
| * by version mis-match tests in mmu_context.h). |
| * |
| * Always invoked with interrupts disabled. |
| */ |
| void get_new_mmu_context(struct mm_struct *mm) |
| { |
| unsigned long ctx, new_ctx; |
| unsigned long orig_pgsz_bits; |
| int new_version; |
| |
| spin_lock(&ctx_alloc_lock); |
| orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); |
| ctx = (tlb_context_cache + 1) & CTX_NR_MASK; |
| new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); |
| new_version = 0; |
| if (new_ctx >= (1 << CTX_NR_BITS)) { |
| new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); |
| if (new_ctx >= ctx) { |
| int i; |
| new_ctx = (tlb_context_cache & CTX_VERSION_MASK) + |
| CTX_FIRST_VERSION; |
| if (new_ctx == 1) |
| new_ctx = CTX_FIRST_VERSION; |
| |
| /* Don't call memset, for 16 entries that's just |
| * plain silly... |
| */ |
| mmu_context_bmap[0] = 3; |
| mmu_context_bmap[1] = 0; |
| mmu_context_bmap[2] = 0; |
| mmu_context_bmap[3] = 0; |
| for (i = 4; i < CTX_BMAP_SLOTS; i += 4) { |
| mmu_context_bmap[i + 0] = 0; |
| mmu_context_bmap[i + 1] = 0; |
| mmu_context_bmap[i + 2] = 0; |
| mmu_context_bmap[i + 3] = 0; |
| } |
| new_version = 1; |
| goto out; |
| } |
| } |
| mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); |
| new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); |
| out: |
| tlb_context_cache = new_ctx; |
| mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; |
| spin_unlock(&ctx_alloc_lock); |
| |
| if (unlikely(new_version)) |
| smp_new_mmu_context_version(); |
| } |
| |
| static int numa_enabled = 1; |
| static int numa_debug; |
| |
| static int __init early_numa(char *p) |
| { |
| if (!p) |
| return 0; |
| |
| if (strstr(p, "off")) |
| numa_enabled = 0; |
| |
| if (strstr(p, "debug")) |
| numa_debug = 1; |
| |
| return 0; |
| } |
| early_param("numa", early_numa); |
| |
| #define numadbg(f, a...) \ |
| do { if (numa_debug) \ |
| printk(KERN_INFO f, ## a); \ |
| } while (0) |
| |
| static void __init find_ramdisk(unsigned long phys_base) |
| { |
| #ifdef CONFIG_BLK_DEV_INITRD |
| if (sparc_ramdisk_image || sparc_ramdisk_image64) { |
| unsigned long ramdisk_image; |
| |
| /* Older versions of the bootloader only supported a |
| * 32-bit physical address for the ramdisk image |
| * location, stored at sparc_ramdisk_image. Newer |
| * SILO versions set sparc_ramdisk_image to zero and |
| * provide a full 64-bit physical address at |
| * sparc_ramdisk_image64. |
| */ |
| ramdisk_image = sparc_ramdisk_image; |
| if (!ramdisk_image) |
| ramdisk_image = sparc_ramdisk_image64; |
| |
| /* Another bootloader quirk. The bootloader normalizes |
| * the physical address to KERNBASE, so we have to |
| * factor that back out and add in the lowest valid |
| * physical page address to get the true physical address. |
| */ |
| ramdisk_image -= KERNBASE; |
| ramdisk_image += phys_base; |
| |
| numadbg("Found ramdisk at physical address 0x%lx, size %u\n", |
| ramdisk_image, sparc_ramdisk_size); |
| |
| initrd_start = ramdisk_image; |
| initrd_end = ramdisk_image + sparc_ramdisk_size; |
| |
| memblock_reserve(initrd_start, sparc_ramdisk_size); |
| |
| initrd_start += PAGE_OFFSET; |
| initrd_end += PAGE_OFFSET; |
| } |
| #endif |
| } |
| |
| struct node_mem_mask { |
| unsigned long mask; |
| unsigned long val; |
| }; |
| static struct node_mem_mask node_masks[MAX_NUMNODES]; |
| static int num_node_masks; |
| |
| #ifdef CONFIG_NEED_MULTIPLE_NODES |
| |
| int numa_cpu_lookup_table[NR_CPUS]; |
| cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; |
| |
| struct mdesc_mblock { |
| u64 base; |
| u64 size; |
| u64 offset; /* RA-to-PA */ |
| }; |
| static struct mdesc_mblock *mblocks; |
| static int num_mblocks; |
| |
| static unsigned long ra_to_pa(unsigned long addr) |
| { |
| int i; |
| |
| for (i = 0; i < num_mblocks; i++) { |
| struct mdesc_mblock *m = &mblocks[i]; |
| |
| if (addr >= m->base && |
| addr < (m->base + m->size)) { |
| addr += m->offset; |
| break; |
| } |
| } |
| return addr; |
| } |
| |
| static int find_node(unsigned long addr) |
| { |
| int i; |
| |
| addr = ra_to_pa(addr); |
| for (i = 0; i < num_node_masks; i++) { |
| struct node_mem_mask *p = &node_masks[i]; |
| |
| if ((addr & p->mask) == p->val) |
| return i; |
| } |
| /* The following condition has been observed on LDOM guests.*/ |
| WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node" |
| " rule. Some physical memory will be owned by node 0."); |
| return 0; |
| } |
| |
| static u64 memblock_nid_range(u64 start, u64 end, int *nid) |
| { |
| *nid = find_node(start); |
| start += PAGE_SIZE; |
| while (start < end) { |
| int n = find_node(start); |
| |
| if (n != *nid) |
| break; |
| start += PAGE_SIZE; |
| } |
| |
| if (start > end) |
| start = end; |
| |
| return start; |
| } |
| #endif |
| |
| /* This must be invoked after performing all of the necessary |
| * memblock_set_node() calls for 'nid'. We need to be able to get |
| * correct data from get_pfn_range_for_nid(). |
| */ |
| static void __init allocate_node_data(int nid) |
| { |
| struct pglist_data *p; |
| unsigned long start_pfn, end_pfn; |
| #ifdef CONFIG_NEED_MULTIPLE_NODES |
| unsigned long paddr; |
| |
| paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid); |
| if (!paddr) { |
| prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid); |
| prom_halt(); |
| } |
| NODE_DATA(nid) = __va(paddr); |
| memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); |
| |
| NODE_DATA(nid)->node_id = nid; |
| #endif |
| |
| p = NODE_DATA(nid); |
| |
| get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); |
| p->node_start_pfn = start_pfn; |
| p->node_spanned_pages = end_pfn - start_pfn; |
| } |
| |
| static void init_node_masks_nonnuma(void) |
| { |
| #ifdef CONFIG_NEED_MULTIPLE_NODES |
| int i; |
| #endif |
| |
| numadbg("Initializing tables for non-numa.\n"); |
| |
| node_masks[0].mask = node_masks[0].val = 0; |
| num_node_masks = 1; |
| |
| #ifdef CONFIG_NEED_MULTIPLE_NODES |
| for (i = 0; i < NR_CPUS; i++) |
| numa_cpu_lookup_table[i] = 0; |
| |
| cpumask_setall(&numa_cpumask_lookup_table[0]); |
| #endif |
| } |
| |
| #ifdef CONFIG_NEED_MULTIPLE_NODES |
| struct pglist_data *node_data[MAX_NUMNODES]; |
| |
| EXPORT_SYMBOL(numa_cpu_lookup_table); |
| EXPORT_SYMBOL(numa_cpumask_lookup_table); |
| EXPORT_SYMBOL(node_data); |
| |
| struct mdesc_mlgroup { |
| u64 node; |
| u64 latency; |
| u64 match; |
| u64 mask; |
| }; |
| static struct mdesc_mlgroup *mlgroups; |
| static int num_mlgroups; |
| |
| static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio, |
| u32 cfg_handle) |
| { |
| u64 arc; |
| |
| mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) { |
| u64 target = mdesc_arc_target(md, arc); |
| const u64 *val; |
| |
| val = mdesc_get_property(md, target, |
| "cfg-handle", NULL); |
| if (val && *val == cfg_handle) |
| return 0; |
| } |
| return -ENODEV; |
| } |
| |
| static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp, |
| u32 cfg_handle) |
| { |
| u64 arc, candidate, best_latency = ~(u64)0; |
| |
| candidate = MDESC_NODE_NULL; |
| mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { |
| u64 target = mdesc_arc_target(md, arc); |
| const char *name = mdesc_node_name(md, target); |
| const u64 *val; |
| |
| if (strcmp(name, "pio-latency-group")) |
| continue; |
| |
| val = mdesc_get_property(md, target, "latency", NULL); |
| if (!val) |
| continue; |
| |
| if (*val < best_latency) { |
| candidate = target; |
| best_latency = *val; |
| } |
| } |
| |
| if (candidate == MDESC_NODE_NULL) |
| return -ENODEV; |
| |
| return scan_pio_for_cfg_handle(md, candidate, cfg_handle); |
