| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * VGICv3 MMIO handling functions |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/irqchip/arm-gic-v3.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <linux/interrupt.h> |
| #include <kvm/iodev.h> |
| #include <kvm/arm_vgic.h> |
| |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_mmu.h> |
| |
| #include "vgic.h" |
| #include "vgic-mmio.h" |
| |
| /* extract @num bytes at @offset bytes offset in data */ |
| unsigned long extract_bytes(u64 data, unsigned int offset, |
| unsigned int num) |
| { |
| return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0); |
| } |
| |
| /* allows updates of any half of a 64-bit register (or the whole thing) */ |
| u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len, |
| unsigned long val) |
| { |
| int lower = (offset & 4) * 8; |
| int upper = lower + 8 * len - 1; |
| |
| reg &= ~GENMASK_ULL(upper, lower); |
| val &= GENMASK_ULL(len * 8 - 1, 0); |
| |
| return reg | ((u64)val << lower); |
| } |
| |
| bool vgic_has_its(struct kvm *kvm) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| |
| if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3) |
| return false; |
| |
| return dist->has_its; |
| } |
| |
| bool vgic_supports_direct_msis(struct kvm *kvm) |
| { |
| return (kvm_vgic_global_state.has_gicv4_1 || |
| (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm))); |
| } |
| |
| /* |
| * The Revision field in the IIDR have the following meanings: |
| * |
| * Revision 2: Interrupt groups are guest-configurable and signaled using |
| * their configured groups. |
| */ |
| |
| static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| struct vgic_dist *vgic = &vcpu->kvm->arch.vgic; |
| u32 value = 0; |
| |
| switch (addr & 0x0c) { |
| case GICD_CTLR: |
| if (vgic->enabled) |
| value |= GICD_CTLR_ENABLE_SS_G1; |
| value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS; |
| if (vgic->nassgireq) |
| value |= GICD_CTLR_nASSGIreq; |
| break; |
| case GICD_TYPER: |
| value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS; |
| value = (value >> 5) - 1; |
| if (vgic_has_its(vcpu->kvm)) { |
| value |= (INTERRUPT_ID_BITS_ITS - 1) << 19; |
| value |= GICD_TYPER_LPIS; |
| } else { |
| value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19; |
| } |
| break; |
| case GICD_TYPER2: |
| if (kvm_vgic_global_state.has_gicv4_1) |
| value = GICD_TYPER2_nASSGIcap; |
| break; |
| case GICD_IIDR: |
| value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) | |
| (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) | |
| (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT); |
| break; |
| default: |
| return 0; |
| } |
| |
| return value; |
| } |
| |
| static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| switch (addr & 0x0c) { |
| case GICD_CTLR: { |
| bool was_enabled, is_hwsgi; |
| |
| mutex_lock(&vcpu->kvm->lock); |
| |
| was_enabled = dist->enabled; |
| is_hwsgi = dist->nassgireq; |
| |
| dist->enabled = val & GICD_CTLR_ENABLE_SS_G1; |
| |
| /* Not a GICv4.1? No HW SGIs */ |
| if (!kvm_vgic_global_state.has_gicv4_1) |
| val &= ~GICD_CTLR_nASSGIreq; |
| |
| /* Dist stays enabled? nASSGIreq is RO */ |
| if (was_enabled && dist->enabled) { |
| val &= ~GICD_CTLR_nASSGIreq; |
| val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi); |
| } |
| |
| /* Switching HW SGIs? */ |
| dist->nassgireq = val & GICD_CTLR_nASSGIreq; |
| if (is_hwsgi != dist->nassgireq) |
| vgic_v4_configure_vsgis(vcpu->kvm); |
| |
| if (kvm_vgic_global_state.has_gicv4_1 && |
| was_enabled != dist->enabled) |
| kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4); |
| else if (!was_enabled && dist->enabled) |
| vgic_kick_vcpus(vcpu->kvm); |
| |
| mutex_unlock(&vcpu->kvm->lock); |
| break; |
| } |
| case GICD_TYPER: |
| case GICD_TYPER2: |
| case GICD_IIDR: |
| /* This is at best for documentation purposes... */ |
| return; |
| } |
| } |
| |
| static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| switch (addr & 0x0c) { |
| case GICD_TYPER2: |
| case GICD_IIDR: |
| if (val != vgic_mmio_read_v3_misc(vcpu, addr, len)) |
| return -EINVAL; |
| return 0; |
| case GICD_CTLR: |
