blob: 25fc3841a2b1c3dbf67a7ac32f8adc43da60a790 [file] [log] [blame]
/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/seq_file.h>
#include <linux/circ_buf.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/list_sort.h>
#include <asm/msr-index.h>
#include <drm/drmP.h>
#include "intel_drv.h"
#include "intel_ringbuffer.h"
#include <drm/i915_drm.h>
#include "i915_drv.h"
#if defined(CONFIG_DEBUG_FS)
enum {
ACTIVE_LIST,
INACTIVE_LIST,
PINNED_LIST,
};
static const char *yesno(int v)
{
return v ? "yes" : "no";
}
/* As the drm_debugfs_init() routines are called before dev->dev_private is
* allocated we need to hook into the minor for release. */
static int
drm_add_fake_info_node(struct drm_minor *minor,
struct dentry *ent,
const void *key)
{
struct drm_info_node *node;
node = kmalloc(sizeof(*node), GFP_KERNEL);
if (node == NULL) {
debugfs_remove(ent);
return -ENOMEM;
}
node->minor = minor;
node->dent = ent;
node->info_ent = (void *) key;
mutex_lock(&minor->debugfs_lock);
list_add(&node->list, &minor->debugfs_list);
mutex_unlock(&minor->debugfs_lock);
return 0;
}
static int i915_capabilities(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
const struct intel_device_info *info = INTEL_INFO(dev);
seq_printf(m, "gen: %d\n", info->gen);
seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
#define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
#define SEP_SEMICOLON ;
DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
#undef PRINT_FLAG
#undef SEP_SEMICOLON
return 0;
}
static const char *get_pin_flag(struct drm_i915_gem_object *obj)
{
if (obj->user_pin_count > 0)
return "P";
else if (obj->pin_count > 0)
return "p";
else
return " ";
}
static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
{
switch (obj->tiling_mode) {
default:
case I915_TILING_NONE: return " ";
case I915_TILING_X: return "X";
case I915_TILING_Y: return "Y";
}
}
static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
{
return obj->has_global_gtt_mapping ? "g" : " ";
}
static void
describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
{
struct i915_vma *vma;
seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
&obj->base,
get_pin_flag(obj),
get_tiling_flag(obj),
get_global_flag(obj),
obj->base.size / 1024,
obj->base.read_domains,
obj->base.write_domain,
obj->last_read_seqno,
obj->last_write_seqno,
obj->last_fenced_seqno,
i915_cache_level_str(obj->cache_level),
obj->dirty ? " dirty" : "",
obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
if (obj->base.name)
seq_printf(m, " (name: %d)", obj->base.name);
if (obj->pin_count)
seq_printf(m, " (pinned x %d)", obj->pin_count);
if (obj->pin_display)
seq_printf(m, " (display)");
if (obj->fence_reg != I915_FENCE_REG_NONE)
seq_printf(m, " (fence: %d)", obj->fence_reg);
list_for_each_entry(vma, &obj->vma_list, vma_link) {
if (!i915_is_ggtt(vma->vm))
seq_puts(m, " (pp");
else
seq_puts(m, " (g");
seq_printf(m, "gtt offset: %08lx, size: %08lx)",
vma->node.start, vma->node.size);
}
if (obj->stolen)
seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
if (obj->pin_mappable || obj->fault_mappable) {
char s[3], *t = s;
if (obj->pin_mappable)
*t++ = 'p';
if (obj->fault_mappable)
*t++ = 'f';
*t = '\0';
seq_printf(m, " (%s mappable)", s);
}
if (obj->ring != NULL)
seq_printf(m, " (%s)", obj->ring->name);
}
static void describe_ctx(struct seq_file *m, struct i915_hw_context *ctx)
{
seq_putc(m, ctx->is_initialized ? 'I' : 'i');
seq_putc(m, ctx->remap_slice ? 'R' : 'r');
seq_putc(m, ' ');
}
static int i915_gem_object_list_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
uintptr_t list = (uintptr_t) node->info_ent->data;
struct list_head *head;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_address_space *vm = &dev_priv->gtt.base;
struct i915_vma *vma;
size_t total_obj_size, total_gtt_size;
int count, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
/* FIXME: the user of this interface might want more than just GGTT */
switch (list) {
case ACTIVE_LIST:
seq_puts(m, "Active:\n");
head = &vm->active_list;
break;
case INACTIVE_LIST:
seq_puts(m, "Inactive:\n");
head = &vm->inactive_list;
break;
default:
mutex_unlock(&dev->struct_mutex);
return -EINVAL;
}
total_obj_size = total_gtt_size = count = 0;
list_for_each_entry(vma, head, mm_list) {
seq_printf(m, " ");
describe_obj(m, vma->obj);
seq_printf(m, "\n");
total_obj_size += vma->obj->base.size;
total_gtt_size += vma->node.size;
count++;
}
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
count, total_obj_size, total_gtt_size);
return 0;
}
static int obj_rank_by_stolen(void *priv,
struct list_head *A, struct list_head *B)
{
struct drm_i915_gem_object *a =
container_of(A, struct drm_i915_gem_object, obj_exec_link);
struct drm_i915_gem_object *b =
container_of(B, struct drm_i915_gem_object, obj_exec_link);
return a->stolen->start - b->stolen->start;
}
static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
size_t total_obj_size, total_gtt_size;
LIST_HEAD(stolen);
int count, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
total_obj_size = total_gtt_size = count = 0;
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
if (obj->stolen == NULL)
continue;
list_add(&obj->obj_exec_link, &stolen);
total_obj_size += obj->base.size;
total_gtt_size += i915_gem_obj_ggtt_size(obj);
count++;
}
list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
if (obj->stolen == NULL)
continue;
list_add(&obj->obj_exec_link, &stolen);
total_obj_size += obj->base.size;
count++;
}
list_sort(NULL, &stolen, obj_rank_by_stolen);
seq_puts(m, "Stolen:\n");
while (!list_empty(&stolen)) {
obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
seq_puts(m, " ");
describe_obj(m, obj);
seq_putc(m, '\n');
list_del_init(&obj->obj_exec_link);
}
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
count, total_obj_size, total_gtt_size);
return 0;
}
#define count_objects(list, member) do { \
list_for_each_entry(obj, list, member) { \
size += i915_gem_obj_ggtt_size(obj); \
++count; \
if (obj->map_and_fenceable) { \
mappable_size += i915_gem_obj_ggtt_size(obj); \
++mappable_count; \
} \
} \
} while (0)
struct file_stats {
int count;
size_t total, active, inactive, unbound;
};
static int per_file_stats(int id, void *ptr, void *data)
{
struct drm_i915_gem_object *obj = ptr;
struct file_stats *stats = data;
stats->count++;
stats->total += obj->base.size;
if (i915_gem_obj_ggtt_bound(obj)) {
if (!list_empty(&obj->ring_list))
stats->active += obj->base.size;
else
stats->inactive += obj->base.size;
} else {
if (!list_empty(&obj->global_list))
stats->unbound += obj->base.size;
}
return 0;
}
#define count_vmas(list, member) do { \
list_for_each_entry(vma, list, member) { \
size += i915_gem_obj_ggtt_size(vma->obj); \
++count; \
if (vma->obj->map_and_fenceable) { \
mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
++mappable_count; \
} \
} \
} while (0)
static int i915_gem_object_info(struct seq_file *m, void* data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 count, mappable_count, purgeable_count;
size_t size, mappable_size, purgeable_size;
struct drm_i915_gem_object *obj;
struct i915_address_space *vm = &dev_priv->gtt.base;
struct drm_file *file;
struct i915_vma *vma;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
seq_printf(m, "%u objects, %zu bytes\n",
dev_priv->mm.object_count,
dev_priv->mm.object_memory);
size = count = mappable_size = mappable_count = 0;
count_objects(&dev_priv->mm.bound_list, global_list);
seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
count, mappable_count, size, mappable_size);
size = count = mappable_size = mappable_count = 0;
count_vmas(&vm->active_list, mm_list);
seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