| } |
| |
| int of_node_to_nid(struct device_node *dp) |
| { |
| const struct linux_prom64_registers *regs; |
| struct mdesc_handle *md; |
| u32 cfg_handle; |
| int count, nid; |
| u64 grp; |
| |
| /* This is the right thing to do on currently supported |
| * SUN4U NUMA platforms as well, as the PCI controller does |
| * not sit behind any particular memory controller. |
| */ |
| if (!mlgroups) |
| return -1; |
| |
| regs = of_get_property(dp, "reg", NULL); |
| if (!regs) |
| return -1; |
| |
| cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff; |
| |
| md = mdesc_grab(); |
| |
| count = 0; |
| nid = -1; |
| mdesc_for_each_node_by_name(md, grp, "group") { |
| if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) { |
| nid = count; |
| break; |
| } |
| count++; |
| } |
| |
| mdesc_release(md); |
| |
| return nid; |
| } |
| |
| static void __init add_node_ranges(void) |
| { |
| struct memblock_region *reg; |
| |
| for_each_memblock(memory, reg) { |
| unsigned long size = reg->size; |
| unsigned long start, end; |
| |
| start = reg->base; |
| end = start + size; |
| while (start < end) { |
| unsigned long this_end; |
| int nid; |
| |
| this_end = memblock_nid_range(start, end, &nid); |
| |
| numadbg("Setting memblock NUMA node nid[%d] " |
| "start[%lx] end[%lx]\n", |
| nid, start, this_end); |
| |
| memblock_set_node(start, this_end - start, |
| &memblock.memory, nid); |
| start = this_end; |
| } |
| } |
| } |
| |
| static int __init grab_mlgroups(struct mdesc_handle *md) |
| { |
| unsigned long paddr; |
| int count = 0; |
| u64 node; |
| |
| mdesc_for_each_node_by_name(md, node, "memory-latency-group") |
| count++; |
| if (!count) |
| return -ENOENT; |
| |
| paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup), |
| SMP_CACHE_BYTES); |
| if (!paddr) |
| return -ENOMEM; |
| |
| mlgroups = __va(paddr); |
| num_mlgroups = count; |
| |
| count = 0; |
| mdesc_for_each_node_by_name(md, node, "memory-latency-group") { |
| struct mdesc_mlgroup *m = &mlgroups[count++]; |
| const u64 *val; |
| |
| m->node = node; |
| |
| val = mdesc_get_property(md, node, "latency", NULL); |
| m->latency = *val; |
| val = mdesc_get_property(md, node, "address-match", NULL); |
| m->match = *val; |
| val = mdesc_get_property(md, node, "address-mask", NULL); |
| m->mask = *val; |
| |
| numadbg("MLGROUP[%d]: node[%llx] latency[%llx] " |
| "match[%llx] mask[%llx]\n", |
| count - 1, m->node, m->latency, m->match, m->mask); |
| } |
| |
| return 0; |
| } |
| |
| static int __init grab_mblocks(struct mdesc_handle *md) |
| { |
| unsigned long paddr; |
| int count = 0; |
| u64 node; |
| |
| mdesc_for_each_node_by_name(md, node, "mblock") |
| count++; |
| if (!count) |
| return -ENOENT; |
| |
| paddr = memblock_alloc(count * sizeof(struct mdesc_mblock), |
| SMP_CACHE_BYTES); |
| if (!paddr) |
| return -ENOMEM; |
| |
| mblocks = __va(paddr); |
| num_mblocks = count; |
| |
| count = 0; |
| mdesc_for_each_node_by_name(md, node, "mblock") { |
| struct mdesc_mblock *m = &mblocks[count++]; |
| const u64 *val; |
| |
| val = mdesc_get_property(md, node, "base", NULL); |
| m->base = *val; |
| val = mdesc_get_property(md, node, "size", NULL); |
| m->size = *val; |
| val = mdesc_get_property(md, node, |
| "address-congruence-offset", NULL); |
| |
| /* The address-congruence-offset property is optional. |
| * Explicity zero it be identifty this. |
| */ |
| if (val) |
| m->offset = *val; |
| else |
| m->offset = 0UL; |
| |
| numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n", |
| count - 1, m->base, m->size, m->offset); |
| } |
| |
| return 0; |
| } |
| |
| static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md, |
| u64 grp, cpumask_t *mask) |
| { |
| u64 arc; |
| |
| cpumask_clear(mask); |
| |
| mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) { |
| u64 target = mdesc_arc_target(md, arc); |
| const char *name = mdesc_node_name(md, target); |
| const u64 *id; |
| |
| if (strcmp(name, "cpu")) |
| continue; |
| id = mdesc_get_property(md, target, "id", NULL); |
| if (*id < nr_cpu_ids) |
| cpumask_set_cpu(*id, mask); |
| } |
| } |
| |
| static struct mdesc_mlgroup * __init find_mlgroup(u64 node) |
| { |
| int i; |
| |
| for (i = 0; i < num_mlgroups; i++) { |
| struct mdesc_mlgroup *m = &mlgroups[i]; |
| if (m->node == node) |
| return m; |
| } |
| return NULL; |
| } |
| |
| int __node_distance(int from, int to) |
| { |
| if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) { |
| pr_warn("Returning default NUMA distance value for %d->%d\n", |
| from, to); |
| return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE; |
| } |
| return numa_latency[from][to]; |
| } |
| |
| static int find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp) |
| { |
| int i; |
| |
| for (i = 0; i < MAX_NUMNODES; i++) { |
| struct node_mem_mask *n = &node_masks[i]; |
| |
| if ((grp->mask == n->mask) && (grp->match == n->val)) |
| break; |
| } |
| return i; |
| } |
| |
| static void find_numa_latencies_for_group(struct mdesc_handle *md, u64 grp, |
| int index) |
| { |
| u64 arc; |
| |
| mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { |
| int tnode; |
| u64 target = mdesc_arc_target(md, arc); |
| struct mdesc_mlgroup *m = find_mlgroup(target); |
| |
| if (!m) |
| continue; |
| tnode = find_best_numa_node_for_mlgroup(m); |
| if (tnode == MAX_NUMNODES) |
| continue; |
| numa_latency[index][tnode] = m->latency; |
| } |
| } |
| |
| static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp, |
| int index) |
| { |
| struct mdesc_mlgroup *candidate = NULL; |
| u64 arc, best_latency = ~(u64)0; |
| struct node_mem_mask *n; |
| |
| mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { |
| u64 target = mdesc_arc_target(md, arc); |
| struct mdesc_mlgroup *m = find_mlgroup(target); |
| if (!m) |
| continue; |
| if (m->latency < best_latency) { |
| candidate = m; |
| best_latency = m->latency; |
| } |
| } |
| if (!candidate) |
| return -ENOENT; |
| |
| if (num_node_masks != index) { |
| printk(KERN_ERR "Inconsistent NUMA state, " |
| "index[%d] != num_node_masks[%d]\n", |
| index, num_node_masks); |
| return -EINVAL; |
| } |
| |
| n = &node_masks[num_node_masks++]; |
| |
| n->mask = candidate->mask; |
| n->val = candidate->match; |
| |
| numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n", |
| index, n->mask, n->val, candidate->latency); |
| |
| return 0; |
| } |
| |
| static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp, |
| int index) |
| { |
| cpumask_t mask; |
| int cpu; |
| |
| numa_parse_mdesc_group_cpus(md, grp, &mask); |
| |
| for_each_cpu(cpu, &mask) |
| numa_cpu_lookup_table[cpu] = index; |
| cpumask_copy(&numa_cpumask_lookup_table[index], &mask); |
| |
| if (numa_debug) { |
| printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index); |
| for_each_cpu(cpu, &mask) |
| printk("%d ", cpu); |
| printk("]\n"); |
| } |
| |
| return numa_attach_mlgroup(md, grp, index); |
| } |
| |
| static int __init numa_parse_mdesc(void) |
| { |
| struct mdesc_handle *md = mdesc_grab(); |
| int i, j, err, count; |
| u64 node; |
| |
| node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups"); |
| if (node == MDESC_NODE_NULL) { |
| mdesc_release(md); |
| return -ENOENT; |
| } |
| |
| err = grab_mblocks(md); |
| if (err < 0) |
| goto out; |
| |
| err = grab_mlgroups(md); |
| if (err < 0) |
| goto out; |
| |
| count = 0; |
| mdesc_for_each_node_by_name(md, node, "group") { |
| err = numa_parse_mdesc_group(md, node, count); |
| if (err < 0) |
| break; |
| count++; |
| } |
| |
| count = 0; |
| mdesc_for_each_node_by_name(md, node, "group") { |
