blob: b88bb1f608fc09d932d4497f9733ae330dff2b35 [file] [log] [blame]
/*
* core routines for the asynchronous memory transfer/transform api
*
* Copyright © 2006, Intel Corporation.
*
* Dan Williams <dan.j.williams@intel.com>
*
* with architecture considerations by:
* Neil Brown <neilb@suse.de>
* Jeff Garzik <jeff@garzik.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
#include <linux/rculist.h>
#include <linux/kernel.h>
#include <linux/async_tx.h>
#ifdef CONFIG_DMA_ENGINE
static enum dma_state_client
dma_channel_add_remove(struct dma_client *client,
struct dma_chan *chan, enum dma_state state);
static struct dma_client async_tx_dma = {
.event_callback = dma_channel_add_remove,
/* .cap_mask == 0 defaults to all channels */
};
/**
* async_tx_lock - protect modification of async_tx_master_list and serialize
* rebalance operations
*/
static DEFINE_SPINLOCK(async_tx_lock);
static LIST_HEAD(async_tx_master_list);
/* async_tx_issue_pending_all - start all transactions on all channels */
void async_tx_issue_pending_all(void)
{
struct dma_chan_ref *ref;
rcu_read_lock();
list_for_each_entry_rcu(ref, &async_tx_master_list, node)
ref->chan->device->device_issue_pending(ref->chan);
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(async_tx_issue_pending_all);
static void
free_dma_chan_ref(struct rcu_head *rcu)
{
struct dma_chan_ref *ref;
ref = container_of(rcu, struct dma_chan_ref, rcu);
kfree(ref);
}
static void
init_dma_chan_ref(struct dma_chan_ref *ref, struct dma_chan *chan)
{
INIT_LIST_HEAD(&ref->node);
INIT_RCU_HEAD(&ref->rcu);
ref->chan = chan;
atomic_set(&ref->count, 0);
}
static enum dma_state_client
dma_channel_add_remove(struct dma_client *client,
struct dma_chan *chan, enum dma_state state)
{
unsigned long found, flags;
struct dma_chan_ref *master_ref, *ref;
enum dma_state_client ack = DMA_DUP; /* default: take no action */
switch (state) {
case DMA_RESOURCE_AVAILABLE:
found = 0;
rcu_read_lock();
list_for_each_entry_rcu(ref, &async_tx_master_list, node)
if (ref->chan == chan) {
found = 1;
break;
}
rcu_read_unlock();
pr_debug("async_tx: dma resource available [%s]\n",
found ? "old" : "new");
if (!found)
ack = DMA_ACK;
else
break;
/* add the channel to the generic management list */
master_ref = kmalloc(sizeof(*master_ref), GFP_KERNEL);
if (master_ref) {
init_dma_chan_ref(master_ref, chan);
spin_lock_irqsave(&async_tx_lock, flags);
list_add_tail_rcu(&master_ref->node,
&async_tx_master_list);
spin_unlock_irqrestore(&async_tx_lock,
flags);
} else {
printk(KERN_WARNING "async_tx: unable to create"
" new master entry in response to"
" a DMA_RESOURCE_ADDED event"
" (-ENOMEM)\n");
return 0;
}
break;
case DMA_RESOURCE_REMOVED:
found = 0;
spin_lock_irqsave(&async_tx_lock, flags);
list_for_each_entry(ref, &async_tx_master_list, node)
if (ref->chan == chan) {
list_del_rcu(&ref->node);
call_rcu(&ref->rcu, free_dma_chan_ref);
found = 1;
break;
}
spin_unlock_irqrestore(&async_tx_lock, flags);
pr_debug("async_tx: dma resource removed [%s]\n",
found ? "ours" : "not ours");
if (found)
ack = DMA_ACK;
else
break;
break;
case DMA_RESOURCE_SUSPEND:
case DMA_RESOURCE_RESUME:
printk(KERN_WARNING "async_tx: does not support dma channel"
" suspend/resume\n");
break;
default:
BUG();
}
return ack;
}
static int __init async_tx_init(void)
{
dma_async_client_register(&async_tx_dma);
dma_async_client_chan_request(&async_tx_dma);
printk(KERN_INFO "async_tx: api initialized (async)\n");
return 0;
}
static void __exit async_tx_exit(void)
{
dma_async_client_unregister(&async_tx_dma);
}
/**
* __async_tx_find_channel - find a channel to carry out the operation or let
* the transaction execute synchronously
* @depend_tx: transaction dependency
* @tx_type: transaction type
*/
struct dma_chan *
__async_tx_find_channel(struct dma_async_tx_descriptor *depend_tx,
enum dma_transaction_type tx_type)
{
/* see if we can keep the chain on one channel */
if (depend_tx &&
dma_has_cap(tx_type, depend_tx->chan->device->cap_mask))
return depend_tx->chan;
return dma_find_channel(tx_type);
}
EXPORT_SYMBOL_GPL(__async_tx_find_channel);
#else
static int __init async_tx_init(void)
{
printk(KERN_INFO "async_tx: api initialized (sync-only)\n");
return 0;
}
static void __exit async_tx_exit(void)
{
do { } while (0);
}
#endif
/**
* async_tx_channel_switch - queue an interrupt descriptor with a dependency
* pre-attached.