count, mappable_count, size, mappable_size);
size = count = mappable_size = mappable_count = 0;
count_vmas(&vm->inactive_list, mm_list);
seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
count, mappable_count, size, mappable_size);
size = count = purgeable_size = purgeable_count = 0;
list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
size += obj->base.size, ++count;
if (obj->madv == I915_MADV_DONTNEED)
purgeable_size += obj->base.size, ++purgeable_count;
}
seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
size = count = mappable_size = mappable_count = 0;
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
if (obj->fault_mappable) {
size += i915_gem_obj_ggtt_size(obj);
++count;
}
if (obj->pin_mappable) {
mappable_size += i915_gem_obj_ggtt_size(obj);
++mappable_count;
}
if (obj->madv == I915_MADV_DONTNEED) {
purgeable_size += obj->base.size;
++purgeable_count;
}
}
seq_printf(m, "%u purgeable objects, %zu bytes\n",
purgeable_count, purgeable_size);
seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
mappable_count, mappable_size);
seq_printf(m, "%u fault mappable objects, %zu bytes\n",
count, size);
seq_printf(m, "%zu [%lu] gtt total\n",
dev_priv->gtt.base.total,
dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
seq_putc(m, '\n');
list_for_each_entry_reverse(file, &dev->filelist, lhead) {
struct file_stats stats;
memset(&stats, 0, sizeof(stats));
idr_for_each(&file->object_idr, per_file_stats, &stats);
seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu unbound)\n",
get_pid_task(file->pid, PIDTYPE_PID)->comm,
stats.count,
stats.total,
stats.active,
stats.inactive,
stats.unbound);
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_gem_gtt_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
uintptr_t list = (uintptr_t) node->info_ent->data;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
size_t total_obj_size, total_gtt_size;
int count, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
total_obj_size = total_gtt_size = count = 0;
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
if (list == PINNED_LIST && obj->pin_count == 0)
continue;
seq_puts(m, " ");
describe_obj(m, obj);
seq_putc(m, '\n');
total_obj_size += obj->base.size;
total_gtt_size += i915_gem_obj_ggtt_size(obj);
count++;
}
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
count, total_obj_size, total_gtt_size);
return 0;
}
static int i915_gem_pageflip_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
unsigned long flags;
struct intel_crtc *crtc;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
const char pipe = pipe_name(crtc->pipe);
const char plane = plane_name(crtc->plane);
struct intel_unpin_work *work;
spin_lock_irqsave(&dev->event_lock, flags);
work = crtc->unpin_work;
if (work == NULL) {
seq_printf(m, "No flip due on pipe %c (plane %c)\n",
pipe, plane);
} else {
if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
pipe, plane);
} else {
seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
pipe, plane);
}
if (work->enable_stall_check)
seq_puts(m, "Stall check enabled, ");
else
seq_puts(m, "Stall check waiting for page flip ioctl, ");
seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
if (work->old_fb_obj) {
struct drm_i915_gem_object *obj = work->old_fb_obj;
if (obj)
seq_printf(m, "Old framebuffer gtt_offset 0x%08lx\n",
i915_gem_obj_ggtt_offset(obj));
}
if (work->pending_flip_obj) {
struct drm_i915_gem_object *obj = work->pending_flip_obj;
if (obj)
seq_printf(m, "New framebuffer gtt_offset 0x%08lx\n",
i915_gem_obj_ggtt_offset(obj));
}
}
spin_unlock_irqrestore(&dev->event_lock, flags);
}
return 0;
}
static int i915_gem_request_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
struct drm_i915_gem_request *gem_request;
int ret, count, i;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
count = 0;
for_each_ring(ring, dev_priv, i) {
if (list_empty(&ring->request_list))
continue;
seq_printf(m, "%s requests:\n", ring->name);
list_for_each_entry(gem_request,
&ring->request_list,
list) {
seq_printf(m, " %d @ %d\n",
gem_request->seqno,
(int) (jiffies - gem_request->emitted_jiffies));
}
count++;
}
mutex_unlock(&dev->struct_mutex);
if (count == 0)
seq_puts(m, "No requests\n");
return 0;
}
static void i915_ring_seqno_info(struct seq_file *m,
struct intel_ring_buffer *ring)
{
if (ring->get_seqno) {
seq_printf(m, "Current sequence (%s): %u\n",
ring->name, ring->get_seqno(ring, false));
}
}
static int i915_gem_seqno_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int ret, i;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
for_each_ring(ring, dev_priv, i)
i915_ring_seqno_info(m, ring);
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_interrupt_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int ret, i, pipe;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
if (IS_VALLEYVIEW(dev)) {
seq_printf(m, "Display IER:\t%08x\n",
I915_READ(VLV_IER));
seq_printf(m, "Display IIR:\t%08x\n",
I915_READ(VLV_IIR));
seq_printf(m, "Display IIR_RW:\t%08x\n",
I915_READ(VLV_IIR_RW));
seq_printf(m, "Display IMR:\t%08x\n",
I915_READ(VLV_IMR));
for_each_pipe(pipe)
seq_printf(m, "Pipe %c stat:\t%08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
seq_printf(m, "Master IER:\t%08x\n",
I915_READ(VLV_MASTER_IER));
seq_printf(m, "Render IER:\t%08x\n",
I915_READ(GTIER));
seq_printf(m, "Render IIR:\t%08x\n",
I915_READ(GTIIR));
seq_printf(m, "Render IMR:\t%08x\n",
I915_READ(GTIMR));
seq_printf(m, "PM IER:\t\t%08x\n",
I915_READ(GEN6_PMIER));
seq_printf(m, "PM IIR:\t\t%08x\n",
I915_READ(GEN6_PMIIR));
seq_printf(m, "PM IMR:\t\t%08x\n",
I915_READ(GEN6_PMIMR));
seq_printf(m, "Port hotplug:\t%08x\n",
I915_READ(PORT_HOTPLUG_EN));
seq_printf(m, "DPFLIPSTAT:\t%08x\n",
I915_READ(VLV_DPFLIPSTAT));
seq_printf(m, "DPINVGTT:\t%08x\n",
I915_READ(DPINVGTT));
} else if (!HAS_PCH_SPLIT(dev)) {
seq_printf(m, "Interrupt enable: %08x\n",
I915_READ(IER));
seq_printf(m, "Interrupt identity: %08x\n",
I915_READ(IIR));
seq_printf(m, "Interrupt mask: %08x\n",
I915_READ(IMR));
for_each_pipe(pipe)
seq_printf(m, "Pipe %c stat: %08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
} else {
seq_printf(m, "North Display Interrupt enable: %08x\n",
I915_READ(DEIER));
seq_printf(m, "North Display Interrupt identity: %08x\n",
I915_READ(DEIIR));
seq_printf(m, "North Display Interrupt mask: %08x\n",
I915_READ(DEIMR));
seq_printf(m, "South Display Interrupt enable: %08x\n",
I915_READ(SDEIER));
seq_printf(m, "South Display Interrupt identity: %08x\n",
I915_READ(SDEIIR));
seq_printf(m, "South Display Interrupt mask: %08x\n",
I915_READ(SDEIMR));
seq_printf(m, "Graphics Interrupt enable: %08x\n",
I915_READ(GTIER));
seq_printf(m, "Graphics Interrupt identity: %08x\n",
I915_READ(GTIIR));
seq_printf(m, "Graphics Interrupt mask: %08x\n",
I915_READ(GTIMR));
}
seq_printf(m, "Interrupts received: %d\n",
atomic_read(&dev_priv->irq_received));
for_each_ring(ring, dev_priv, i) {
if (IS_GEN6(dev) || IS_GEN7(dev)) {
seq_printf(m,
"Graphics Interrupt mask (%s): %08x\n",
ring->name, I915_READ_IMR(ring));
}
i915_ring_seqno_info(m, ring);
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
int i, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
for (i = 0; i < dev_priv->num_fence_regs; i++) {
struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
seq_printf(m, "Fence %d, pin count = %d, object = ",
i, dev_priv->fence_regs[i].pin_count);
if (obj == NULL)
seq_puts(m, "unused");
else
describe_obj(m, obj);
seq_putc(m, '\n');
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_hws_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
const u32 *hws;
int i;
ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
hws = ring->status_page.page_addr;
if (hws == NULL)
return 0;