| /* Not a GICv4.1? No HW SGIs */ |
| if (!kvm_vgic_global_state.has_gicv4_1) |
| val &= ~GICD_CTLR_nASSGIreq; |
| |
| dist->enabled = val & GICD_CTLR_ENABLE_SS_G1; |
| dist->nassgireq = val & GICD_CTLR_nASSGIreq; |
| return 0; |
| } |
| |
| vgic_mmio_write_v3_misc(vcpu, addr, len, val); |
| return 0; |
| } |
| |
| static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| int intid = VGIC_ADDR_TO_INTID(addr, 64); |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid); |
| unsigned long ret = 0; |
| |
| if (!irq) |
| return 0; |
| |
| /* The upper word is RAZ for us. */ |
| if (!(addr & 4)) |
| ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| return ret; |
| } |
| |
| static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| int intid = VGIC_ADDR_TO_INTID(addr, 64); |
| struct vgic_irq *irq; |
| unsigned long flags; |
| |
| /* The upper word is WI for us since we don't implement Aff3. */ |
| if (addr & 4) |
| return; |
| |
| irq = vgic_get_irq(vcpu->kvm, NULL, intid); |
| |
| if (!irq) |
| return; |
| |
| raw_spin_lock_irqsave(&irq->irq_lock, flags); |
| |
| /* We only care about and preserve Aff0, Aff1 and Aff2. */ |
| irq->mpidr = val & GENMASK(23, 0); |
| irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr); |
| |
| raw_spin_unlock_irqrestore(&irq->irq_lock, flags); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| |
| return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0; |
| } |
| |
| |
| static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| bool was_enabled = vgic_cpu->lpis_enabled; |
| |
| if (!vgic_has_its(vcpu->kvm)) |
| return; |
| |
| vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS; |
| |
| if (was_enabled && !vgic_cpu->lpis_enabled) { |
| vgic_flush_pending_lpis(vcpu); |
| vgic_its_invalidate_cache(vcpu->kvm); |
| } |
| |
| if (!was_enabled && vgic_cpu->lpis_enabled) |
| vgic_enable_lpis(vcpu); |
| } |
| |
| static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu); |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| struct vgic_redist_region *rdreg = vgic_cpu->rdreg; |
| int target_vcpu_id = vcpu->vcpu_id; |
| gpa_t last_rdist_typer = rdreg->base + GICR_TYPER + |
| (rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE; |
| u64 value; |
| |
| value = (u64)(mpidr & GENMASK(23, 0)) << 32; |
| value |= ((target_vcpu_id & 0xffff) << 8); |
| |
| if (addr == last_rdist_typer) |
| value |= GICR_TYPER_LAST; |
| if (vgic_has_its(vcpu->kvm)) |
| value |= GICR_TYPER_PLPIS; |
| |
| return extract_bytes(value, addr & 7, len); |
| } |
| |
| static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); |
| } |
| |
| static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| switch (addr & 0xffff) { |
| case GICD_PIDR2: |
| /* report a GICv3 compliant implementation */ |
| return 0x3b; |
| } |
| |
| return 0; |
| } |
| |
| static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| u32 value = 0; |
| int i; |
| |
| /* |
| * pending state of interrupt is latched in pending_latch variable. |
| * Userspace will save and restore pending state and line_level |
| * separately. |
| * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.txt |
| * for handling of ISPENDR and ICPENDR. |
| */ |
| for (i = 0; i < len * 8; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| bool state = irq->pending_latch; |
| |
| if (irq->hw && vgic_irq_is_sgi(irq->intid)) { |
| int err; |
| |
| err = irq_get_irqchip_state(irq->host_irq, |
| IRQCHIP_STATE_PENDING, |
| &state); |
| WARN_ON(err); |
| } |
| |
| if (state) |
| value |= (1U << i); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| return value; |
| } |
| |
| static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| int i; |
| unsigned long flags; |
| |
| for (i = 0; i < len * 8; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| raw_spin_lock_irqsave(&irq->irq_lock, flags); |
| if (test_bit(i, &val)) { |
| /* |
| * pending_latch is set irrespective of irq type |
| * (level or edge) to avoid dependency that VM should |
| * restore irq config before pending info. |
| */ |
| irq->pending_latch = true; |
| vgic_queue_irq_unlock(vcpu->kvm, irq, flags); |
| } else { |