* @depend_tx: the operation that must finish before the new operation runs
* @tx: the new operation
*/
static void
async_tx_channel_switch(struct dma_async_tx_descriptor *depend_tx,
struct dma_async_tx_descriptor *tx)
{
struct dma_chan *chan;
struct dma_device *device;
struct dma_async_tx_descriptor *intr_tx = (void *) ~0;
/* first check to see if we can still append to depend_tx */
spin_lock_bh(&depend_tx->lock);
if (depend_tx->parent && depend_tx->chan == tx->chan) {
tx->parent = depend_tx;
depend_tx->next = tx;
intr_tx = NULL;
}
spin_unlock_bh(&depend_tx->lock);
if (!intr_tx)
return;
chan = depend_tx->chan;
device = chan->device;
/* see if we can schedule an interrupt
* otherwise poll for completion
*/
if (dma_has_cap(DMA_INTERRUPT, device->cap_mask))
intr_tx = device->device_prep_dma_interrupt(chan, 0);
else
intr_tx = NULL;
if (intr_tx) {
intr_tx->callback = NULL;
intr_tx->callback_param = NULL;
tx->parent = intr_tx;
/* safe to set ->next outside the lock since we know we are
* not submitted yet
*/
intr_tx->next = tx;
/* check if we need to append */
spin_lock_bh(&depend_tx->lock);
if (depend_tx->parent) {
intr_tx->parent = depend_tx;
depend_tx->next = intr_tx;
async_tx_ack(intr_tx);
intr_tx = NULL;
}
spin_unlock_bh(&depend_tx->lock);
if (intr_tx) {
intr_tx->parent = NULL;
intr_tx->tx_submit(intr_tx);
async_tx_ack(intr_tx);
}
} else {
if (dma_wait_for_async_tx(depend_tx) == DMA_ERROR)
panic("%s: DMA_ERROR waiting for depend_tx\n",
__func__);
tx->tx_submit(tx);
}
}
/**
* submit_disposition - while holding depend_tx->lock we must avoid submitting
* new operations to prevent a circular locking dependency with
* drivers that already hold a channel lock when calling
* async_tx_run_dependencies.
