| /* Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com> |
| * Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com> |
| * Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org> |
| * Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com> |
| * Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de> |
| * Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com> |
| * Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com> |
| * Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com> |
| * <http://rt2x00.serialmonkey.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the |
| * Free Software Foundation, Inc., |
| * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| /* Module: rt2800mmio |
| * Abstract: rt2800 MMIO device routines. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/export.h> |
| |
| #include "rt2x00.h" |
| #include "rt2x00mmio.h" |
| #include "rt2800.h" |
| #include "rt2800lib.h" |
| #include "rt2800mmio.h" |
| |
| /* |
| * TX descriptor initialization |
| */ |
| __le32 *rt2800mmio_get_txwi(struct queue_entry *entry) |
| { |
| return (__le32 *) entry->skb->data; |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi); |
| |
| void rt2800mmio_write_tx_desc(struct queue_entry *entry, |
| struct txentry_desc *txdesc) |
| { |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| struct queue_entry_priv_mmio *entry_priv = entry->priv_data; |
| __le32 *txd = entry_priv->desc; |
| u32 word; |
| const unsigned int txwi_size = entry->queue->winfo_size; |
| |
| /* |
| * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1 |
| * must contains a TXWI structure + 802.11 header + padding + 802.11 |
| * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and |
| * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11 |
| * data. It means that LAST_SEC0 is always 0. |
| */ |
| |
| /* |
| * Initialize TX descriptor |
| */ |
| word = 0; |
| rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma); |
| rt2x00_desc_write(txd, 0, word); |
| |
| word = 0; |
| rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len); |
| rt2x00_set_field32(&word, TXD_W1_LAST_SEC1, |
| !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W1_BURST, |
| test_bit(ENTRY_TXD_BURST, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size); |
| rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0); |
| rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0); |
| rt2x00_desc_write(txd, 1, word); |
| |
| word = 0; |
| rt2x00_set_field32(&word, TXD_W2_SD_PTR1, |
| skbdesc->skb_dma + txwi_size); |
| rt2x00_desc_write(txd, 2, word); |
| |
| word = 0; |
| rt2x00_set_field32(&word, TXD_W3_WIV, |
| !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXD_W3_QSEL, 2); |
| rt2x00_desc_write(txd, 3, word); |
| |
| /* |
| * Register descriptor details in skb frame descriptor. |
| */ |
| skbdesc->desc = txd; |
| skbdesc->desc_len = TXD_DESC_SIZE; |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc); |
| |
| /* |
| * RX control handlers |
| */ |
| void rt2800mmio_fill_rxdone(struct queue_entry *entry, |
| struct rxdone_entry_desc *rxdesc) |
| { |
| struct queue_entry_priv_mmio *entry_priv = entry->priv_data; |
| __le32 *rxd = entry_priv->desc; |
| u32 word; |
| |
| rt2x00_desc_read(rxd, 3, &word); |
| |
| if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR)) |
| rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; |
| |
| /* |
| * Unfortunately we don't know the cipher type used during |
| * decryption. This prevents us from correct providing |
| * correct statistics through debugfs. |
| */ |
| rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR); |
| |
| if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) { |
| /* |
| * Hardware has stripped IV/EIV data from 802.11 frame during |
| * decryption. Unfortunately the descriptor doesn't contain |
| * any fields with the EIV/IV data either, so they can't |
| * be restored by rt2x00lib. |
| */ |
| rxdesc->flags |= RX_FLAG_IV_STRIPPED; |
| |
| /* |
| * The hardware has already checked the Michael Mic and has |
| * stripped it from the frame. Signal this to mac80211. |
| */ |
| rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; |
| |
| if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) |
| rxdesc->flags |= RX_FLAG_DECRYPTED; |
| else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) |
| rxdesc->flags |= RX_FLAG_MMIC_ERROR; |