for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
i * 4,
hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
}
return 0;
}
static ssize_t
i915_error_state_write(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
struct i915_error_state_file_priv *error_priv = filp->private_data;
struct drm_device *dev = error_priv->dev;
int ret;
DRM_DEBUG_DRIVER("Resetting error state\n");
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
i915_destroy_error_state(dev);
mutex_unlock(&dev->struct_mutex);
return cnt;
}
static int i915_error_state_open(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
struct i915_error_state_file_priv *error_priv;
error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
if (!error_priv)
return -ENOMEM;
error_priv->dev = dev;
i915_error_state_get(dev, error_priv);
file->private_data = error_priv;
return 0;
}
static int i915_error_state_release(struct inode *inode, struct file *file)
{
struct i915_error_state_file_priv *error_priv = file->private_data;
i915_error_state_put(error_priv);
kfree(error_priv);
return 0;
}
static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
size_t count, loff_t *pos)
{
struct i915_error_state_file_priv *error_priv = file->private_data;
struct drm_i915_error_state_buf error_str;
loff_t tmp_pos = 0;
ssize_t ret_count = 0;
int ret;
ret = i915_error_state_buf_init(&error_str, count, *pos);
if (ret)
return ret;
ret = i915_error_state_to_str(&error_str, error_priv);
if (ret)
goto out;
ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
error_str.buf,
error_str.bytes);
if (ret_count < 0)
ret = ret_count;
else
*pos = error_str.start + ret_count;
out:
i915_error_state_buf_release(&error_str);
return ret ?: ret_count;
}
static const struct file_operations i915_error_state_fops = {
.owner = THIS_MODULE,
.open = i915_error_state_open,
.read = i915_error_state_read,
.write = i915_error_state_write,
.llseek = default_llseek,
.release = i915_error_state_release,
};
static int
i915_next_seqno_get(void *data, u64 *val)
{
struct drm_device *dev = data;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
*val = dev_priv->next_seqno;
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int
i915_next_seqno_set(void *data, u64 val)
{
struct drm_device *dev = data;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
ret = i915_gem_set_seqno(dev, val);
mutex_unlock(&dev->struct_mutex);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
i915_next_seqno_get, i915_next_seqno_set,
"0x%llx\n");
static int i915_rstdby_delays(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
u16 crstanddelay;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
crstanddelay = I915_READ16(CRSTANDVID);
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
return 0;
}
static int i915_cur_delayinfo(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
if (IS_GEN5(dev)) {
u16 rgvswctl = I915_READ16(MEMSWCTL);
u16 rgvstat = I915_READ16(MEMSTAT_ILK);
seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
MEMSTAT_VID_SHIFT);
seq_printf(m, "Current P-state: %d\n",
(rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
} else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
u32 rpstat, cagf, reqf;
u32 rpupei, rpcurup, rpprevup;
u32 rpdownei, rpcurdown, rpprevdown;
int max_freq;
/* RPSTAT1 is in the GT power well */
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
gen6_gt_force_wake_get(dev_priv);
reqf = I915_READ(GEN6_RPNSWREQ);
reqf &= ~GEN6_TURBO_DISABLE;
if (IS_HASWELL(dev))
reqf >>= 24;
else
reqf >>= 25;
reqf *= GT_FREQUENCY_MULTIPLIER;
rpstat = I915_READ(GEN6_RPSTAT1);
rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
rpcurup = I915_READ(GEN6_RP_CUR_UP);
rpprevup = I915_READ(GEN6_RP_PREV_UP);
rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
if (IS_HASWELL(dev))
cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
else
cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
cagf *= GT_FREQUENCY_MULTIPLIER;
gen6_gt_force_wake_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
seq_printf(m, "Render p-state ratio: %d\n",
(gt_perf_status & 0xff00) >> 8);
seq_printf(m, "Render p-state VID: %d\n",
gt_perf_status & 0xff);
seq_printf(m, "Render p-state limit: %d\n",
rp_state_limits & 0xff);
seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
seq_printf(m, "CAGF: %dMHz\n", cagf);
seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
GEN6_CURICONT_MASK);
seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
GEN6_CURBSYTAVG_MASK);
seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
GEN6_CURBSYTAVG_MASK);
seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
GEN6_CURIAVG_MASK);
seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
GEN6_CURBSYTAVG_MASK);
seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
GEN6_CURBSYTAVG_MASK);
max_freq = (rp_state_cap & 0xff0000) >> 16;
seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
max_freq * GT_FREQUENCY_MULTIPLIER);
max_freq = (rp_state_cap & 0xff00) >> 8;
seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
max_freq * GT_FREQUENCY_MULTIPLIER);
max_freq = rp_state_cap & 0xff;
seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
max_freq * GT_FREQUENCY_MULTIPLIER);
seq_printf(m, "Max overclocked frequency: %dMHz\n",
dev_priv->rps.hw_max * GT_FREQUENCY_MULTIPLIER);
} else if (IS_VALLEYVIEW(dev)) {
u32 freq_sts, val;
mutex_lock(&dev_priv->rps.hw_lock);
freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
val = vlv_punit_read(dev_priv, PUNIT_FUSE_BUS1);
seq_printf(m, "max GPU freq: %d MHz\n",
vlv_gpu_freq(dev_priv->mem_freq, val));
val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM);
seq_printf(m, "min GPU freq: %d MHz\n",
vlv_gpu_freq(dev_priv->mem_freq, val));
seq_printf(m, "current GPU freq: %d MHz\n",
vlv_gpu_freq(dev_priv->mem_freq,
(freq_sts >> 8) & 0xff));
mutex_unlock(&dev_priv->rps.hw_lock);
} else {
seq_puts(m, "no P-state info available\n");
}
return 0;
}
static int i915_delayfreq_table(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
u32 delayfreq;
int ret, i;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
for (i = 0; i < 16; i++) {
delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
(delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
static inline int MAP_TO_MV(int map)
{
return 1250 - (map * 25);
}
static int i915_inttoext_table(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
u32 inttoext;
int ret, i;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
for (i = 1; i <= 32; i++) {
inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int ironlake_drpc_info(struct seq_file *m)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
u32 rgvmodectl, rstdbyctl;
u16 crstandvid;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
rgvmodectl = I915_READ(MEMMODECTL);
rstdbyctl = I915_READ(RSTDBYCTL);
crstandvid = I915_READ16(CRSTANDVID);
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
"yes" : "no");
seq_printf(m, "Boost freq: %d\n",
(rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
MEMMODE_BOOST_FREQ_SHIFT);
seq_printf(m, "HW control enabled: %s\n",
rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
seq_printf(m, "SW control enabled: %s\n",
rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
seq_printf(m, "Gated voltage change: %s\n",
rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
seq_printf(m, "Starting frequency: P%d\n",
(rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
seq_printf(m, "Max P-state: P%d\n",
(rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
seq_printf(m, "Render standby enabled: %s\n",
(rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
seq_puts(m, "Current RS state: ");
switch (rstdbyctl & RSX_STATUS_MASK) {