| irq->pending_latch = false; |
| raw_spin_unlock_irqrestore(&irq->irq_lock, flags); |
| } |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| return 0; |
| } |
| |
| /* We want to avoid outer shareable. */ |
| u64 vgic_sanitise_shareability(u64 field) |
| { |
| switch (field) { |
| case GIC_BASER_OuterShareable: |
| return GIC_BASER_InnerShareable; |
| default: |
| return field; |
| } |
| } |
| |
| /* Avoid any inner non-cacheable mapping. */ |
| u64 vgic_sanitise_inner_cacheability(u64 field) |
| { |
| switch (field) { |
| case GIC_BASER_CACHE_nCnB: |
| case GIC_BASER_CACHE_nC: |
| return GIC_BASER_CACHE_RaWb; |
| default: |
| return field; |
| } |
| } |
| |
| /* Non-cacheable or same-as-inner are OK. */ |
| u64 vgic_sanitise_outer_cacheability(u64 field) |
| { |
| switch (field) { |
| case GIC_BASER_CACHE_SameAsInner: |
| case GIC_BASER_CACHE_nC: |
| return field; |
| default: |
| return GIC_BASER_CACHE_nC; |
| } |
| } |
| |
| u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift, |
| u64 (*sanitise_fn)(u64)) |
| { |
| u64 field = (reg & field_mask) >> field_shift; |
| |
| field = sanitise_fn(field) << field_shift; |
| return (reg & ~field_mask) | field; |
| } |
| |
| #define PROPBASER_RES0_MASK \ |
| (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5)) |
| #define PENDBASER_RES0_MASK \ |
| (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \ |
| GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0)) |
| |
| static u64 vgic_sanitise_pendbaser(u64 reg) |
| { |
| reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK, |
| GICR_PENDBASER_SHAREABILITY_SHIFT, |
| vgic_sanitise_shareability); |
| reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK, |
| GICR_PENDBASER_INNER_CACHEABILITY_SHIFT, |
| vgic_sanitise_inner_cacheability); |
| reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK, |
| GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT, |
| vgic_sanitise_outer_cacheability); |
| |
| reg &= ~PENDBASER_RES0_MASK; |
| |
| return reg; |
| } |
| |
| static u64 vgic_sanitise_propbaser(u64 reg) |
| { |
| reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK, |
| GICR_PROPBASER_SHAREABILITY_SHIFT, |
| vgic_sanitise_shareability); |
| reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK, |
| GICR_PROPBASER_INNER_CACHEABILITY_SHIFT, |
| vgic_sanitise_inner_cacheability); |
| reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK, |
| GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT, |
| vgic_sanitise_outer_cacheability); |
| |
| reg &= ~PROPBASER_RES0_MASK; |
| return reg; |
| } |
| |
| static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| return extract_bytes(dist->propbaser, addr & 7, len); |
| } |
| |
| static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| u64 old_propbaser, propbaser; |
| |
| /* Storing a value with LPIs already enabled is undefined */ |
| if (vgic_cpu->lpis_enabled) |
| return; |
| |
| do { |
| old_propbaser = READ_ONCE(dist->propbaser); |
| propbaser = old_propbaser; |
| propbaser = update_64bit_reg(propbaser, addr & 4, len, val); |
| propbaser = vgic_sanitise_propbaser(propbaser); |
| } while (cmpxchg64(&dist->propbaser, old_propbaser, |
| propbaser) != old_propbaser); |
| } |
| |
| static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| u64 value = vgic_cpu->pendbaser; |
| |
| value &= ~GICR_PENDBASER_PTZ; |
| |
| return extract_bytes(value, addr & 7, len); |
| } |
| |
| static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| u64 old_pendbaser, pendbaser; |
| |
| /* Storing a value with LPIs already enabled is undefined */ |
| if (vgic_cpu->lpis_enabled) |
| return; |
| |
| do { |
| old_pendbaser = READ_ONCE(vgic_cpu->pendbaser); |
| pendbaser = old_pendbaser; |
| pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val); |
| pendbaser = vgic_sanitise_pendbaser(pendbaser); |
| } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser, |
| pendbaser) != old_pendbaser); |
| } |
| |
| /* |
| * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the |
| * redistributors, while SPIs are covered by registers in the distributor |
| * block. Trying to set private IRQs in this block gets ignored. |