| find_numa_latencies_for_group(md, node, count); |
| count++; |
| } |
| |
| /* Normalize numa latency matrix according to ACPI SLIT spec. */ |
| for (i = 0; i < MAX_NUMNODES; i++) { |
| u64 self_latency = numa_latency[i][i]; |
| |
| for (j = 0; j < MAX_NUMNODES; j++) { |
| numa_latency[i][j] = |
| (numa_latency[i][j] * LOCAL_DISTANCE) / |
| self_latency; |
| } |
| } |
| |
| add_node_ranges(); |
| |
| for (i = 0; i < num_node_masks; i++) { |
| allocate_node_data(i); |
| node_set_online(i); |
| } |
| |
| err = 0; |
| out: |
| mdesc_release(md); |
| return err; |
| } |
| |
| static int __init numa_parse_jbus(void) |
| { |
| unsigned long cpu, index; |
| |
| /* NUMA node id is encoded in bits 36 and higher, and there is |
| * a 1-to-1 mapping from CPU ID to NUMA node ID. |
| */ |
| index = 0; |
| for_each_present_cpu(cpu) { |
| numa_cpu_lookup_table[cpu] = index; |
| cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu)); |
| node_masks[index].mask = ~((1UL << 36UL) - 1UL); |
| node_masks[index].val = cpu << 36UL; |
| |
| index++; |
| } |
| num_node_masks = index; |
| |
| add_node_ranges(); |
| |
| for (index = 0; index < num_node_masks; index++) { |
| allocate_node_data(index); |
| node_set_online(index); |
| } |
| |
| return 0; |
| } |
| |
| static int __init numa_parse_sun4u(void) |
| { |
| if (tlb_type == cheetah || tlb_type == cheetah_plus) { |
| unsigned long ver; |
| |
| __asm__ ("rdpr %%ver, %0" : "=r" (ver)); |
| if ((ver >> 32UL) == __JALAPENO_ID || |
| (ver >> 32UL) == __SERRANO_ID) |
| return numa_parse_jbus(); |
| } |
| return -1; |
| } |
| |
| static int __init bootmem_init_numa(void) |
| { |
| int i, j; |
| int err = -1; |
| |
| numadbg("bootmem_init_numa()\n"); |
| |
| /* Some sane defaults for numa latency values */ |
| for (i = 0; i < MAX_NUMNODES; i++) { |
| for (j = 0; j < MAX_NUMNODES; j++) |
| numa_latency[i][j] = (i == j) ? |
| LOCAL_DISTANCE : REMOTE_DISTANCE; |
| } |
| |
| if (numa_enabled) { |
| if (tlb_type == hypervisor) |
| err = numa_parse_mdesc(); |
| else |
| err = numa_parse_sun4u(); |
| } |
| return err; |
| } |
| |
| #else |
| |
| static int bootmem_init_numa(void) |
| { |
| return -1; |
| } |
| |
| #endif |
| |
| static void __init bootmem_init_nonnuma(void) |
| { |
| unsigned long top_of_ram = memblock_end_of_DRAM(); |
| unsigned long total_ram = memblock_phys_mem_size(); |
| |
| numadbg("bootmem_init_nonnuma()\n"); |
| |
| printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", |
| top_of_ram, total_ram); |
| printk(KERN_INFO "Memory hole size: %ldMB\n", |
| (top_of_ram - total_ram) >> 20); |
| |
| init_node_masks_nonnuma(); |
| memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0); |
| allocate_node_data(0); |
| node_set_online(0); |
| } |
| |
| static unsigned long __init bootmem_init(unsigned long phys_base) |
| { |
| unsigned long end_pfn; |
| |
| end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; |
| max_pfn = max_low_pfn = end_pfn; |
| min_low_pfn = (phys_base >> PAGE_SHIFT); |
| |
| if (bootmem_init_numa() < 0) |
| bootmem_init_nonnuma(); |
| |
| /* Dump memblock with node info. */ |
| memblock_dump_all(); |
| |
| /* XXX cpu notifier XXX */ |
| |
| sparse_memory_present_with_active_regions(MAX_NUMNODES); |
| sparse_init(); |
| |
| return end_pfn; |
| } |
| |
| static struct linux_prom64_registers pall[MAX_BANKS] __initdata; |
| static int pall_ents __initdata; |
| |
| static unsigned long max_phys_bits = 40; |
| |
| bool kern_addr_valid(unsigned long addr) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| if ((long)addr < 0L) { |
| unsigned long pa = __pa(addr); |
| |
| if ((addr >> max_phys_bits) != 0UL) |
| return false; |
| |
| return pfn_valid(pa >> PAGE_SHIFT); |
| } |
| |
| if (addr >= (unsigned long) KERNBASE && |
| addr < (unsigned long)&_end) |
| return true; |
| |
| pgd = pgd_offset_k(addr); |
| if (pgd_none(*pgd)) |
| return 0; |
| |
| pud = pud_offset(pgd, addr); |
| if (pud_none(*pud)) |
| return 0; |
| |
| if (pud_large(*pud)) |
| return pfn_valid(pud_pfn(*pud)); |
| |
| pmd = pmd_offset(pud, addr); |
| if (pmd_none(*pmd)) |
| return 0; |
| |
| if (pmd_large(*pmd)) |
| return pfn_valid(pmd_pfn(*pmd)); |
| |
| pte = pte_offset_kernel(pmd, addr); |
| if (pte_none(*pte)) |
| return 0; |
| |
| return pfn_valid(pte_pfn(*pte)); |
| } |
| EXPORT_SYMBOL(kern_addr_valid); |
| |
| static unsigned long __ref kernel_map_hugepud(unsigned long vstart, |
| unsigned long vend, |
| pud_t *pud) |
| { |
| const unsigned long mask16gb = (1UL << 34) - 1UL; |
| u64 pte_val = vstart; |
| |
| /* Each PUD is 8GB */ |
| if ((vstart & mask16gb) || |
| (vend - vstart <= mask16gb)) { |
| pte_val ^= kern_linear_pte_xor[2]; |
| pud_val(*pud) = pte_val | _PAGE_PUD_HUGE; |
| |
| return vstart + PUD_SIZE; |
| } |
| |
| pte_val ^= kern_linear_pte_xor[3]; |
| pte_val |= _PAGE_PUD_HUGE; |
| |
| vend = vstart + mask16gb + 1UL; |
| while (vstart < vend) { |
| pud_val(*pud) = pte_val; |
| |
| pte_val += PUD_SIZE; |
| vstart += PUD_SIZE; |
| pud++; |
| } |
| return vstart; |
| } |
| |
| static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend, |
| bool guard) |
| { |
| if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE) |
| return true; |
| |
| return false; |
| } |
| |
| static unsigned long __ref kernel_map_hugepmd(unsigned long vstart, |
| unsigned long vend, |
| pmd_t *pmd) |
| { |
| const unsigned long mask256mb = (1UL << 28) - 1UL; |
| const unsigned long mask2gb = (1UL << 31) - 1UL; |
| u64 pte_val = vstart; |
| |
| /* Each PMD is 8MB */ |
| if ((vstart & mask256mb) || |
| (vend - vstart <= mask256mb)) { |
| pte_val ^= kern_linear_pte_xor[0]; |
| pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE; |
| |
| return vstart + PMD_SIZE; |
| } |
| |
| if ((vstart & mask2gb) || |
| (vend - vstart <= mask2gb)) { |
| pte_val ^= kern_linear_pte_xor[1]; |
| pte_val |= _PAGE_PMD_HUGE; |
| vend = vstart + mask256mb + 1UL; |
| } else { |
| pte_val ^= kern_linear_pte_xor[2]; |
| pte_val |= _PAGE_PMD_HUGE; |
| vend = vstart + mask2gb + 1UL; |
| } |
| |
| while (vstart < vend) { |
| pmd_val(*pmd) = pte_val; |
| |
| pte_val += PMD_SIZE; |
| vstart += PMD_SIZE; |
| pmd++; |
| } |
| |
| return vstart; |
| } |
| |
| static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend, |
| bool guard) |
| { |
| if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE) |
| return true; |
| |
| return false; |
| } |
| |
| static unsigned long __ref kernel_map_range(unsigned long pstart, |
| unsigned long pend, pgprot_t prot, |
| bool use_huge) |
| { |
| unsigned long vstart = PAGE_OFFSET + pstart; |
| unsigned long vend = PAGE_OFFSET + pend; |
| unsigned long alloc_bytes = 0UL; |
| |
| if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) { |
| prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n", |
| vstart, vend); |
| prom_halt(); |
| } |
| |
| while (vstart < vend) { |
| unsigned long this_end, paddr = __pa(vstart); |
| pgd_t *pgd = pgd_offset_k(vstart); |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| if (pgd_none(*pgd)) { |
| pud_t *new; |
| |
| new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); |
| alloc_bytes += PAGE_SIZE; |
| pgd_populate(&init_mm, pgd, new); |
| } |
| pud = pud_offset(pgd, vstart); |
| if (pud_none(*pud)) { |
| pmd_t *new; |
| |
| if (kernel_can_map_hugepud(vstart, vend, use_huge)) { |
| vstart = kernel_map_hugepud(vstart, vend, pud); |
| continue; |
| } |
| new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); |
| alloc_bytes += PAGE_SIZE; |
| pud_populate(&init_mm, pud, new); |
| } |
| |
| pmd = pmd_offset(pud, vstart); |
| if (pmd_none(*pmd)) { |