case RSX_STATUS_ON:
seq_puts(m, "on\n");
break;
case RSX_STATUS_RC1:
seq_puts(m, "RC1\n");
break;
case RSX_STATUS_RC1E:
seq_puts(m, "RC1E\n");
break;
case RSX_STATUS_RS1:
seq_puts(m, "RS1\n");
break;
case RSX_STATUS_RS2:
seq_puts(m, "RS2 (RC6)\n");
break;
case RSX_STATUS_RS3:
seq_puts(m, "RC3 (RC6+)\n");
break;
default:
seq_puts(m, "unknown\n");
break;
}
return 0;
}
static int gen6_drpc_info(struct seq_file *m)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
unsigned forcewake_count;
int count = 0, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
spin_lock_irq(&dev_priv->uncore.lock);
forcewake_count = dev_priv->uncore.forcewake_count;
spin_unlock_irq(&dev_priv->uncore.lock);
if (forcewake_count) {
seq_puts(m, "RC information inaccurate because somebody "
"holds a forcewake reference \n");
} else {
/* NB: we cannot use forcewake, else we read the wrong values */
while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
udelay(10);
seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
}
gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
rcctl1 = I915_READ(GEN6_RC_CONTROL);
mutex_unlock(&dev->struct_mutex);
mutex_lock(&dev_priv->rps.hw_lock);
sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
mutex_unlock(&dev_priv->rps.hw_lock);
seq_printf(m, "Video Turbo Mode: %s\n",
yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
seq_printf(m, "HW control enabled: %s\n",
yesno(rpmodectl1 & GEN6_RP_ENABLE));
seq_printf(m, "SW control enabled: %s\n",
yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
GEN6_RP_MEDIA_SW_MODE));
seq_printf(m, "RC1e Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
seq_printf(m, "RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
seq_printf(m, "Deep RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
seq_printf(m, "Deepest RC6 Enabled: %s\n",
yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
seq_puts(m, "Current RC state: ");
switch (gt_core_status & GEN6_RCn_MASK) {
case GEN6_RC0:
if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
seq_puts(m, "Core Power Down\n");
else
seq_puts(m, "on\n");
break;
case GEN6_RC3:
seq_puts(m, "RC3\n");
break;
case GEN6_RC6:
seq_puts(m, "RC6\n");
break;
case GEN6_RC7:
seq_puts(m, "RC7\n");
break;
default:
seq_puts(m, "Unknown\n");
break;
}
seq_printf(m, "Core Power Down: %s\n",
yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
/* Not exactly sure what this is */
seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
I915_READ(GEN6_GT_GFX_RC6_LOCKED));
seq_printf(m, "RC6 residency since boot: %u\n",
I915_READ(GEN6_GT_GFX_RC6));
seq_printf(m, "RC6+ residency since boot: %u\n",
I915_READ(GEN6_GT_GFX_RC6p));
seq_printf(m, "RC6++ residency since boot: %u\n",
I915_READ(GEN6_GT_GFX_RC6pp));
seq_printf(m, "RC6 voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
seq_printf(m, "RC6+ voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
seq_printf(m, "RC6++ voltage: %dmV\n",
GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
return 0;
}
static int i915_drpc_info(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
if (IS_GEN6(dev) || IS_GEN7(dev))
return gen6_drpc_info(m);
else
return ironlake_drpc_info(m);
}
static int i915_fbc_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
if (!I915_HAS_FBC(dev)) {
seq_puts(m, "FBC unsupported on this chipset\n");
return 0;
}
if (intel_fbc_enabled(dev)) {
seq_puts(m, "FBC enabled\n");
} else {
seq_puts(m, "FBC disabled: ");
switch (dev_priv->fbc.no_fbc_reason) {
case FBC_OK:
seq_puts(m, "FBC actived, but currently disabled in hardware");
break;
case FBC_UNSUPPORTED:
seq_puts(m, "unsupported by this chipset");
break;
case FBC_NO_OUTPUT:
seq_puts(m, "no outputs");
break;
case FBC_STOLEN_TOO_SMALL:
seq_puts(m, "not enough stolen memory");
break;
case FBC_UNSUPPORTED_MODE:
seq_puts(m, "mode not supported");
break;
case FBC_MODE_TOO_LARGE:
seq_puts(m, "mode too large");
break;
case FBC_BAD_PLANE:
seq_puts(m, "FBC unsupported on plane");
break;
case FBC_NOT_TILED:
seq_puts(m, "scanout buffer not tiled");
break;
case FBC_MULTIPLE_PIPES:
seq_puts(m, "multiple pipes are enabled");
break;
case FBC_MODULE_PARAM:
seq_puts(m, "disabled per module param (default off)");
break;
case FBC_CHIP_DEFAULT:
seq_puts(m, "disabled per chip default");
break;
default:
seq_puts(m, "unknown reason");
}
seq_putc(m, '\n');
}
return 0;
}
static int i915_ips_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (!HAS_IPS(dev)) {
seq_puts(m, "not supported\n");
return 0;
}
if (I915_READ(IPS_CTL) & IPS_ENABLE)
seq_puts(m, "enabled\n");
else
seq_puts(m, "disabled\n");
return 0;
}
static int i915_sr_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
bool sr_enabled = false;
if (HAS_PCH_SPLIT(dev))
sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
else if (IS_I915GM(dev))
sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
else if (IS_PINEVIEW(dev))
sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
seq_printf(m, "self-refresh: %s\n",
sr_enabled ? "enabled" : "disabled");
return 0;
}
static int i915_emon_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
unsigned long temp, chipset, gfx;
int ret;
if (!IS_GEN5(dev))
return -ENODEV;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
temp = i915_mch_val(dev_priv);
chipset = i915_chipset_val(dev_priv);
gfx = i915_gfx_val(dev_priv);
mutex_unlock(&dev->struct_mutex);
seq_printf(m, "GMCH temp: %ld\n", temp);
seq_printf(m, "Chipset power: %ld\n", chipset);
seq_printf(m, "GFX power: %ld\n", gfx);
seq_printf(m, "Total power: %ld\n", chipset + gfx);
return 0;
}
static int i915_ring_freq_table(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
int gpu_freq, ia_freq;
if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
seq_puts(m, "unsupported on this chipset\n");
return 0;
}
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
if (ret)
return ret;
seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
for (gpu_freq = dev_priv->rps.min_delay;
gpu_freq <= dev_priv->rps.max_delay;
gpu_freq++) {
ia_freq = gpu_freq;
sandybridge_pcode_read(dev_priv,
GEN6_PCODE_READ_MIN_FREQ_TABLE,
&ia_freq);
seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
gpu_freq * GT_FREQUENCY_MULTIPLIER,
((ia_freq >> 0) & 0xff) * 100,
((ia_freq >> 8) & 0xff) * 100);
}
mutex_unlock(&dev_priv->rps.hw_lock);
return 0;
}
static int i915_gfxec(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_opregion(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_opregion *opregion = &dev_priv->opregion;
void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
int ret;
if (data == NULL)
return -ENOMEM;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
goto out;
if (opregion->header) {
memcpy_fromio(data, opregion->header, OPREGION_SIZE);
seq_write(m, data, OPREGION_SIZE);
}
mutex_unlock(&dev->struct_mutex);
out:
kfree(data);
return 0;
}
static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct intel_fbdev *ifbdev = NULL;
struct intel_framebuffer *fb;
#ifdef CONFIG_DRM_I915_FBDEV
struct drm_i915_private *dev_priv = dev->dev_private;
int ret = mutex_lock_interruptible(&dev->mode_config.mutex);
if (ret)
return ret;
ifbdev = dev_priv->fbdev;
fb = to_intel_framebuffer(ifbdev->helper.fb);
seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
fb->base.width,
fb->base.height,
fb->base.depth,
fb->base.bits_per_pixel,
atomic_read(&fb->base.refcount.refcount));
describe_obj(m, fb->obj);
seq_putc(m, '\n');
mutex_unlock(&dev->mode_config.mutex);
#endif
mutex_lock(&dev->mode_config.fb_lock);
list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
if (ifbdev && &fb->base == ifbdev->helper.fb)
continue;
seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
fb->base.width,
fb->base.height,
fb->base.depth,