| * We take some special care here to fix the calculation of the register |
| * offset. |
| */ |
| #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \ |
| { \ |
| .reg_offset = off, \ |
| .bits_per_irq = bpi, \ |
| .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \ |
| .access_flags = acc, \ |
| .read = vgic_mmio_read_raz, \ |
| .write = vgic_mmio_write_wi, \ |
| }, { \ |
| .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \ |
| .bits_per_irq = bpi, \ |
| .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \ |
| .access_flags = acc, \ |
| .read = rd, \ |
| .write = wr, \ |
| .uaccess_read = ur, \ |
| .uaccess_write = uw, \ |
| } |
| |
| static const struct vgic_register_region vgic_v3_dist_registers[] = { |
| REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR, |
| vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, |
| NULL, vgic_mmio_uaccess_write_v3_misc, |
| 16, VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(GICD_STATUSR, |
| vgic_mmio_read_rao, vgic_mmio_write_wi, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR, |
| vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER, |
| vgic_mmio_read_enable, vgic_mmio_write_senable, |
| NULL, vgic_uaccess_write_senable, 1, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER, |
| vgic_mmio_read_enable, vgic_mmio_write_cenable, |
| NULL, vgic_uaccess_write_cenable, 1, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR, |
| vgic_mmio_read_pending, vgic_mmio_write_spending, |
| vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR, |
| vgic_mmio_read_pending, vgic_mmio_write_cpending, |
| vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER, |
| vgic_mmio_read_active, vgic_mmio_write_sactive, |
| vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER, |
| vgic_mmio_read_active, vgic_mmio_write_cactive, |
| vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, |
| 1, VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR, |
| vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL, |
| 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR, |
| vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8, |
| VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR, |
| vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR, |
| vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER, |
| vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64, |
| VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(GICD_IDREGS, |
| vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48, |
| VGIC_ACCESS_32bit), |
| }; |
| |
| static const struct vgic_register_region vgic_v3_rd_registers[] = { |
| /* RD_base registers */ |
| REGISTER_DESC_WITH_LENGTH(GICR_CTLR, |
| vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(GICR_STATUSR, |
| vgic_mmio_read_raz, vgic_mmio_write_wi, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(GICR_IIDR, |
| vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(GICR_TYPER, |
| vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8, |
| VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(GICR_WAKER, |
| vgic_mmio_read_raz, vgic_mmio_write_wi, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER, |
| vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8, |
| VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER, |
| vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8, |
| VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(GICR_IDREGS, |
| vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48, |
| VGIC_ACCESS_32bit), |
| /* SGI_base registers */ |
| REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0, |
| vgic_mmio_read_group, vgic_mmio_write_group, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0, |
| vgic_mmio_read_enable, vgic_mmio_write_senable, |
| NULL, vgic_uaccess_write_senable, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0, |
| vgic_mmio_read_enable, vgic_mmio_write_cenable, |
| NULL, vgic_uaccess_write_cenable, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0, |
| vgic_mmio_read_pending, vgic_mmio_write_spending, |
| vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0, |