| pte_t *new; |
| |
| if (kernel_can_map_hugepmd(vstart, vend, use_huge)) { |
| vstart = kernel_map_hugepmd(vstart, vend, pmd); |
| continue; |
| } |
| new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); |
| alloc_bytes += PAGE_SIZE; |
| pmd_populate_kernel(&init_mm, pmd, new); |
| } |
| |
| pte = pte_offset_kernel(pmd, vstart); |
| this_end = (vstart + PMD_SIZE) & PMD_MASK; |
| if (this_end > vend) |
| this_end = vend; |
| |
| while (vstart < this_end) { |
| pte_val(*pte) = (paddr | pgprot_val(prot)); |
| |
| vstart += PAGE_SIZE; |
| paddr += PAGE_SIZE; |
| pte++; |
| } |
| } |
| |
| return alloc_bytes; |
| } |
| |
| static void __init flush_all_kernel_tsbs(void) |
| { |
| int i; |
| |
| for (i = 0; i < KERNEL_TSB_NENTRIES; i++) { |
| struct tsb *ent = &swapper_tsb[i]; |
| |
| ent->tag = (1UL << TSB_TAG_INVALID_BIT); |
| } |
| #ifndef CONFIG_DEBUG_PAGEALLOC |
| for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) { |
| struct tsb *ent = &swapper_4m_tsb[i]; |
| |
| ent->tag = (1UL << TSB_TAG_INVALID_BIT); |
| } |
| #endif |
| } |
| |
| extern unsigned int kvmap_linear_patch[1]; |
| |
| static void __init kernel_physical_mapping_init(void) |
| { |
| unsigned long i, mem_alloced = 0UL; |
| bool use_huge = true; |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| use_huge = false; |
| #endif |
| for (i = 0; i < pall_ents; i++) { |
| unsigned long phys_start, phys_end; |
| |
| phys_start = pall[i].phys_addr; |
| phys_end = phys_start + pall[i].reg_size; |
| |
| mem_alloced += kernel_map_range(phys_start, phys_end, |
| PAGE_KERNEL, use_huge); |
| } |
| |
| printk("Allocated %ld bytes for kernel page tables.\n", |
| mem_alloced); |
| |
| kvmap_linear_patch[0] = 0x01000000; /* nop */ |
| flushi(&kvmap_linear_patch[0]); |
| |
| flush_all_kernel_tsbs(); |
| |
| __flush_tlb_all(); |
| } |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| void __kernel_map_pages(struct page *page, int numpages, int enable) |
| { |
| unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT; |
| unsigned long phys_end = phys_start + (numpages * PAGE_SIZE); |
| |
| kernel_map_range(phys_start, phys_end, |
| (enable ? PAGE_KERNEL : __pgprot(0)), false); |
| |
| flush_tsb_kernel_range(PAGE_OFFSET + phys_start, |
| PAGE_OFFSET + phys_end); |
| |
| /* we should perform an IPI and flush all tlbs, |
| * but that can deadlock->flush only current cpu. |
| */ |
| __flush_tlb_kernel_range(PAGE_OFFSET + phys_start, |
| PAGE_OFFSET + phys_end); |
| } |
| #endif |
| |
| unsigned long __init find_ecache_flush_span(unsigned long size) |
| { |
| int i; |
| |
| for (i = 0; i < pavail_ents; i++) { |
| if (pavail[i].reg_size >= size) |
| return pavail[i].phys_addr; |
| } |
| |
| return ~0UL; |
| } |
| |
| unsigned long PAGE_OFFSET; |
| EXPORT_SYMBOL(PAGE_OFFSET); |
| |
| unsigned long VMALLOC_END = 0x0000010000000000UL; |
| EXPORT_SYMBOL(VMALLOC_END); |
| |
| unsigned long sparc64_va_hole_top = 0xfffff80000000000UL; |
| unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL; |
| |
| static void __init setup_page_offset(void) |
| { |
| if (tlb_type == cheetah || tlb_type == cheetah_plus) { |
| /* Cheetah/Panther support a full 64-bit virtual |
| * address, so we can use all that our page tables |
| * support. |
| */ |
| sparc64_va_hole_top = 0xfff0000000000000UL; |
| sparc64_va_hole_bottom = 0x0010000000000000UL; |
| |
| max_phys_bits = 42; |
| } else if (tlb_type == hypervisor) { |
| switch (sun4v_chip_type) { |
| case SUN4V_CHIP_NIAGARA1: |
| case SUN4V_CHIP_NIAGARA2: |
| /* T1 and T2 support 48-bit virtual addresses. */ |
| sparc64_va_hole_top = 0xffff800000000000UL; |
| sparc64_va_hole_bottom = 0x0000800000000000UL; |
| |
| max_phys_bits = 39; |
| break; |
| case SUN4V_CHIP_NIAGARA3: |
| /* T3 supports 48-bit virtual addresses. */ |
| sparc64_va_hole_top = 0xffff800000000000UL; |
| sparc64_va_hole_bottom = 0x0000800000000000UL; |
| |
| max_phys_bits = 43; |
| break; |
| case SUN4V_CHIP_NIAGARA4: |
| case SUN4V_CHIP_NIAGARA5: |
| case SUN4V_CHIP_SPARC64X: |
| case SUN4V_CHIP_SPARC_M6: |
| /* T4 and later support 52-bit virtual addresses. */ |
| sparc64_va_hole_top = 0xfff8000000000000UL; |
| sparc64_va_hole_bottom = 0x0008000000000000UL; |
| max_phys_bits = 47; |
| break; |
| case SUN4V_CHIP_SPARC_M7: |
| case SUN4V_CHIP_SPARC_SN: |
| default: |
| /* M7 and later support 52-bit virtual addresses. */ |
| sparc64_va_hole_top = 0xfff8000000000000UL; |
| sparc64_va_hole_bottom = 0x0008000000000000UL; |
| max_phys_bits = 49; |
| break; |
| } |
| } |
| |
| if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) { |
| prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n", |
| max_phys_bits); |
| prom_halt(); |
| } |
| |
| PAGE_OFFSET = sparc64_va_hole_top; |
| VMALLOC_END = ((sparc64_va_hole_bottom >> 1) + |
| (sparc64_va_hole_bottom >> 2)); |
| |
| pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n", |
| PAGE_OFFSET, max_phys_bits); |
| pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n", |
| VMALLOC_START, VMALLOC_END); |
| pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n", |
| VMEMMAP_BASE, VMEMMAP_BASE << 1); |
| } |
| |
| static void __init tsb_phys_patch(void) |
| { |
| struct tsb_ldquad_phys_patch_entry *pquad; |
| struct tsb_phys_patch_entry *p; |
| |
| pquad = &__tsb_ldquad_phys_patch; |
| while (pquad < &__tsb_ldquad_phys_patch_end) { |
| unsigned long addr = pquad->addr; |
| |
| if (tlb_type == hypervisor) |
| *(unsigned int *) addr = pquad->sun4v_insn; |
| else |
| *(unsigned int *) addr = pquad->sun4u_insn; |
| wmb(); |
| __asm__ __volatile__("flush %0" |
| : /* no outputs */ |
| : "r" (addr)); |
| |
| pquad++; |
| } |
| |
| p = &__tsb_phys_patch; |
| while (p < &__tsb_phys_patch_end) { |
| unsigned long addr = p->addr; |
| |
| *(unsigned int *) addr = p->insn; |
| wmb(); |
| __asm__ __volatile__("flush %0" |
| : /* no outputs */ |
| : "r" (addr)); |
| |
| p++; |
| } |
| } |
| |
| /* Don't mark as init, we give this to the Hypervisor. */ |
| #ifndef CONFIG_DEBUG_PAGEALLOC |
| #define NUM_KTSB_DESCR 2 |
| #else |
| #define NUM_KTSB_DESCR 1 |
| #endif |
| static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR]; |
| |
| /* The swapper TSBs are loaded with a base sequence of: |
| * |
| * sethi %uhi(SYMBOL), REG1 |
| * sethi %hi(SYMBOL), REG2 |
| * or REG1, %ulo(SYMBOL), REG1 |
| * or REG2, %lo(SYMBOL), REG2 |
| * sllx REG1, 32, REG1 |
| * or REG1, REG2, REG1 |
| * |
| * When we use physical addressing for the TSB accesses, we patch the |
| * first four instructions in the above sequence. |
| */ |
| |
| static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa) |
| { |
| unsigned long high_bits, low_bits; |
| |
| high_bits = (pa >> 32) & 0xffffffff; |
| low_bits = (pa >> 0) & 0xffffffff; |
| |
| while (start < end) { |
| unsigned int *ia = (unsigned int *)(unsigned long)*start; |
| |
| ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10); |
| __asm__ __volatile__("flush %0" : : "r" (ia)); |
| |
| ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10); |
| __asm__ __volatile__("flush %0" : : "r" (ia + 1)); |
| |
| ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff); |
| __asm__ __volatile__("flush %0" : : "r" (ia + 2)); |
| |
| ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff); |
| __asm__ __volatile__("flush %0" : : "r" (ia + 3)); |
| |
| start++; |
| } |
| } |
| |
| static void ktsb_phys_patch(void) |
| { |
| extern unsigned int __swapper_tsb_phys_patch; |
| extern unsigned int __swapper_tsb_phys_patch_end; |
| unsigned long ktsb_pa; |
| |
| ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); |