fb->base.bits_per_pixel,
atomic_read(&fb->base.refcount.refcount));
describe_obj(m, fb->obj);
seq_putc(m, '\n');
}
mutex_unlock(&dev->mode_config.fb_lock);
return 0;
}
static int i915_context_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
struct i915_hw_context *ctx;
int ret, i;
ret = mutex_lock_interruptible(&dev->mode_config.mutex);
if (ret)
return ret;
if (dev_priv->ips.pwrctx) {
seq_puts(m, "power context ");
describe_obj(m, dev_priv->ips.pwrctx);
seq_putc(m, '\n');
}
if (dev_priv->ips.renderctx) {
seq_puts(m, "render context ");
describe_obj(m, dev_priv->ips.renderctx);
seq_putc(m, '\n');
}
list_for_each_entry(ctx, &dev_priv->context_list, link) {
seq_puts(m, "HW context ");
describe_ctx(m, ctx);
for_each_ring(ring, dev_priv, i)
if (ring->default_context == ctx)
seq_printf(m, "(default context %s) ", ring->name);
describe_obj(m, ctx->obj);
seq_putc(m, '\n');
}
mutex_unlock(&dev->mode_config.mutex);
return 0;
}
static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned forcewake_count;
spin_lock_irq(&dev_priv->uncore.lock);
forcewake_count = dev_priv->uncore.forcewake_count;
spin_unlock_irq(&dev_priv->uncore.lock);
seq_printf(m, "forcewake count = %u\n", forcewake_count);
return 0;
}
static const char *swizzle_string(unsigned swizzle)
{
switch (swizzle) {
case I915_BIT_6_SWIZZLE_NONE:
return "none";
case I915_BIT_6_SWIZZLE_9:
return "bit9";
case I915_BIT_6_SWIZZLE_9_10:
return "bit9/bit10";
case I915_BIT_6_SWIZZLE_9_11:
return "bit9/bit11";
case I915_BIT_6_SWIZZLE_9_10_11:
return "bit9/bit10/bit11";
case I915_BIT_6_SWIZZLE_9_17:
return "bit9/bit17";
case I915_BIT_6_SWIZZLE_9_10_17:
return "bit9/bit10/bit17";
case I915_BIT_6_SWIZZLE_UNKNOWN:
return "unknown";
}
return "bug";
}
static int i915_swizzle_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
swizzle_string(dev_priv->mm.bit_6_swizzle_x));
seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
swizzle_string(dev_priv->mm.bit_6_swizzle_y));
if (IS_GEN3(dev) || IS_GEN4(dev)) {
seq_printf(m, "DDC = 0x%08x\n",
I915_READ(DCC));
seq_printf(m, "C0DRB3 = 0x%04x\n",
I915_READ16(C0DRB3));
seq_printf(m, "C1DRB3 = 0x%04x\n",
I915_READ16(C1DRB3));
} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
I915_READ(MAD_DIMM_C0));
seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
I915_READ(MAD_DIMM_C1));
seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
I915_READ(MAD_DIMM_C2));
seq_printf(m, "TILECTL = 0x%08x\n",
I915_READ(TILECTL));
seq_printf(m, "ARB_MODE = 0x%08x\n",
I915_READ(ARB_MODE));
seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
I915_READ(DISP_ARB_CTL));
}
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_ppgtt_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int i, ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
if (INTEL_INFO(dev)->gen == 6)
seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
for_each_ring(ring, dev_priv, i) {
seq_printf(m, "%s\n", ring->name);
if (INTEL_INFO(dev)->gen == 7)
seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
}
if (dev_priv->mm.aliasing_ppgtt) {
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
seq_puts(m, "aliasing PPGTT:\n");
seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
}
seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
mutex_unlock(&dev->struct_mutex);
return 0;
}
static int i915_dpio_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
if (!IS_VALLEYVIEW(dev)) {
seq_puts(m, "unsupported\n");
return 0;
}
ret = mutex_lock_interruptible(&dev_priv->dpio_lock);
if (ret)
return ret;
seq_printf(m, "DPIO_CTL: 0x%08x\n", I915_READ(DPIO_CTL));
seq_printf(m, "DPIO_DIV_A: 0x%08x\n",
vlv_dpio_read(dev_priv, PIPE_A, _DPIO_DIV_A));
seq_printf(m, "DPIO_DIV_B: 0x%08x\n",
vlv_dpio_read(dev_priv, PIPE_A, _DPIO_DIV_B));
seq_printf(m, "DPIO_REFSFR_A: 0x%08x\n",
vlv_dpio_read(dev_priv, PIPE_A, _DPIO_REFSFR_A));
seq_printf(m, "DPIO_REFSFR_B: 0x%08x\n",
vlv_dpio_read(dev_priv, PIPE_A, _DPIO_REFSFR_B));
seq_printf(m, "DPIO_CORE_CLK_A: 0x%08x\n",
vlv_dpio_read(dev_priv, PIPE_A, _DPIO_CORE_CLK_A));
seq_printf(m, "DPIO_CORE_CLK_B: 0x%08x\n",
vlv_dpio_read(dev_priv, PIPE_A, _DPIO_CORE_CLK_B));
seq_printf(m, "DPIO_LPF_COEFF_A: 0x%08x\n",
vlv_dpio_read(dev_priv, PIPE_A, _DPIO_LPF_COEFF_A));
seq_printf(m, "DPIO_LPF_COEFF_B: 0x%08x\n",
vlv_dpio_read(dev_priv, PIPE_A, _DPIO_LPF_COEFF_B));
seq_printf(m, "DPIO_FASTCLK_DISABLE: 0x%08x\n",
vlv_dpio_read(dev_priv, PIPE_A, DPIO_FASTCLK_DISABLE));
mutex_unlock(&dev_priv->dpio_lock);
return 0;
}
static int i915_llc(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
/* Size calculation for LLC is a bit of a pain. Ignore for now. */
seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
return 0;
}
static int i915_edp_psr_status(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 psrperf = 0;
bool enabled = false;
seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
enabled = HAS_PSR(dev) &&
I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
seq_printf(m, "Enabled: %s\n", yesno(enabled));
if (HAS_PSR(dev))
psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
EDP_PSR_PERF_CNT_MASK;
seq_printf(m, "Performance_Counter: %u\n", psrperf);
return 0;
}
static int i915_energy_uJ(struct seq_file *m, void *data)
{
struct drm_info_node *node = m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u64 power;
u32 units;
if (INTEL_INFO(dev)->gen < 6)
return -ENODEV;
rdmsrl(MSR_RAPL_POWER_UNIT, power);
power = (power & 0x1f00) >> 8;
units = 1000000 / (1 << power); /* convert to uJ */
power = I915_READ(MCH_SECP_NRG_STTS);
power *= units;
seq_printf(m, "%llu", (long long unsigned)power);
return 0;
}
static int i915_pc8_status(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (!IS_HASWELL(dev)) {
seq_puts(m, "not supported\n");
return 0;
}
mutex_lock(&dev_priv->pc8.lock);
seq_printf(m, "Requirements met: %s\n",
yesno(dev_priv->pc8.requirements_met));
seq_printf(m, "GPU idle: %s\n", yesno(dev_priv->pc8.gpu_idle));
seq_printf(m, "Disable count: %d\n", dev_priv->pc8.disable_count);
seq_printf(m, "IRQs disabled: %s\n",
yesno(dev_priv->pc8.irqs_disabled));
seq_printf(m, "Enabled: %s\n", yesno(dev_priv->pc8.enabled));
mutex_unlock(&dev_priv->pc8.lock);
return 0;
}
struct pipe_crc_info {
const char *name;
struct drm_device *dev;
enum pipe pipe;
};
static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
{
struct pipe_crc_info *info = inode->i_private;
struct drm_i915_private *dev_priv = info->dev->dev_private;
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
if (!atomic_dec_and_test(&pipe_crc->available)) {
atomic_inc(&pipe_crc->available);
return -EBUSY; /* already open */
}
filep->private_data = inode->i_private;
return 0;
}
static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
{
struct pipe_crc_info *info = inode->i_private;
struct drm_i915_private *dev_priv = info->dev->dev_private;
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
atomic_inc(&pipe_crc->available); /* release the device */
return 0;
}
/* (6 fields, 8 chars each, space separated (5) + '\n') */
#define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
/* account for \'0' */
#define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
{
int head, tail;
head = atomic_read(&pipe_crc->head);
tail = atomic_read(&pipe_crc->tail);
return CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR);
}
static ssize_t
i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
loff_t *pos)
{
struct pipe_crc_info *info = filep->private_data;
struct drm_device *dev = info->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
char buf[PIPE_CRC_BUFFER_LEN];
int head, tail, n_entries, n;
ssize_t bytes_read;
/*
* Don't allow user space to provide buffers not big enough to hold
* a line of data.