| vgic_mmio_read_pending, vgic_mmio_write_cpending, |
| vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0, |
| vgic_mmio_read_active, vgic_mmio_write_sactive, |
| vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0, |
| vgic_mmio_read_active, vgic_mmio_write_cactive, |
| vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0, |
| vgic_mmio_read_priority, vgic_mmio_write_priority, 32, |
| VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), |
| REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0, |
| vgic_mmio_read_config, vgic_mmio_write_config, 8, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0, |
| vgic_mmio_read_raz, vgic_mmio_write_wi, 4, |
| VGIC_ACCESS_32bit), |
| REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR, |
| vgic_mmio_read_raz, vgic_mmio_write_wi, 4, |
| VGIC_ACCESS_32bit), |
| }; |
| |
| unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev) |
| { |
| dev->regions = vgic_v3_dist_registers; |
| dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers); |
| |
| kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops); |
| |
| return SZ_64K; |
| } |
| |
| /** |
| * vgic_register_redist_iodev - register a single redist iodev |
| * @vcpu: The VCPU to which the redistributor belongs |
| * |
| * Register a KVM iodev for this VCPU's redistributor using the address |
| * provided. |
| * |
| * Return 0 on success, -ERRNO otherwise. |
| */ |
| int vgic_register_redist_iodev(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct vgic_dist *vgic = &kvm->arch.vgic; |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev; |
| struct vgic_redist_region *rdreg; |
| gpa_t rd_base; |
| int ret; |
| |
| if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) |
| return 0; |
| |
| /* |
| * We may be creating VCPUs before having set the base address for the |
| * redistributor region, in which case we will come back to this |
| * function for all VCPUs when the base address is set. Just return |
| * without doing any work for now. |
| */ |
| rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions); |
| if (!rdreg) |
| return 0; |
| |
| if (!vgic_v3_check_base(kvm)) |
| return -EINVAL; |
| |
| vgic_cpu->rdreg = rdreg; |
| |
| rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE; |
| |
| kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops); |
| rd_dev->base_addr = rd_base; |
| rd_dev->iodev_type = IODEV_REDIST; |
| rd_dev->regions = vgic_v3_rd_registers; |
| rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers); |
| rd_dev->redist_vcpu = vcpu; |
| |
| mutex_lock(&kvm->slots_lock); |
| ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base, |
| 2 * SZ_64K, &rd_dev->dev); |
| mutex_unlock(&kvm->slots_lock); |
| |
| if (ret) |
| return ret; |
| |
| rdreg->free_index++; |
| return 0; |
| } |
| |
| static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev; |
| |
| kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev); |
| } |
| |
| static int vgic_register_all_redist_iodevs(struct kvm *kvm) |
| { |
| struct kvm_vcpu *vcpu; |
| int c, ret = 0; |
| |
| kvm_for_each_vcpu(c, vcpu, kvm) { |
| ret = vgic_register_redist_iodev(vcpu); |
| if (ret) |
| break; |
| } |
| |
| if (ret) { |
| /* The current c failed, so we start with the previous one. */ |
| mutex_lock(&kvm->slots_lock); |
| for (c--; c >= 0; c--) { |
| vcpu = kvm_get_vcpu(kvm, c); |
| vgic_unregister_redist_iodev(vcpu); |
| } |
| mutex_unlock(&kvm->slots_lock); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * vgic_v3_insert_redist_region - Insert a new redistributor region |
| * |
| * Performs various checks before inserting the rdist region in the list. |
| * Those tests depend on whether the size of the rdist region is known |
| * (ie. count != 0). The list is sorted by rdist region index. |
| * |
| * @kvm: kvm handle |
| * @index: redist region index |
| * @base: base of the new rdist region |
| * @count: number of redistributors the region is made of (0 in the old style |
| * single region, whose size is induced from the number of vcpus) |
| * |
| * Return 0 on success, < 0 otherwise |
| */ |
| static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index, |