| patch_one_ktsb_phys(&__swapper_tsb_phys_patch, |
| &__swapper_tsb_phys_patch_end, ktsb_pa); |
| #ifndef CONFIG_DEBUG_PAGEALLOC |
| { |
| extern unsigned int __swapper_4m_tsb_phys_patch; |
| extern unsigned int __swapper_4m_tsb_phys_patch_end; |
| ktsb_pa = (kern_base + |
| ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); |
| patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch, |
| &__swapper_4m_tsb_phys_patch_end, ktsb_pa); |
| } |
| #endif |
| } |
| |
| static void __init sun4v_ktsb_init(void) |
| { |
| unsigned long ktsb_pa; |
| |
| /* First KTSB for PAGE_SIZE mappings. */ |
| ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); |
| |
| switch (PAGE_SIZE) { |
| case 8 * 1024: |
| default: |
| ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K; |
| ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K; |
| break; |
| |
| case 64 * 1024: |
| ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K; |
| ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K; |
| break; |
| |
| case 512 * 1024: |
| ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K; |
| ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K; |
| break; |
| |
| case 4 * 1024 * 1024: |
| ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB; |
| ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB; |
| break; |
| } |
| |
| ktsb_descr[0].assoc = 1; |
| ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES; |
| ktsb_descr[0].ctx_idx = 0; |
| ktsb_descr[0].tsb_base = ktsb_pa; |
| ktsb_descr[0].resv = 0; |
| |
| #ifndef CONFIG_DEBUG_PAGEALLOC |
| /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */ |
| ktsb_pa = (kern_base + |
| ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); |
| |
| ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB; |
| ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB | |
| HV_PGSZ_MASK_256MB | |
| HV_PGSZ_MASK_2GB | |
| HV_PGSZ_MASK_16GB) & |
| cpu_pgsz_mask); |
| ktsb_descr[1].assoc = 1; |
| ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES; |
| ktsb_descr[1].ctx_idx = 0; |
| ktsb_descr[1].tsb_base = ktsb_pa; |
| ktsb_descr[1].resv = 0; |
| #endif |
| } |
| |
| void sun4v_ktsb_register(void) |
| { |
| unsigned long pa, ret; |
| |
| pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE); |
| |
| ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa); |
| if (ret != 0) { |
| prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: " |
| "errors with %lx\n", pa, ret); |
| prom_halt(); |
| } |
| } |
| |
| static void __init sun4u_linear_pte_xor_finalize(void) |
| { |
| #ifndef CONFIG_DEBUG_PAGEALLOC |
| /* This is where we would add Panther support for |
| * 32MB and 256MB pages. |
| */ |
| #endif |
| } |
| |
| static void __init sun4v_linear_pte_xor_finalize(void) |
| { |
| unsigned long pagecv_flag; |
| |
| /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead |
| * enables MCD error. Do not set bit 9 on M7 processor. |
| */ |
| switch (sun4v_chip_type) { |
| case SUN4V_CHIP_SPARC_M7: |
| case SUN4V_CHIP_SPARC_SN: |
| pagecv_flag = 0x00; |
| break; |
| default: |
| pagecv_flag = _PAGE_CV_4V; |
| break; |
| } |
| #ifndef CONFIG_DEBUG_PAGEALLOC |
| if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) { |
| kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^ |
| PAGE_OFFSET; |
| kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag | |
| _PAGE_P_4V | _PAGE_W_4V); |
| } else { |
| kern_linear_pte_xor[1] = kern_linear_pte_xor[0]; |
| } |
| |
| if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) { |
| kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^ |
| PAGE_OFFSET; |
| kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag | |
| _PAGE_P_4V | _PAGE_W_4V); |
| } else { |
| kern_linear_pte_xor[2] = kern_linear_pte_xor[1]; |
| } |
| |
| if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) { |
| kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^ |
| PAGE_OFFSET; |
| kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag | |
| _PAGE_P_4V | _PAGE_W_4V); |
| } else { |
| kern_linear_pte_xor[3] = kern_linear_pte_xor[2]; |
| } |
| #endif |
| } |
| |
| /* paging_init() sets up the page tables */ |
| |
| static unsigned long last_valid_pfn; |
| |
| static void sun4u_pgprot_init(void); |
| static void sun4v_pgprot_init(void); |
| |
| static phys_addr_t __init available_memory(void) |
| { |
| phys_addr_t available = 0ULL; |
| phys_addr_t pa_start, pa_end; |
| u64 i; |
| |
| for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start, |
| &pa_end, NULL) |
| available = available + (pa_end - pa_start); |
| |
| return available; |
| } |
| |
| #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U) |
| #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V) |
| #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U) |
| #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V) |
| #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R) |
| #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R) |
| |
| /* We need to exclude reserved regions. This exclusion will include |
| * vmlinux and initrd. To be more precise the initrd size could be used to |
| * compute a new lower limit because it is freed later during initialization. |
| */ |
| static void __init reduce_memory(phys_addr_t limit_ram) |
| { |
| phys_addr_t avail_ram = available_memory(); |
| phys_addr_t pa_start, pa_end; |
| u64 i; |
| |
| if (limit_ram >= avail_ram) |
| return; |
| |
| for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start, |
| &pa_end, NULL) { |
| phys_addr_t region_size = pa_end - pa_start; |
| phys_addr_t clip_start = pa_start; |
| |
| avail_ram = avail_ram - region_size; |
| /* Are we consuming too much? */ |
| if (avail_ram < limit_ram) { |
| phys_addr_t give_back = limit_ram - avail_ram; |
| |
| region_size = region_size - give_back; |
| clip_start = clip_start + give_back; |
| } |
| |
| memblock_remove(clip_start, region_size); |
| |
| if (avail_ram <= limit_ram) |
| break; |
| i = 0UL; |
| } |
| } |
| |
| void __init paging_init(void) |
| { |
| unsigned long end_pfn, shift, phys_base; |
| unsigned long real_end, i; |
| int node; |
| |
| setup_page_offset(); |
| |
| /* These build time checkes make sure that the dcache_dirty_cpu() |
| * page->flags usage will work. |
| * |
| * When a page gets marked as dcache-dirty, we store the |
| * cpu number starting at bit 32 in the page->flags. Also, |
| * functions like clear_dcache_dirty_cpu use the cpu mask |
| * in 13-bit signed-immediate instruction fields. |
| */ |
| |
| /* |
| * Page flags must not reach into upper 32 bits that are used |
| * for the cpu number |
| */ |
| BUILD_BUG_ON(NR_PAGEFLAGS > 32); |
| |
| /* |
| * The bit fields placed in the high range must not reach below |
| * the 32 bit boundary. Otherwise we cannot place the cpu field |
| * at the 32 bit boundary. |
| */ |
| BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH + |
| ilog2(roundup_pow_of_two(NR_CPUS)) > 32); |
| |
| BUILD_BUG_ON(NR_CPUS > 4096); |
| |
| kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; |
| kern_size = (unsigned long)&_end - (unsigned long)KERNBASE; |
| |
| /* Invalidate both kernel TSBs. */ |
| memset(swapper_tsb, 0x40, sizeof(swapper_tsb)); |
| #ifndef CONFIG_DEBUG_PAGEALLOC |
| memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); |
| #endif |
| |
| /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde |
| * bit on M7 processor. This is a conflicting usage of the same |
| * bit. Enabling TTE.cv on M7 would turn on Memory Corruption |
| * Detection error on all pages and this will lead to problems |