*/
if (count < PIPE_CRC_LINE_LEN)
return -EINVAL;
if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
return 0;
/* nothing to read */
while (pipe_crc_data_count(pipe_crc) == 0) {
if (filep->f_flags & O_NONBLOCK)
return -EAGAIN;
if (wait_event_interruptible(pipe_crc->wq,
pipe_crc_data_count(pipe_crc)))
return -ERESTARTSYS;
}
/* We now have one or more entries to read */
head = atomic_read(&pipe_crc->head);
tail = atomic_read(&pipe_crc->tail);
n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
count / PIPE_CRC_LINE_LEN);
bytes_read = 0;
n = 0;
do {
struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
int ret;
bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
"%8u %8x %8x %8x %8x %8x\n",
entry->frame, entry->crc[0],
entry->crc[1], entry->crc[2],
entry->crc[3], entry->crc[4]);
ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
buf, PIPE_CRC_LINE_LEN);
if (ret == PIPE_CRC_LINE_LEN)
return -EFAULT;
BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
atomic_set(&pipe_crc->tail, tail);
n++;
} while (--n_entries);
return bytes_read;
}
static const struct file_operations i915_pipe_crc_fops = {
.owner = THIS_MODULE,
.open = i915_pipe_crc_open,
.read = i915_pipe_crc_read,
.release = i915_pipe_crc_release,
};
static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
{
.name = "i915_pipe_A_crc",
.pipe = PIPE_A,
},
{
.name = "i915_pipe_B_crc",
.pipe = PIPE_B,
},
{
.name = "i915_pipe_C_crc",
.pipe = PIPE_C,
},
};
static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
enum pipe pipe)
{
struct drm_device *dev = minor->dev;
struct dentry *ent;
struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
info->dev = dev;
ent = debugfs_create_file(info->name, S_IRUGO, root, info,
&i915_pipe_crc_fops);
if (IS_ERR(ent))
return PTR_ERR(ent);
return drm_add_fake_info_node(minor, ent, info);
}
static const char * const pipe_crc_sources[] = {
"none",
"plane1",
"plane2",
"pf",
"pipe",
"TV",
"DP-B",
"DP-C",
"DP-D",
};
static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
{
BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
return pipe_crc_sources[source];
}
static int display_crc_ctl_show(struct seq_file *m, void *data)
{
struct drm_device *dev = m->private;
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
for (i = 0; i < I915_MAX_PIPES; i++)
seq_printf(m, "%c %s\n", pipe_name(i),
pipe_crc_source_name(dev_priv->pipe_crc[i].source));
return 0;
}
static int display_crc_ctl_open(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
return single_open(file, display_crc_ctl_show, dev);
}
static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source source,
uint32_t *val)
{
switch (source) {
case INTEL_PIPE_CRC_SOURCE_PIPE:
*val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
break;
case INTEL_PIPE_CRC_SOURCE_NONE:
*val = 0;
break;
default:
return -EINVAL;
}
return 0;
}
static int vlv_pipe_crc_ctl_reg(enum intel_pipe_crc_source source,
uint32_t *val)
{
switch (source) {
case INTEL_PIPE_CRC_SOURCE_PIPE:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
break;
case INTEL_PIPE_CRC_SOURCE_DP_B:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
break;
case INTEL_PIPE_CRC_SOURCE_DP_C:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
break;
case INTEL_PIPE_CRC_SOURCE_NONE:
*val = 0;
break;
default:
return -EINVAL;
}
return 0;
}
static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
enum intel_pipe_crc_source source,
uint32_t *val)
{
switch (source) {
case INTEL_PIPE_CRC_SOURCE_PIPE:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
break;
case INTEL_PIPE_CRC_SOURCE_TV:
if (!SUPPORTS_TV(dev))
return -EINVAL;
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
break;
case INTEL_PIPE_CRC_SOURCE_DP_B:
if (!IS_G4X(dev))
return -EINVAL;
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
break;
case INTEL_PIPE_CRC_SOURCE_DP_C:
if (!IS_G4X(dev))
return -EINVAL;
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
break;
case INTEL_PIPE_CRC_SOURCE_DP_D:
if (!IS_G4X(dev))
return -EINVAL;
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
break;
case INTEL_PIPE_CRC_SOURCE_NONE:
*val = 0;
break;
default:
return -EINVAL;
}
return 0;
}
static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source source,
uint32_t *val)
{
switch (source) {
case INTEL_PIPE_CRC_SOURCE_PLANE1:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
break;
case INTEL_PIPE_CRC_SOURCE_PLANE2:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
break;
case INTEL_PIPE_CRC_SOURCE_PIPE:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
break;
case INTEL_PIPE_CRC_SOURCE_NONE:
*val = 0;
break;
default:
return -EINVAL;
}
return 0;
}
static int ivb_pipe_crc_ctl_reg(enum intel_pipe_crc_source source,
uint32_t *val)
{
switch (source) {
case INTEL_PIPE_CRC_SOURCE_PLANE1:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
break;
case INTEL_PIPE_CRC_SOURCE_PLANE2:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
break;
case INTEL_PIPE_CRC_SOURCE_PF:
*val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
break;
case INTEL_PIPE_CRC_SOURCE_NONE:
*val = 0;
break;
default:
return -EINVAL;
}
return 0;
}
static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
enum intel_pipe_crc_source source)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
u32 val;
int ret;
if (pipe_crc->source == source)
return 0;
/* forbid changing the source without going back to 'none' */
if (pipe_crc->source && source)
return -EINVAL;
if (IS_GEN2(dev))
ret = i8xx_pipe_crc_ctl_reg(source, &val);
else if (INTEL_INFO(dev)->gen < 5)
ret = i9xx_pipe_crc_ctl_reg(dev, source, &val);
else if (IS_VALLEYVIEW(dev))
ret = vlv_pipe_crc_ctl_reg(source, &val);
else if (IS_GEN5(dev) || IS_GEN6(dev))
ret = ilk_pipe_crc_ctl_reg(source, &val);
else
ret = ivb_pipe_crc_ctl_reg(source, &val);
if (ret != 0)
return ret;
/* none -> real source transition */
if (source) {
DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
pipe_name(pipe), pipe_crc_source_name(source));
pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
INTEL_PIPE_CRC_ENTRIES_NR,
GFP_KERNEL);
if (!pipe_crc->entries)
return -ENOMEM;
atomic_set(&pipe_crc->head, 0);
atomic_set(&pipe_crc->tail, 0);
}
pipe_crc->source = source;
I915_WRITE(PIPE_CRC_CTL(pipe), val);
POSTING_READ(PIPE_CRC_CTL(pipe));
/* real source -> none transition */
if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
pipe_name(pipe));
intel_wait_for_vblank(dev, pipe);
kfree(pipe_crc->entries);
pipe_crc->entries = NULL;
}
return 0;
}
/*
* Parse pipe CRC command strings:
* command: wsp* object wsp+ name wsp+ source wsp*
* object: 'pipe'
* name: (A | B | C)
* source: (none | plane1 | plane2 | pf)
* wsp: (#0x20 | #0x9 | #0xA)+
*
* eg.:
* "pipe A plane1" -> Start CRC computations on plane1 of pipe A