* @ASYNC_TX_SUBMITTED: we were able to append the new operation under the lock
* @ASYNC_TX_CHANNEL_SWITCH: when the lock is dropped schedule a channel switch
* @ASYNC_TX_DIRECT_SUBMIT: when the lock is dropped submit directly
*/
enum submit_disposition {
ASYNC_TX_SUBMITTED,
ASYNC_TX_CHANNEL_SWITCH,
ASYNC_TX_DIRECT_SUBMIT,
};
void
async_tx_submit(struct dma_chan *chan, struct dma_async_tx_descriptor *tx,
enum async_tx_flags flags, struct dma_async_tx_descriptor *depend_tx,
dma_async_tx_callback cb_fn, void *cb_param)
{
tx->callback = cb_fn;
tx->callback_param = cb_param;
if (depend_tx) {
enum submit_disposition s;
/* sanity check the dependency chain:
* 1/ if ack is already set then we cannot be sure
* we are referring to the correct operation
* 2/ dependencies are 1:1 i.e. two transactions can
* not depend on the same parent
*/
BUG_ON(async_tx_test_ack(depend_tx) || depend_tx->next ||
tx->parent);
/* the lock prevents async_tx_run_dependencies from missing
* the setting of ->next when ->parent != NULL
*/
spin_lock_bh(&depend_tx->lock);
if (depend_tx->parent) {
/* we have a parent so we can not submit directly
* if we are staying on the same channel: append
* else: channel switch
*/
if (depend_tx->chan == chan) {
tx->parent = depend_tx;
depend_tx->next = tx;
s = ASYNC_TX_SUBMITTED;
} else
s = ASYNC_TX_CHANNEL_SWITCH;
} else {
/* we do not have a parent so we may be able to submit
* directly if we are staying on the same channel
*/
if (depend_tx->chan == chan)
s = ASYNC_TX_DIRECT_SUBMIT;
else
s = ASYNC_TX_CHANNEL_SWITCH;
}
spin_unlock_bh(&depend_tx->lock);
switch (s) {
case ASYNC_TX_SUBMITTED:
break;
case ASYNC_TX_CHANNEL_SWITCH:
async_tx_channel_switch(depend_tx, tx);
break;
case ASYNC_TX_DIRECT_SUBMIT:
tx->parent = NULL;
tx->tx_submit(tx);
break;
}
} else {
tx->parent = NULL;
tx->tx_submit(tx);
}
if (flags & ASYNC_TX_ACK)
async_tx_ack(tx);
if (depend_tx && (flags & ASYNC_TX_DEP_ACK))
async_tx_ack(depend_tx);
}
EXPORT_SYMBOL_GPL(async_tx_submit);
/**
* async_trigger_callback - schedules the callback function to be run after
* any dependent operations have been completed.
* @flags: ASYNC_TX_ACK, ASYNC_TX_DEP_ACK
* @depend_tx: 'callback' requires the completion of this transaction
* @cb_fn: function to call after depend_tx completes
* @cb_param: parameter to pass to the callback routine
*/
struct dma_async_tx_descriptor *
async_trigger_callback(enum async_tx_flags flags,
struct dma_async_tx_descriptor *depend_tx,
dma_async_tx_callback cb_fn, void *cb_param)
{
struct dma_chan *chan;
struct dma_device *device;
struct dma_async_tx_descriptor *tx;
if (depend_tx) {
chan = depend_tx->chan;
device = chan->device;
/* see if we can schedule an interrupt
* otherwise poll for completion
*/
if (device && !dma_has_cap(DMA_INTERRUPT, device->cap_mask))
device = NULL;
tx = device ? device->device_prep_dma_interrupt(chan, 0) : NULL;
} else
tx = NULL;
if (tx) {
pr_debug("%s: (async)\n", __func__);
async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param);
} else {
pr_debug("%s: (sync)\n", __func__);
/* wait for any prerequisite operations */
async_tx_quiesce(&depend_tx);
async_tx_sync_epilog(cb_fn, cb_param);
}
return tx;
}
EXPORT_SYMBOL_GPL(async_trigger_callback);
/**
* async_tx_quiesce - ensure tx is complete and freeable upon return
* @tx - transaction to quiesce
*/
void async_tx_quiesce(struct dma_async_tx_descriptor **tx)
{
if (*tx) {
/* if ack is already set then we cannot be sure
* we are referring to the correct operation
*/
BUG_ON(async_tx_test_ack(*tx));
if (dma_wait_for_async_tx(*tx) == DMA_ERROR)
panic("DMA_ERROR waiting for transaction\n");
async_tx_ack(*tx);
*tx = NULL;
}
}
EXPORT_SYMBOL_GPL(async_tx_quiesce);
module_init(async_tx_init);
module_exit(async_tx_exit);
MODULE_AUTHOR("Intel Corporation");
MODULE_DESCRIPTION("Asynchronous Bulk Memory Transactions API");
MODULE_LICENSE("GPL");