| * later. Kernel does not run with MCD enabled and hence rest |
| * of the required steps to fully configure memory corruption |
| * detection are not taken. We need to ensure TTE.mcde is not |
| * set on M7 processor. Compute the value of cacheability |
| * flag for use later taking this into consideration. |
| */ |
| switch (sun4v_chip_type) { |
| case SUN4V_CHIP_SPARC_M7: |
| case SUN4V_CHIP_SPARC_SN: |
| page_cache4v_flag = _PAGE_CP_4V; |
| break; |
| default: |
| page_cache4v_flag = _PAGE_CACHE_4V; |
| break; |
| } |
| |
| if (tlb_type == hypervisor) |
| sun4v_pgprot_init(); |
| else |
| sun4u_pgprot_init(); |
| |
| if (tlb_type == cheetah_plus || |
| tlb_type == hypervisor) { |
| tsb_phys_patch(); |
| ktsb_phys_patch(); |
| } |
| |
| if (tlb_type == hypervisor) |
| sun4v_patch_tlb_handlers(); |
| |
| /* Find available physical memory... |
| * |
| * Read it twice in order to work around a bug in openfirmware. |
| * The call to grab this table itself can cause openfirmware to |
| * allocate memory, which in turn can take away some space from |
| * the list of available memory. Reading it twice makes sure |
| * we really do get the final value. |
| */ |
| read_obp_translations(); |
| read_obp_memory("reg", &pall[0], &pall_ents); |
| read_obp_memory("available", &pavail[0], &pavail_ents); |
| read_obp_memory("available", &pavail[0], &pavail_ents); |
| |
| phys_base = 0xffffffffffffffffUL; |
| for (i = 0; i < pavail_ents; i++) { |
| phys_base = min(phys_base, pavail[i].phys_addr); |
| memblock_add(pavail[i].phys_addr, pavail[i].reg_size); |
| } |
| |
| memblock_reserve(kern_base, kern_size); |
| |
| find_ramdisk(phys_base); |
| |
| if (cmdline_memory_size) |
| reduce_memory(cmdline_memory_size); |
| |
| memblock_allow_resize(); |
| memblock_dump_all(); |
| |
| set_bit(0, mmu_context_bmap); |
| |
| shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE); |
| |
| real_end = (unsigned long)_end; |
| num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB); |
| printk("Kernel: Using %d locked TLB entries for main kernel image.\n", |
| num_kernel_image_mappings); |
| |
| /* Set kernel pgd to upper alias so physical page computations |
| * work. |
| */ |
| init_mm.pgd += ((shift) / (sizeof(pgd_t))); |
| |
| memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir)); |
| |
| inherit_prom_mappings(); |
| |
| /* Ok, we can use our TLB miss and window trap handlers safely. */ |
| setup_tba(); |
| |
| __flush_tlb_all(); |
| |
| prom_build_devicetree(); |
| of_populate_present_mask(); |
| #ifndef CONFIG_SMP |
| of_fill_in_cpu_data(); |
| #endif |
| |
| if (tlb_type == hypervisor) { |
| sun4v_mdesc_init(); |
| mdesc_populate_present_mask(cpu_all_mask); |
| #ifndef CONFIG_SMP |
| mdesc_fill_in_cpu_data(cpu_all_mask); |
| #endif |
| mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask); |
| |
| sun4v_linear_pte_xor_finalize(); |
| |
| sun4v_ktsb_init(); |
| sun4v_ktsb_register(); |
| } else { |
| unsigned long impl, ver; |
| |
| cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K | |
| HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB); |
| |
| __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver)); |
| impl = ((ver >> 32) & 0xffff); |
| if (impl == PANTHER_IMPL) |
| cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB | |
| HV_PGSZ_MASK_256MB); |
| |
| sun4u_linear_pte_xor_finalize(); |
| } |
| |
| /* Flush the TLBs and the 4M TSB so that the updated linear |
| * pte XOR settings are realized for all mappings. |
| */ |
| __flush_tlb_all(); |
| #ifndef CONFIG_DEBUG_PAGEALLOC |
| memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); |
| #endif |
| __flush_tlb_all(); |
| |
| /* Setup bootmem... */ |
| last_valid_pfn = end_pfn = bootmem_init(phys_base); |
| |
| /* Once the OF device tree and MDESC have been setup, we know |
| * the list of possible cpus. Therefore we can allocate the |
| * IRQ stacks. |
| */ |
| for_each_possible_cpu(i) { |
| node = cpu_to_node(i); |
| |
| softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node), |
| THREAD_SIZE, |
| THREAD_SIZE, 0); |
| hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node), |
| THREAD_SIZE, |
| THREAD_SIZE, 0); |
| } |
| |
| kernel_physical_mapping_init(); |
| |
| { |
| unsigned long max_zone_pfns[MAX_NR_ZONES]; |
| |
| memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); |
| |
| max_zone_pfns[ZONE_NORMAL] = end_pfn; |
| |
| free_area_init_nodes(max_zone_pfns); |
| } |
| |
| printk("Booting Linux...\n"); |
| } |
| |
| int page_in_phys_avail(unsigned long paddr) |
| { |
| int i; |
| |
| paddr &= PAGE_MASK; |
| |
| for (i = 0; i < pavail_ents; i++) { |
| unsigned long start, end; |
| |
| start = pavail[i].phys_addr; |
| end = start + pavail[i].reg_size; |
| |
| if (paddr >= start && paddr < end) |
| return 1; |
| } |
| if (paddr >= kern_base && paddr < (kern_base + kern_size)) |
| return 1; |
| #ifdef CONFIG_BLK_DEV_INITRD |
| if (paddr >= __pa(initrd_start) && |
| paddr < __pa(PAGE_ALIGN(initrd_end))) |
| return 1; |
| #endif |
| |
| return 0; |
| } |
| |
| static void __init register_page_bootmem_info(void) |
| { |
| #ifdef CONFIG_NEED_MULTIPLE_NODES |
| int i; |
| |
| for_each_online_node(i) |
| if (NODE_DATA(i)->node_spanned_pages) |
| register_page_bootmem_info_node(NODE_DATA(i)); |
| #endif |
| } |
| void __init mem_init(void) |
| { |
| high_memory = __va(last_valid_pfn << PAGE_SHIFT); |
| |
| register_page_bootmem_info(); |
| free_all_bootmem(); |
| |
| /* |
| * Set up the zero page, mark it reserved, so that page count |
| * is not manipulated when freeing the page from user ptes. |
| */ |
| mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0); |
| if (mem_map_zero == NULL) { |
| prom_printf("paging_init: Cannot alloc zero page.\n"); |
| prom_halt(); |
| } |
| mark_page_reserved(mem_map_zero); |
| |
| mem_init_print_info(NULL); |
| |
| if (tlb_type == cheetah || tlb_type == cheetah_plus) |
| cheetah_ecache_flush_init(); |
| } |
| |
| void free_initmem(void) |
| { |
| unsigned long addr, initend; |
| int do_free = 1; |
| |
| /* If the physical memory maps were trimmed by kernel command |
| * line options, don't even try freeing this initmem stuff up. |
| * The kernel image could have been in the trimmed out region |
| * and if so the freeing below will free invalid page structs. |
| */ |
| if (cmdline_memory_size) |
| do_free = 0; |
| |
| /* |
| * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. |
| */ |
| addr = PAGE_ALIGN((unsigned long)(__init_begin)); |
| initend = (unsigned long)(__init_end) & PAGE_MASK; |
| for (; addr < initend; addr += PAGE_SIZE) { |
| unsigned long page; |
| |
| page = (addr + |
| ((unsigned long) __va(kern_base)) - |
| ((unsigned long) KERNBASE)); |
| memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); |
| |
| if (do_free) |
| free_reserved_page(virt_to_page(page)); |
| } |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| void free_initrd_mem(unsigned long start, unsigned long end) |
| { |
| free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM, |
| "initrd"); |
| } |
| #endif |
| |
| pgprot_t PAGE_KERNEL __read_mostly; |
| EXPORT_SYMBOL(PAGE_KERNEL); |
| |
| pgprot_t PAGE_KERNEL_LOCKED __read_mostly; |
| pgprot_t PAGE_COPY __read_mostly; |
| |
| pgprot_t PAGE_SHARED __read_mostly; |
| EXPORT_SYMBOL(PAGE_SHARED); |
| |
| unsigned long pg_iobits __read_mostly; |
| |
| unsigned long _PAGE_IE __read_mostly; |
| EXPORT_SYMBOL(_PAGE_IE); |
| |
| unsigned long _PAGE_E __read_mostly; |
| EXPORT_SYMBOL(_PAGE_E); |
| |
| unsigned long _PAGE_CACHE __read_mostly; |
| EXPORT_SYMBOL(_PAGE_CACHE); |
| |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend, |