* "pipe A none" -> Stop CRC
*/
static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
{
int n_words = 0;
while (*buf) {
char *end;
/* skip leading white space */
buf = skip_spaces(buf);
if (!*buf)
break; /* end of buffer */
/* find end of word */
for (end = buf; *end && !isspace(*end); end++)
;
if (n_words == max_words) {
DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
max_words);
return -EINVAL; /* ran out of words[] before bytes */
}
if (*end)
*end++ = '\0';
words[n_words++] = buf;
buf = end;
}
return n_words;
}
enum intel_pipe_crc_object {
PIPE_CRC_OBJECT_PIPE,
};
static const char * const pipe_crc_objects[] = {
"pipe",
};
static int
display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
{
int i;
for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
if (!strcmp(buf, pipe_crc_objects[i])) {
*o = i;
return 0;
}
return -EINVAL;
}
static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
{
const char name = buf[0];
if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
return -EINVAL;
*pipe = name - 'A';
return 0;
}
static int
display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
{
int i;
for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
if (!strcmp(buf, pipe_crc_sources[i])) {
*s = i;
return 0;
}
return -EINVAL;
}
static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
{
#define N_WORDS 3
int n_words;
char *words[N_WORDS];
enum pipe pipe;
enum intel_pipe_crc_object object;
enum intel_pipe_crc_source source;
n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
if (n_words != N_WORDS) {
DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
N_WORDS);
return -EINVAL;
}
if (display_crc_ctl_parse_object(words[0], &object) < 0) {
DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
return -EINVAL;
}
if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
return -EINVAL;
}
if (display_crc_ctl_parse_source(words[2], &source) < 0) {
DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
return -EINVAL;
}
return pipe_crc_set_source(dev, pipe, source);
}
static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
size_t len, loff_t *offp)
{
struct seq_file *m = file->private_data;
struct drm_device *dev = m->private;
char *tmpbuf;
int ret;
if (len == 0)
return 0;
if (len > PAGE_SIZE - 1) {
DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
PAGE_SIZE);
return -E2BIG;
}
tmpbuf = kmalloc(len + 1, GFP_KERNEL);
if (!tmpbuf)
return -ENOMEM;
if (copy_from_user(tmpbuf, ubuf, len)) {
ret = -EFAULT;
goto out;
}
tmpbuf[len] = '\0';
ret = display_crc_ctl_parse(dev, tmpbuf, len);
out:
kfree(tmpbuf);
if (ret < 0)
return ret;
*offp += len;
return len;
}
static const struct file_operations i915_display_crc_ctl_fops = {
.owner = THIS_MODULE,
.open = display_crc_ctl_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = display_crc_ctl_write
};
static int
i915_wedged_get(void *data, u64 *val)
{
struct drm_device *dev = data;
drm_i915_private_t *dev_priv = dev->dev_private;
*val = atomic_read(&dev_priv->gpu_error.reset_counter);
return 0;
}
static int
i915_wedged_set(void *data, u64 val)
{
struct drm_device *dev = data;
DRM_INFO("Manually setting wedged to %llu\n", val);
i915_handle_error(dev, val);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
i915_wedged_get, i915_wedged_set,
"%llu\n");
static int
i915_ring_stop_get(void *data, u64 *val)
{
struct drm_device *dev = data;
drm_i915_private_t *dev_priv = dev->dev_private;
*val = dev_priv->gpu_error.stop_rings;
return 0;
}
static int
i915_ring_stop_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
dev_priv->gpu_error.stop_rings = val;
mutex_unlock(&dev->struct_mutex);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
i915_ring_stop_get, i915_ring_stop_set,
"0x%08llx\n");
static int
i915_ring_missed_irq_get(void *data, u64 *val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
*val = dev_priv->gpu_error.missed_irq_rings;
return 0;
}
static int
i915_ring_missed_irq_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
/* Lock against concurrent debugfs callers */
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
dev_priv->gpu_error.missed_irq_rings = val;
mutex_unlock(&dev->struct_mutex);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
i915_ring_missed_irq_get, i915_ring_missed_irq_set,
"0x%08llx\n");
static int
i915_ring_test_irq_get(void *data, u64 *val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
*val = dev_priv->gpu_error.test_irq_rings;
return 0;
}
static int
i915_ring_test_irq_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
/* Lock against concurrent debugfs callers */
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
dev_priv->gpu_error.test_irq_rings = val;
mutex_unlock(&dev->struct_mutex);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
i915_ring_test_irq_get, i915_ring_test_irq_set,
"0x%08llx\n");
#define DROP_UNBOUND 0x1
#define DROP_BOUND 0x2
#define DROP_RETIRE 0x4
#define DROP_ACTIVE 0x8
#define DROP_ALL (DROP_UNBOUND | \
DROP_BOUND | \
DROP_RETIRE | \
DROP_ACTIVE)
static int
i915_drop_caches_get(void *data, u64 *val)
{
*val = DROP_ALL;
return 0;
}
static int
i915_drop_caches_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj, *next;
struct i915_address_space *vm;
struct i915_vma *vma, *x;
int ret;
DRM_DEBUG_DRIVER("Dropping caches: 0x%08llx\n", val);
/* No need to check and wait for gpu resets, only libdrm auto-restarts
* on ioctls on -EAGAIN. */
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
if (val & DROP_ACTIVE) {
ret = i915_gpu_idle(dev);
if (ret)
goto unlock;
}
if (val & (DROP_RETIRE | DROP_ACTIVE))
i915_gem_retire_requests(dev);
if (val & DROP_BOUND) {
list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
list_for_each_entry_safe(vma, x, &vm->inactive_list,
mm_list) {
if (vma->obj->pin_count)
continue;
ret = i915_vma_unbind(vma);
if (ret)
goto unlock;
}
}
}
if (val & DROP_UNBOUND) {
list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
global_list)
if (obj->pages_pin_count == 0) {
ret = i915_gem_object_put_pages(obj);
if (ret)
goto unlock;
}
}
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
i915_drop_caches_get, i915_drop_caches_set,
"0x%08llx\n");
static int
i915_max_freq_get(void *data, u64 *val)
{
struct drm_device *dev = data;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
if (ret)
return ret;
if (IS_VALLEYVIEW(dev))
*val = vlv_gpu_freq(dev_priv->mem_freq,
dev_priv->rps.max_delay);
else
*val = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER;
mutex_unlock(&dev_priv->rps.hw_lock);
return 0;
}
static int
i915_max_freq_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
if (ret)
return ret;
/*
* Turbo will still be enabled, but won't go above the set value.