| gpa_t base, uint32_t count) |
| { |
| struct vgic_dist *d = &kvm->arch.vgic; |
| struct vgic_redist_region *rdreg; |
| struct list_head *rd_regions = &d->rd_regions; |
| size_t size = count * KVM_VGIC_V3_REDIST_SIZE; |
| int ret; |
| |
| /* single rdist region already set ?*/ |
| if (!count && !list_empty(rd_regions)) |
| return -EINVAL; |
| |
| /* cross the end of memory ? */ |
| if (base + size < base) |
| return -EINVAL; |
| |
| if (list_empty(rd_regions)) { |
| if (index != 0) |
| return -EINVAL; |
| } else { |
| rdreg = list_last_entry(rd_regions, |
| struct vgic_redist_region, list); |
| if (index != rdreg->index + 1) |
| return -EINVAL; |
| |
| /* Cannot add an explicitly sized regions after legacy region */ |
| if (!rdreg->count) |
| return -EINVAL; |
| } |
| |
| /* |
| * For legacy single-region redistributor regions (!count), |
| * check that the redistributor region does not overlap with the |
| * distributor's address space. |
| */ |
| if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) && |
| vgic_dist_overlap(kvm, base, size)) |
| return -EINVAL; |
| |
| /* collision with any other rdist region? */ |
| if (vgic_v3_rdist_overlap(kvm, base, size)) |
| return -EINVAL; |
| |
| rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL); |
| if (!rdreg) |
| return -ENOMEM; |
| |
| rdreg->base = VGIC_ADDR_UNDEF; |
| |
| ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K); |
| if (ret) |
| goto free; |
| |
| rdreg->base = base; |
| rdreg->count = count; |
| rdreg->free_index = 0; |
| rdreg->index = index; |
| |
| list_add_tail(&rdreg->list, rd_regions); |
| return 0; |
| free: |
| kfree(rdreg); |
| return ret; |
| } |
| |
| int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count) |
| { |
| int ret; |
| |
| ret = vgic_v3_insert_redist_region(kvm, index, addr, count); |
| if (ret) |
| return ret; |
| |
| /* |
| * Register iodevs for each existing VCPU. Adding more VCPUs |
| * afterwards will register the iodevs when needed. |
| */ |
| ret = vgic_register_all_redist_iodevs(kvm); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr) |
| { |
| const struct vgic_register_region *region; |
| struct vgic_io_device iodev; |
| struct vgic_reg_attr reg_attr; |
| struct kvm_vcpu *vcpu; |
| gpa_t addr; |
| int ret; |
| |
| ret = vgic_v3_parse_attr(dev, attr, ®_attr); |
| if (ret) |
| return ret; |
| |
| vcpu = reg_attr.vcpu; |
| addr = reg_attr.addr; |
| |
| switch (attr->group) { |
| case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: |
| iodev.regions = vgic_v3_dist_registers; |
| iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers); |
| iodev.base_addr = 0; |
| break; |
| case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{ |
| iodev.regions = vgic_v3_rd_registers; |
| iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers); |
| iodev.base_addr = 0; |
| break; |
| } |
| case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: { |
| u64 reg, id; |
| |
| id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK); |
| return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, ®); |
| } |
| default: |
| return -ENXIO; |
| } |
| |
| /* We only support aligned 32-bit accesses. */ |
| if (addr & 3) |
| return -ENXIO; |
| |
| region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32)); |
| if (!region) |
| return -ENXIO; |
| |
| return 0; |
| } |
| /* |
| * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI |
| * generation register ICC_SGI1R_EL1) with a given VCPU. |
| * If the VCPU's MPIDR matches, return the level0 affinity, otherwise |
| * return -1. |
| */ |
| static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu) |
| { |
| unsigned long affinity; |
| int level0; |
| |
| /* |
| * Split the current VCPU's MPIDR into affinity level 0 and the |
| * rest as this is what we have to compare against. |
| */ |
| affinity = kvm_vcpu_get_mpidr_aff(vcpu); |
| level0 = MPIDR_AFFINITY_LEVEL(affinity, 0); |
| affinity &= ~MPIDR_LEVEL_MASK; |
| |
| /* bail out if the upper three levels don't match */ |
| if (sgi_aff != affinity) |
| return -1; |
| |
| /* Is this VCPU's bit set in the mask ? */ |
| if (!(sgi_cpu_mask & BIT(level0))) |