| int node) |
| { |
| unsigned long pte_base; |
| |
| pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U | |
| _PAGE_CP_4U | _PAGE_CV_4U | |
| _PAGE_P_4U | _PAGE_W_4U); |
| if (tlb_type == hypervisor) |
| pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V | |
| page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V); |
| |
| pte_base |= _PAGE_PMD_HUGE; |
| |
| vstart = vstart & PMD_MASK; |
| vend = ALIGN(vend, PMD_SIZE); |
| for (; vstart < vend; vstart += PMD_SIZE) { |
| pgd_t *pgd = pgd_offset_k(vstart); |
| unsigned long pte; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| if (pgd_none(*pgd)) { |
| pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node); |
| |
| if (!new) |
| return -ENOMEM; |
| pgd_populate(&init_mm, pgd, new); |
| } |
| |
| pud = pud_offset(pgd, vstart); |
| if (pud_none(*pud)) { |
| pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node); |
| |
| if (!new) |
| return -ENOMEM; |
| pud_populate(&init_mm, pud, new); |
| } |
| |
| pmd = pmd_offset(pud, vstart); |
| |
| pte = pmd_val(*pmd); |
| if (!(pte & _PAGE_VALID)) { |
| void *block = vmemmap_alloc_block(PMD_SIZE, node); |
| |
| if (!block) |
| return -ENOMEM; |
| |
| pmd_val(*pmd) = pte_base | __pa(block); |
| } |
| } |
| |
| return 0; |
| } |
| |
| void vmemmap_free(unsigned long start, unsigned long end) |
| { |
| } |
| #endif /* CONFIG_SPARSEMEM_VMEMMAP */ |
| |
| static void prot_init_common(unsigned long page_none, |
| unsigned long page_shared, |
| unsigned long page_copy, |
| unsigned long page_readonly, |
| unsigned long page_exec_bit) |
| { |
| PAGE_COPY = __pgprot(page_copy); |
| PAGE_SHARED = __pgprot(page_shared); |
| |
| protection_map[0x0] = __pgprot(page_none); |
| protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit); |
| protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit); |
| protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit); |
| protection_map[0x4] = __pgprot(page_readonly); |
| protection_map[0x5] = __pgprot(page_readonly); |
| protection_map[0x6] = __pgprot(page_copy); |
| protection_map[0x7] = __pgprot(page_copy); |
| protection_map[0x8] = __pgprot(page_none); |
| protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit); |
| protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit); |
| protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit); |
| protection_map[0xc] = __pgprot(page_readonly); |
| protection_map[0xd] = __pgprot(page_readonly); |
| protection_map[0xe] = __pgprot(page_shared); |
| protection_map[0xf] = __pgprot(page_shared); |
| } |
| |
| static void __init sun4u_pgprot_init(void) |
| { |
| unsigned long page_none, page_shared, page_copy, page_readonly; |
| unsigned long page_exec_bit; |
| int i; |
| |
| PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | |
| _PAGE_CACHE_4U | _PAGE_P_4U | |
| __ACCESS_BITS_4U | __DIRTY_BITS_4U | |
| _PAGE_EXEC_4U); |
| PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | |
| _PAGE_CACHE_4U | _PAGE_P_4U | |
| __ACCESS_BITS_4U | __DIRTY_BITS_4U | |
| _PAGE_EXEC_4U | _PAGE_L_4U); |
| |
| _PAGE_IE = _PAGE_IE_4U; |
| _PAGE_E = _PAGE_E_4U; |
| _PAGE_CACHE = _PAGE_CACHE_4U; |
| |
| pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U | |
| __ACCESS_BITS_4U | _PAGE_E_4U); |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; |
| #else |
| kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^ |
| PAGE_OFFSET; |
| #endif |
| kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U | |
| _PAGE_P_4U | _PAGE_W_4U); |
| |
| for (i = 1; i < 4; i++) |
| kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; |
| |
| _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U | |
| _PAGE_SZ64K_4U | _PAGE_SZ8K_4U | |
| _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U); |
| |
| |
| page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U; |
| page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | |
| __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U); |
| page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | |
| __ACCESS_BITS_4U | _PAGE_EXEC_4U); |
| page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | |
| __ACCESS_BITS_4U | _PAGE_EXEC_4U); |
| |
| page_exec_bit = _PAGE_EXEC_4U; |
| |
| prot_init_common(page_none, page_shared, page_copy, page_readonly, |
| page_exec_bit); |
| } |
| |
| static void __init sun4v_pgprot_init(void) |
| { |
| unsigned long page_none, page_shared, page_copy, page_readonly; |
| unsigned long page_exec_bit; |
| int i; |
| |
| PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID | |
| page_cache4v_flag | _PAGE_P_4V | |
| __ACCESS_BITS_4V | __DIRTY_BITS_4V | |
| _PAGE_EXEC_4V); |
| PAGE_KERNEL_LOCKED = PAGE_KERNEL; |
| |
| _PAGE_IE = _PAGE_IE_4V; |
| _PAGE_E = _PAGE_E_4V; |
| _PAGE_CACHE = page_cache4v_flag; |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; |
| #else |
| kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^ |
| PAGE_OFFSET; |
| #endif |
| kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V | |
| _PAGE_W_4V); |
| |
| for (i = 1; i < 4; i++) |
| kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; |
| |
| pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V | |
| __ACCESS_BITS_4V | _PAGE_E_4V); |
| |
| _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V | |
| _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V | |
| _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V | |
| _PAGE_SZ64K_4V | _PAGE_SZ8K_4V); |
| |
| page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag; |
| page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | |
| __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V); |
| page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | |
| __ACCESS_BITS_4V | _PAGE_EXEC_4V); |
| page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | |
| __ACCESS_BITS_4V | _PAGE_EXEC_4V); |
| |
| page_exec_bit = _PAGE_EXEC_4V; |
| |
| prot_init_common(page_none, page_shared, page_copy, page_readonly, |
| page_exec_bit); |
| } |
| |
| unsigned long pte_sz_bits(unsigned long sz) |
| { |
| if (tlb_type == hypervisor) { |
| switch (sz) { |
| case 8 * 1024: |
| default: |
| return _PAGE_SZ8K_4V; |
| case 64 * 1024: |
| return _PAGE_SZ64K_4V; |
| case 512 * 1024: |
| return _PAGE_SZ512K_4V; |
| case 4 * 1024 * 1024: |
| return _PAGE_SZ4MB_4V; |
| } |
| } else { |
| switch (sz) { |
| case 8 * 1024: |
| default: |
| return _PAGE_SZ8K_4U; |
| case 64 * 1024: |
| return _PAGE_SZ64K_4U; |
| case 512 * 1024: |
| return _PAGE_SZ512K_4U; |
| case 4 * 1024 * 1024: |
| return _PAGE_SZ4MB_4U; |
| } |
| } |
| } |
| |
| pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size) |
| { |
| pte_t pte; |
| |
| pte_val(pte) = page | pgprot_val(pgprot_noncached(prot)); |
| pte_val(pte) |= (((unsigned long)space) << 32); |
| pte_val(pte) |= pte_sz_bits(page_size); |
| |
| return pte; |
| } |
| |
| static unsigned long kern_large_tte(unsigned long paddr) |
| { |
| unsigned long val; |
| |
| val = (_PAGE_VALID | _PAGE_SZ4MB_4U | |
| _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | |
| _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U); |
| if (tlb_type == hypervisor) |
| val = (_PAGE_VALID | _PAGE_SZ4MB_4V | |
| page_cache4v_flag | _PAGE_P_4V | |
| _PAGE_EXEC_4V | _PAGE_W_4V); |
| |
| return val | paddr; |
| } |
| |
| /* If not locked, zap it. */ |
| void __flush_tlb_all(void) |
| { |
| unsigned long pstate; |
| int i; |
| |
| __asm__ __volatile__("flushw\n\t" |
| "rdpr %%pstate, %0\n\t" |
| "wrpr %0, %1, %%pstate" |
| : "=r" (pstate) |
| : "i" (PSTATE_IE)); |
| if (tlb_type == hypervisor) { |
| sun4v_mmu_demap_all(); |