*/
if (IS_VALLEYVIEW(dev)) {
val = vlv_freq_opcode(dev_priv->mem_freq, val);
dev_priv->rps.max_delay = val;
gen6_set_rps(dev, val);
} else {
do_div(val, GT_FREQUENCY_MULTIPLIER);
dev_priv->rps.max_delay = val;
gen6_set_rps(dev, val);
}
mutex_unlock(&dev_priv->rps.hw_lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
i915_max_freq_get, i915_max_freq_set,
"%llu\n");
static int
i915_min_freq_get(void *data, u64 *val)
{
struct drm_device *dev = data;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
if (ret)
return ret;
if (IS_VALLEYVIEW(dev))
*val = vlv_gpu_freq(dev_priv->mem_freq,
dev_priv->rps.min_delay);
else
*val = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER;
mutex_unlock(&dev_priv->rps.hw_lock);
return 0;
}
static int
i915_min_freq_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
flush_delayed_work(&dev_priv->rps.delayed_resume_work);
DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
if (ret)
return ret;
/*
* Turbo will still be enabled, but won't go below the set value.
*/
if (IS_VALLEYVIEW(dev)) {
val = vlv_freq_opcode(dev_priv->mem_freq, val);
dev_priv->rps.min_delay = val;
valleyview_set_rps(dev, val);
} else {
do_div(val, GT_FREQUENCY_MULTIPLIER);
dev_priv->rps.min_delay = val;
gen6_set_rps(dev, val);
}
mutex_unlock(&dev_priv->rps.hw_lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
i915_min_freq_get, i915_min_freq_set,
"%llu\n");
static int
i915_cache_sharing_get(void *data, u64 *val)
{
struct drm_device *dev = data;
drm_i915_private_t *dev_priv = dev->dev_private;
u32 snpcr;
int ret;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
mutex_unlock(&dev_priv->dev->struct_mutex);
*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
return 0;
}
static int
i915_cache_sharing_set(void *data, u64 val)
{
struct drm_device *dev = data;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 snpcr;
if (!(IS_GEN6(dev) || IS_GEN7(dev)))
return -ENODEV;
if (val > 3)
return -EINVAL;
DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
/* Update the cache sharing policy here as well */
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
snpcr &= ~GEN6_MBC_SNPCR_MASK;
snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
i915_cache_sharing_get, i915_cache_sharing_set,
"%llu\n");
static int i915_forcewake_open(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
struct drm_i915_private *dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen < 6)
return 0;
gen6_gt_force_wake_get(dev_priv);
return 0;
}
static int i915_forcewake_release(struct inode *inode, struct file *file)
{
struct drm_device *dev = inode->i_private;
struct drm_i915_private *dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen < 6)
return 0;
gen6_gt_force_wake_put(dev_priv);
return 0;
}
static const struct file_operations i915_forcewake_fops = {
.owner = THIS_MODULE,
.open = i915_forcewake_open,
.release = i915_forcewake_release,
};
static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
{
struct drm_device *dev = minor->dev;
struct dentry *ent;
ent = debugfs_create_file("i915_forcewake_user",
S_IRUSR,
root, dev,
&i915_forcewake_fops);
if (IS_ERR(ent))
return PTR_ERR(ent);
return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
}
static int i915_debugfs_create(struct dentry *root,
struct drm_minor *minor,
const char *name,
const struct file_operations *fops)
{
struct drm_device *dev = minor->dev;
struct dentry *ent;
ent = debugfs_create_file(name,
S_IRUGO | S_IWUSR,
root, dev,
fops);
if (IS_ERR(ent))
return PTR_ERR(ent);
return drm_add_fake_info_node(minor, ent, fops);
}
static struct drm_info_list i915_debugfs_list[] = {
{"i915_capabilities", i915_capabilities, 0},
{"i915_gem_objects", i915_gem_object_info, 0},
{"i915_gem_gtt", i915_gem_gtt_info, 0},
{"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
{"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
{"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
{"i915_gem_stolen", i915_gem_stolen_list_info },
{"i915_gem_pageflip", i915_gem_pageflip_info, 0},
{"i915_gem_request", i915_gem_request_info, 0},
{"i915_gem_seqno", i915_gem_seqno_info, 0},
{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
{"i915_gem_interrupt", i915_interrupt_info, 0},
{"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
{"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
{"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
{"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
{"i915_rstdby_delays", i915_rstdby_delays, 0},
{"i915_cur_delayinfo", i915_cur_delayinfo, 0},
{"i915_delayfreq_table", i915_delayfreq_table, 0},
{"i915_inttoext_table", i915_inttoext_table, 0},
{"i915_drpc_info", i915_drpc_info, 0},
{"i915_emon_status", i915_emon_status, 0},
{"i915_ring_freq_table", i915_ring_freq_table, 0},
{"i915_gfxec", i915_gfxec, 0},
{"i915_fbc_status", i915_fbc_status, 0},
{"i915_ips_status", i915_ips_status, 0},
{"i915_sr_status", i915_sr_status, 0},
{"i915_opregion", i915_opregion, 0},
{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
{"i915_context_status", i915_context_status, 0},
{"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
{"i915_swizzle_info", i915_swizzle_info, 0},
{"i915_ppgtt_info", i915_ppgtt_info, 0},
{"i915_dpio", i915_dpio_info, 0},
{"i915_llc", i915_llc, 0},
{"i915_edp_psr_status", i915_edp_psr_status, 0},
{"i915_energy_uJ", i915_energy_uJ, 0},
{"i915_pc8_status", i915_pc8_status, 0},
};
#define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
static struct i915_debugfs_files {
const char *name;
const struct file_operations *fops;
} i915_debugfs_files[] = {
{"i915_wedged", &i915_wedged_fops},
{"i915_max_freq", &i915_max_freq_fops},
{"i915_min_freq", &i915_min_freq_fops},
{"i915_cache_sharing", &i915_cache_sharing_fops},
{"i915_ring_stop", &i915_ring_stop_fops},
{"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
{"i915_ring_test_irq", &i915_ring_test_irq_fops},
{"i915_gem_drop_caches", &i915_drop_caches_fops},
{"i915_error_state", &i915_error_state_fops},
{"i915_next_seqno", &i915_next_seqno_fops},
{"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
};
void intel_display_crc_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[i];
atomic_set(&pipe_crc->available, 1);
init_waitqueue_head(&pipe_crc->wq);
}
}
int i915_debugfs_init(struct drm_minor *minor)
{
int ret, i;
ret = i915_forcewake_create(minor->debugfs_root, minor);
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
if (ret)
return ret;
}
for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
ret = i915_debugfs_create(minor->debugfs_root, minor,
i915_debugfs_files[i].name,
i915_debugfs_files[i].fops);
if (ret)
return ret;
}
return drm_debugfs_create_files(i915_debugfs_list,
I915_DEBUGFS_ENTRIES,
minor->debugfs_root, minor);
}
void i915_debugfs_cleanup(struct drm_minor *minor)
{
int i;
drm_debugfs_remove_files(i915_debugfs_list,
I915_DEBUGFS_ENTRIES, minor);
drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
1, minor);
for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
struct drm_info_list *info_list =
(struct drm_info_list *)&i915_pipe_crc_data[i];
drm_debugfs_remove_files(info_list, 1, minor);
}
for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
struct drm_info_list *info_list =
(struct drm_info_list *) i915_debugfs_files[i].fops;
drm_debugfs_remove_files(info_list, 1, minor);
}
}
#endif /* CONFIG_DEBUG_FS */