| } |
| |
| if (rt2x00_get_field32(word, RXD_W3_MY_BSS)) |
| rxdesc->dev_flags |= RXDONE_MY_BSS; |
| |
| if (rt2x00_get_field32(word, RXD_W3_L2PAD)) |
| rxdesc->dev_flags |= RXDONE_L2PAD; |
| |
| /* |
| * Process the RXWI structure that is at the start of the buffer. |
| */ |
| rt2800_process_rxwi(entry, rxdesc); |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone); |
| |
| /* |
| * Interrupt functions. |
| */ |
| static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev) |
| { |
| struct ieee80211_conf conf = { .flags = 0 }; |
| struct rt2x00lib_conf libconf = { .conf = &conf }; |
| |
| rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS); |
| } |
| |
| static bool rt2800mmio_txdone_entry_check(struct queue_entry *entry, u32 status) |
| { |
| __le32 *txwi; |
| u32 word; |
| int wcid, tx_wcid; |
| |
| wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID); |
| |
| txwi = rt2800_drv_get_txwi(entry); |
| rt2x00_desc_read(txwi, 1, &word); |
| tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID); |
| |
| return (tx_wcid == wcid); |
| } |
| |
| static bool rt2800mmio_txdone_find_entry(struct queue_entry *entry, void *data) |
| { |
| u32 status = *(u32 *)data; |
| |
| /* |
| * rt2800pci hardware might reorder frames when exchanging traffic |
| * with multiple BA enabled STAs. |
| * |
| * For example, a tx queue |
| * [ STA1 | STA2 | STA1 | STA2 ] |
| * can result in tx status reports |
| * [ STA1 | STA1 | STA2 | STA2 ] |
| * when the hw decides to aggregate the frames for STA1 into one AMPDU. |
| * |
| * To mitigate this effect, associate the tx status to the first frame |
| * in the tx queue with a matching wcid. |
| */ |
| if (rt2800mmio_txdone_entry_check(entry, status) && |
| !test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) { |
| /* |
| * Got a matching frame, associate the tx status with |
| * the frame |
| */ |
| entry->status = status; |
| set_bit(ENTRY_DATA_STATUS_SET, &entry->flags); |
| return true; |
| } |
| |
| /* Check the next frame */ |
| return false; |
| } |
| |
| static bool rt2800mmio_txdone_match_first(struct queue_entry *entry, void *data) |
| { |
| u32 status = *(u32 *)data; |
| |
| /* |
| * Find the first frame without tx status and assign this status to it |
| * regardless if it matches or not. |
| */ |
| if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) { |
| /* |
| * Got a matching frame, associate the tx status with |
| * the frame |
| */ |
| entry->status = status; |
| set_bit(ENTRY_DATA_STATUS_SET, &entry->flags); |
| return true; |
| } |
| |
| /* Check the next frame */ |
| return false; |
| } |
| static bool rt2800mmio_txdone_release_entries(struct queue_entry *entry, |
| void *data) |
| { |
| if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) { |
| rt2800_txdone_entry(entry, entry->status, |
| rt2800mmio_get_txwi(entry)); |
| return false; |
| } |
| |
| /* No more frames to release */ |
| return true; |
| } |
| |
| static bool rt2800mmio_txdone(struct rt2x00_dev *rt2x00dev) |
| { |
| struct data_queue *queue; |
| u32 status; |
| u8 qid; |
| int max_tx_done = 16; |
| |
| while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) { |
| qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE); |
| if (unlikely(qid >= QID_RX)) { |
| /* |
| * Unknown queue, this shouldn't happen. Just drop |
| * this tx status. |
| */ |
| rt2x00_warn(rt2x00dev, "Got TX status report with unexpected pid %u, dropping\n", |
| qid); |
| break; |
| } |
| |
| queue = rt2x00queue_get_tx_queue(rt2x00dev, qid); |
| if (unlikely(queue == NULL)) { |
| /* |
| * The queue is NULL, this shouldn't happen. Stop |
| * processing here and drop the tx status |
| */ |
| rt2x00_warn(rt2x00dev, "Got TX status for an unavailable queue %u, dropping\n", |
| qid); |
| break; |
| } |
| |
| if (unlikely(rt2x00queue_empty(queue))) { |
| /* |
| * The queue is empty. Stop processing here |
| * and drop the tx status. |
| */ |
| rt2x00_warn(rt2x00dev, "Got TX status for an empty queue %u, dropping\n", |
| qid); |
| break; |
| } |
| |
| /* |
| * Let's associate this tx status with the first |
| * matching frame. |
| */ |
| if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE, |
| Q_INDEX, &status, |
| rt2800mmio_txdone_find_entry)) { |
| /* |
| * We cannot match the tx status to any frame, so just |
| * use the first one. |
| */ |
| if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE, |