| } else if (tlb_type == spitfire) { |
| for (i = 0; i < 64; i++) { |
| /* Spitfire Errata #32 workaround */ |
| /* NOTE: Always runs on spitfire, so no |
| * cheetah+ page size encodings. |
| */ |
| __asm__ __volatile__("stxa %0, [%1] %2\n\t" |
| "flush %%g6" |
| : /* No outputs */ |
| : "r" (0), |
| "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); |
| |
| if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) { |
| __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); |
| spitfire_put_dtlb_data(i, 0x0UL); |
| } |
| |
| /* Spitfire Errata #32 workaround */ |
| /* NOTE: Always runs on spitfire, so no |
| * cheetah+ page size encodings. |
| */ |
| __asm__ __volatile__("stxa %0, [%1] %2\n\t" |
| "flush %%g6" |
| : /* No outputs */ |
| : "r" (0), |
| "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); |
| |
| if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) { |
| __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" |
| "membar #Sync" |
| : /* no outputs */ |
| : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); |
| spitfire_put_itlb_data(i, 0x0UL); |
| } |
| } |
| } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { |
| cheetah_flush_dtlb_all(); |
| cheetah_flush_itlb_all(); |
| } |
| __asm__ __volatile__("wrpr %0, 0, %%pstate" |
| : : "r" (pstate)); |
| } |
| |
| pte_t *pte_alloc_one_kernel(struct mm_struct *mm, |
| unsigned long address) |
| { |
| struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | |
| __GFP_REPEAT | __GFP_ZERO); |
| pte_t *pte = NULL; |
| |
| if (page) |
| pte = (pte_t *) page_address(page); |
| |
| return pte; |
| } |
| |
| pgtable_t pte_alloc_one(struct mm_struct *mm, |
| unsigned long address) |
| { |
| struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | |
| __GFP_REPEAT | __GFP_ZERO); |
| if (!page) |
| return NULL; |
| if (!pgtable_page_ctor(page)) { |
| free_hot_cold_page(page, 0); |
| return NULL; |
| } |
| return (pte_t *) page_address(page); |
| } |
| |
| void pte_free_kernel(struct mm_struct *mm, pte_t *pte) |
| { |
| free_page((unsigned long)pte); |
| } |
| |
| static void __pte_free(pgtable_t pte) |
| { |
| struct page *page = virt_to_page(pte); |
| |
| pgtable_page_dtor(page); |
| __free_page(page); |
| } |
| |
| void pte_free(struct mm_struct *mm, pgtable_t pte) |
| { |
| __pte_free(pte); |
| } |
| |
| void pgtable_free(void *table, bool is_page) |
| { |
| if (is_page) |
| __pte_free(table); |
| else |
| kmem_cache_free(pgtable_cache, table); |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, |
| pmd_t *pmd) |
| { |
| unsigned long pte, flags; |
| struct mm_struct *mm; |
| pmd_t entry = *pmd; |
| |
| if (!pmd_large(entry) || !pmd_young(entry)) |
| return; |
| |
| pte = pmd_val(entry); |
| |
| /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */ |
| if (!(pte & _PAGE_VALID)) |
| return; |
| |
| /* We are fabricating 8MB pages using 4MB real hw pages. */ |
| pte |= (addr & (1UL << REAL_HPAGE_SHIFT)); |
| |
| mm = vma->vm_mm; |
| |
| spin_lock_irqsave(&mm->context.lock, flags); |
| |
| if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) |
| __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, |
| addr, pte); |
| |
| spin_unlock_irqrestore(&mm->context.lock, flags); |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
| |
| #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) |
| static void context_reload(void *__data) |
| { |
| struct mm_struct *mm = __data; |
| |
| if (mm == current->mm) |
| load_secondary_context(mm); |
| } |
| |
| void hugetlb_setup(struct pt_regs *regs) |
| { |
| struct mm_struct *mm = current->mm; |
| struct tsb_config *tp; |
| |
| if (faulthandler_disabled() || !mm) { |
| const struct exception_table_entry *entry; |
| |
| entry = search_exception_tables(regs->tpc); |
| if (entry) { |
| regs->tpc = entry->fixup; |
| regs->tnpc = regs->tpc + 4; |
| return; |
| } |
| pr_alert("Unexpected HugeTLB setup in atomic context.\n"); |
| die_if_kernel("HugeTSB in atomic", regs); |
| } |
| |
| tp = &mm->context.tsb_block[MM_TSB_HUGE]; |
| if (likely(tp->tsb == NULL)) |
| tsb_grow(mm, MM_TSB_HUGE, 0); |
| |
| tsb_context_switch(mm); |
| smp_tsb_sync(mm); |
| |
| /* On UltraSPARC-III+ and later, configure the second half of |
| * the Data-TLB for huge pages. |
| */ |
| if (tlb_type == cheetah_plus) { |
| unsigned long ctx; |
| |
| spin_lock(&ctx_alloc_lock); |
| ctx = mm->context.sparc64_ctx_val; |
| ctx &= ~CTX_PGSZ_MASK; |
| ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT; |
| ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT; |
| |
| if (ctx != mm->context.sparc64_ctx_val) { |
| /* When changing the page size fields, we |
| * must perform a context flush so that no |
| * stale entries match. This flush must |
| * occur with the original context register |
| * settings. |
| */ |
| do_flush_tlb_mm(mm); |
| |
| /* Reload the context register of all processors |
| * also executing in this address space. |
| */ |
| mm->context.sparc64_ctx_val = ctx; |
| on_each_cpu(context_reload, mm, 0); |
| } |
| spin_unlock(&ctx_alloc_lock); |
| } |
| } |
| #endif |
| |
| static struct resource code_resource = { |
| .name = "Kernel code", |
| .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM |
| }; |
| |
| static struct resource data_resource = { |
| .name = "Kernel data", |
| .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM |
| }; |
| |
| static struct resource bss_resource = { |
| .name = "Kernel bss", |
| .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM |
| }; |
| |
| static inline resource_size_t compute_kern_paddr(void *addr) |
| { |
| return (resource_size_t) (addr - KERNBASE + kern_base); |
| } |
| |
| static void __init kernel_lds_init(void) |
| { |
| code_resource.start = compute_kern_paddr(_text); |
| code_resource.end = compute_kern_paddr(_etext - 1); |
| data_resource.start = compute_kern_paddr(_etext); |
| data_resource.end = compute_kern_paddr(_edata - 1); |
| bss_resource.start = compute_kern_paddr(__bss_start); |
| bss_resource.end = compute_kern_paddr(_end - 1); |
| } |
| |
| static int __init report_memory(void) |
| { |
| int i; |
| struct resource *res; |
| |
| kernel_lds_init(); |
| |
| for (i = 0; i < pavail_ents; i++) { |
| res = kzalloc(sizeof(struct resource), GFP_KERNEL); |
| |
| if (!res) { |
| pr_warn("Failed to allocate source.\n"); |
| break; |
| } |
| |
| res->name = "System RAM"; |
| res->start = pavail[i].phys_addr; |
| res->end = pavail[i].phys_addr + pavail[i].reg_size - 1; |
| res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; |
| |
| if (insert_resource(&iomem_resource, res) < 0) { |
| pr_warn("Resource insertion failed.\n"); |
| break; |
| } |
| |
| insert_resource(res, &code_resource); |
| insert_resource(res, &data_resource); |
| insert_resource(res, &bss_resource); |
| } |
| |
| return 0; |
| } |
| arch_initcall(report_memory); |
| |
| #ifdef CONFIG_SMP |
| #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range |
| #else |
| #define do_flush_tlb_kernel_range __flush_tlb_kernel_range |
| #endif |
| |
| void flush_tlb_kernel_range(unsigned long start, unsigned long end) |
| { |
| if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) { |
| if (start < LOW_OBP_ADDRESS) { |
| flush_tsb_kernel_range(start, LOW_OBP_ADDRESS); |
| do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS); |
| } |
| if (end > HI_OBP_ADDRESS) { |
| flush_tsb_kernel_range(HI_OBP_ADDRESS, end); |
| do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end); |
| } |
| } else { |
| flush_tsb_kernel_range(start, end); |
| do_flush_tlb_kernel_range(start, end); |
| } |
| } |