| return -1; |
| |
| return level0; |
| } |
| |
| /* |
| * The ICC_SGI* registers encode the affinity differently from the MPIDR, |
| * so provide a wrapper to use the existing defines to isolate a certain |
| * affinity level. |
| */ |
| #define SGI_AFFINITY_LEVEL(reg, level) \ |
| ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \ |
| >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level)) |
| |
| /** |
| * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs |
| * @vcpu: The VCPU requesting a SGI |
| * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU |
| * @allow_group1: Does the sysreg access allow generation of G1 SGIs |
| * |
| * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register. |
| * This will trap in sys_regs.c and call this function. |
| * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the |
| * target processors as well as a bitmask of 16 Aff0 CPUs. |
| * If the interrupt routing mode bit is not set, we iterate over all VCPUs to |
| * check for matching ones. If this bit is set, we signal all, but not the |
| * calling VCPU. |
| */ |
| void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_vcpu *c_vcpu; |
| u16 target_cpus; |
| u64 mpidr; |
| int sgi, c; |
| int vcpu_id = vcpu->vcpu_id; |
| bool broadcast; |
| unsigned long flags; |
| |
| sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT; |
| broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT); |
| target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT; |
| mpidr = SGI_AFFINITY_LEVEL(reg, 3); |
| mpidr |= SGI_AFFINITY_LEVEL(reg, 2); |
| mpidr |= SGI_AFFINITY_LEVEL(reg, 1); |
| |
| /* |
| * We iterate over all VCPUs to find the MPIDRs matching the request. |
| * If we have handled one CPU, we clear its bit to detect early |
| * if we are already finished. This avoids iterating through all |
| * VCPUs when most of the times we just signal a single VCPU. |
| */ |
| kvm_for_each_vcpu(c, c_vcpu, kvm) { |
| struct vgic_irq *irq; |
| |
| /* Exit early if we have dealt with all requested CPUs */ |
| if (!broadcast && target_cpus == 0) |
| break; |
| |
| /* Don't signal the calling VCPU */ |
| if (broadcast && c == vcpu_id) |
| continue; |
| |
| if (!broadcast) { |
| int level0; |
| |
| level0 = match_mpidr(mpidr, target_cpus, c_vcpu); |
| if (level0 == -1) |
| continue; |
| |
| /* remove this matching VCPU from the mask */ |
| target_cpus &= ~BIT(level0); |
| } |
| |
| irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi); |
| |
| raw_spin_lock_irqsave(&irq->irq_lock, flags); |
| |
| /* |
| * An access targetting Group0 SGIs can only generate |
| * those, while an access targetting Group1 SGIs can |
| * generate interrupts of either group. |
| */ |
| if (!irq->group || allow_group1) { |
| if (!irq->hw) { |
| irq->pending_latch = true; |
| vgic_queue_irq_unlock(vcpu->kvm, irq, flags); |
| } else { |
| /* HW SGI? Ask the GIC to inject it */ |
| int err; |
| err = irq_set_irqchip_state(irq->host_irq, |
| IRQCHIP_STATE_PENDING, |
| true); |
| WARN_RATELIMIT(err, "IRQ %d", irq->host_irq); |
| raw_spin_unlock_irqrestore(&irq->irq_lock, flags); |
| } |
| } else { |
| raw_spin_unlock_irqrestore(&irq->irq_lock, flags); |
| } |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write, |
| int offset, u32 *val) |
| { |
| struct vgic_io_device dev = { |
| .regions = vgic_v3_dist_registers, |
| .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers), |
| }; |
| |
| return vgic_uaccess(vcpu, &dev, is_write, offset, val); |
| } |
| |
| int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write, |
| int offset, u32 *val) |
| { |
| struct vgic_io_device rd_dev = { |
| .regions = vgic_v3_rd_registers, |
| .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers), |
| }; |
| |
| return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val); |
| } |
| |
| int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write, |
| u32 intid, u64 *val) |
| { |
| if (intid % 32) |
| return -EINVAL; |
| |
| if (is_write) |
| vgic_write_irq_line_level_info(vcpu, intid, *val); |
| else |
| *val = vgic_read_irq_line_level_info(vcpu, intid); |
| |
| return 0; |
| } |