| Q_INDEX, &status, |
| rt2800mmio_txdone_match_first)) { |
| rt2x00_warn(rt2x00dev, "No frame found for TX status on queue %u, dropping\n", |
| qid); |
| break; |
| } |
| } |
| |
| /* |
| * Release all frames with a valid tx status. |
| */ |
| rt2x00queue_for_each_entry(queue, Q_INDEX_DONE, |
| Q_INDEX, NULL, |
| rt2800mmio_txdone_release_entries); |
| |
| if (--max_tx_done == 0) |
| break; |
| } |
| |
| return !max_tx_done; |
| } |
| |
| static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00_field32 irq_field) |
| { |
| u32 reg; |
| |
| /* |
| * Enable a single interrupt. The interrupt mask register |
| * access needs locking. |
| */ |
| spin_lock_irq(&rt2x00dev->irqmask_lock); |
| rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, ®); |
| rt2x00_set_field32(®, irq_field, 1); |
| rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); |
| spin_unlock_irq(&rt2x00dev->irqmask_lock); |
| } |
| |
| void rt2800mmio_txstatus_tasklet(unsigned long data) |
| { |
| struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; |
| if (rt2800mmio_txdone(rt2x00dev)) |
| tasklet_schedule(&rt2x00dev->txstatus_tasklet); |
| |
| /* |
| * No need to enable the tx status interrupt here as we always |
| * leave it enabled to minimize the possibility of a tx status |
| * register overflow. See comment in interrupt handler. |
| */ |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet); |
| |
| void rt2800mmio_pretbtt_tasklet(unsigned long data) |
| { |
| struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; |
| rt2x00lib_pretbtt(rt2x00dev); |
| if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT); |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet); |
| |
| void rt2800mmio_tbtt_tasklet(unsigned long data) |
| { |
| struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; |
| struct rt2800_drv_data *drv_data = rt2x00dev->drv_data; |
| u32 reg; |
| |
| rt2x00lib_beacondone(rt2x00dev); |
| |
| if (rt2x00dev->intf_ap_count) { |
| /* |
| * The rt2800pci hardware tbtt timer is off by 1us per tbtt |
| * causing beacon skew and as a result causing problems with |
| * some powersaving clients over time. Shorten the beacon |
| * interval every 64 beacons by 64us to mitigate this effect. |
| */ |
| if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) { |
| rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, ®); |
| rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, |
| (rt2x00dev->beacon_int * 16) - 1); |
| rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg); |
| } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) { |
| rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, ®); |
| rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, |
| (rt2x00dev->beacon_int * 16)); |
| rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg); |
| } |
| drv_data->tbtt_tick++; |
| drv_data->tbtt_tick %= BCN_TBTT_OFFSET; |
| } |
| |
| if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT); |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet); |
| |
| void rt2800mmio_rxdone_tasklet(unsigned long data) |
| { |
| struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; |
| if (rt2x00mmio_rxdone(rt2x00dev)) |
| tasklet_schedule(&rt2x00dev->rxdone_tasklet); |
| else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE); |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet); |
| |
| void rt2800mmio_autowake_tasklet(unsigned long data) |
| { |
| struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; |
| rt2800mmio_wakeup(rt2x00dev); |
| if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| rt2800mmio_enable_interrupt(rt2x00dev, |
| INT_MASK_CSR_AUTO_WAKEUP); |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet); |
| |
| static void rt2800mmio_txstatus_interrupt(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 status; |
| int i; |
| |
| /* |
| * The TX_FIFO_STATUS interrupt needs special care. We should |
| * read TX_STA_FIFO but we should do it immediately as otherwise |
| * the register can overflow and we would lose status reports. |
| * |
| * Hence, read the TX_STA_FIFO register and copy all tx status |
| * reports into a kernel FIFO which is handled in the txstatus |
| * tasklet. We use a tasklet to process the tx status reports |
| * because we can schedule the tasklet multiple times (when the |
| * interrupt fires again during tx status processing). |
| * |
| * Furthermore we don't disable the TX_FIFO_STATUS |
| * interrupt here but leave it enabled so that the TX_STA_FIFO |
| * can also be read while the tx status tasklet gets executed. |
| * |
| * Since we have only one producer and one consumer we don't |
| * need to lock the kfifo. |
| */ |
| for (i = 0; i < rt2x00dev->tx->limit; i++) { |
| rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO, &status); |
| |
| if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID)) |
| break; |
| |
| if (!kfifo_put(&rt2x00dev->txstatus_fifo, status)) { |
| rt2x00_warn(rt2x00dev, "TX status FIFO overrun, drop tx status report\n"); |
| break; |
| } |
| } |
| |
| /* Schedule the tasklet for processing the tx status. */ |
| tasklet_schedule(&rt2x00dev->txstatus_tasklet); |
| } |
| |
| irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance) |
| { |
| struct rt2x00_dev *rt2x00dev = dev_instance; |
| u32 reg, mask; |
| |
| /* Read status and ACK all interrupts */ |
| rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, ®); |
| rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg); |
| |
| if (!reg) |
| return IRQ_NONE; |
| |
| if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) |
| return IRQ_HANDLED; |
| |
| /* |
| * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits |
| * for interrupts and interrupt masks we can just use the value of |
| * INT_SOURCE_CSR to create the interrupt mask. |
| */ |
| mask = ~reg; |
| |
| if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) { |
| rt2800mmio_txstatus_interrupt(rt2x00dev); |
| /* |
| * Never disable the TX_FIFO_STATUS interrupt. |
| */ |
| rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1); |
| } |
| |
| if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT)) |
| tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet); |
| |
| if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT)) |
| tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet); |
| |
| if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE)) |
| tasklet_schedule(&rt2x00dev->rxdone_tasklet); |
| |
| if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) |
| tasklet_schedule(&rt2x00dev->autowake_tasklet); |
| |
| /* |
| * Disable all interrupts for which a tasklet was scheduled right now, |
| * the tasklet will reenable the appropriate interrupts. |
| */ |
| spin_lock(&rt2x00dev->irqmask_lock); |
| rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, ®); |
| reg &= mask; |
| rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); |
| spin_unlock(&rt2x00dev->irqmask_lock); |
| |
| return IRQ_HANDLED; |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_interrupt); |
| |
| void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev, |
| enum dev_state state) |
| { |
| u32 reg; |
| unsigned long flags; |
| |
| /* |
| * When interrupts are being enabled, the interrupt registers |
| * should clear the register to assure a clean state. |
| */ |
| if (state == STATE_RADIO_IRQ_ON) { |
| rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, ®); |
| rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg); |
| } |
| |
| spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); |
| reg = 0; |
| if (state == STATE_RADIO_IRQ_ON) { |
| rt2x00_set_field32(®, INT_MASK_CSR_RX_DONE, 1); |
| rt2x00_set_field32(®, INT_MASK_CSR_TBTT, 1); |
| rt2x00_set_field32(®, INT_MASK_CSR_PRE_TBTT, 1); |
| rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, 1); |
| rt2x00_set_field32(®, INT_MASK_CSR_AUTO_WAKEUP, 1); |
| } |
| rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg); |
| spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); |
| |
| if (state == STATE_RADIO_IRQ_OFF) { |
| /* |
| * Wait for possibly running tasklets to finish. |
| */ |
| tasklet_kill(&rt2x00dev->txstatus_tasklet); |
| tasklet_kill(&rt2x00dev->rxdone_tasklet); |
| tasklet_kill(&rt2x00dev->autowake_tasklet); |
| tasklet_kill(&rt2x00dev->tbtt_tasklet); |
| tasklet_kill(&rt2x00dev->pretbtt_tasklet); |
| } |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq); |
| |
| /* |
| * Queue handlers. |
| */ |
| void rt2800mmio_start_queue(struct data_queue *queue) |
| { |
| struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| u32 reg; |
| |
| switch (queue->qid) { |
| case QID_RX: |
| rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, ®); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1); |
| rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg); |
| break; |
| case QID_BEACON: |
| rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, ®); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1); |
| rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1); |
| rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg); |
| |
| rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, ®); |
| rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 1); |
| rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg); |
| break; |
| default: |
| break; |
| } |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_start_queue); |
| |
| void rt2800mmio_kick_queue(struct data_queue *queue) |
| { |
| struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| struct queue_entry *entry; |
| |
| switch (queue->qid) { |
| case QID_AC_VO: |
| case QID_AC_VI: |
| case QID_AC_BE: |
| case QID_AC_BK: |
| entry = rt2x00queue_get_entry(queue, Q_INDEX); |
| rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid), |
| entry->entry_idx); |
| break; |
| case QID_MGMT: |
| entry = rt2x00queue_get_entry(queue, Q_INDEX); |
| rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5), |
| entry->entry_idx); |
| break; |
| default: |
| break; |
| } |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue); |
| |
| void rt2800mmio_stop_queue(struct data_queue *queue) |
| { |
| struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| u32 reg; |
| |
| switch (queue->qid) { |
| case QID_RX: |
| rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, ®); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0); |
| rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg); |
| break; |
| case QID_BEACON: |
| rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, ®); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0); |
| rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); |
| rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg); |
| |
| rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, ®); |
| rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 0); |
| rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg); |
| |
| /* |
| * Wait for current invocation to finish. The tasklet |
| * won't be scheduled anymore afterwards since we disabled |
| * the TBTT and PRE TBTT timer. |
| */ |
| tasklet_kill(&rt2x00dev->tbtt_tasklet); |
| tasklet_kill(&rt2x00dev->pretbtt_tasklet); |
| |
| break; |
| default: |
| break; |
| } |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue); |
| |
| void rt2800mmio_queue_init(struct data_queue *queue) |
| { |
| struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| unsigned short txwi_size, rxwi_size; |
| |
| rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size); |
| |
| switch (queue->qid) { |
| case QID_RX: |
| queue->limit = 128; |
| queue->data_size = AGGREGATION_SIZE; |
| queue->desc_size = RXD_DESC_SIZE; |
| queue->winfo_size = rxwi_size; |
| queue->priv_size = sizeof(struct queue_entry_priv_mmio); |
| break; |
| |
| case QID_AC_VO: |
| case QID_AC_VI: |
| case QID_AC_BE: |
| case QID_AC_BK: |
| queue->limit = 64; |
| queue->data_size = AGGREGATION_SIZE; |
| queue->desc_size = TXD_DESC_SIZE; |
| queue->winfo_size = txwi_size; |
| queue->priv_size = sizeof(struct queue_entry_priv_mmio); |
| break; |
| |
| case QID_BEACON: |
| queue->limit = 8; |
| queue->data_size = 0; /* No DMA required for beacons */ |
| queue->desc_size = TXD_DESC_SIZE; |
| queue->winfo_size = txwi_size; |
| queue->priv_size = sizeof(struct queue_entry_priv_mmio); |
| break; |
| |
| case QID_ATIM: |
| /* fallthrough */ |
| default: |
| BUG(); |
| break; |
| } |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_queue_init); |
| |
| /* |
| * Initialization functions. |
| */ |
| bool rt2800mmio_get_entry_state(struct queue_entry *entry) |
| { |
| struct queue_entry_priv_mmio *entry_priv = entry->priv_data; |
| u32 word; |
| |
| if (entry->queue->qid == QID_RX) { |
| rt2x00_desc_read(entry_priv->desc, 1, &word); |
| |
| return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE)); |
| } else { |
| rt2x00_desc_read(entry_priv->desc, 1, &word); |
| |
| return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE)); |
| } |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state); |
| |
| void rt2800mmio_clear_entry(struct queue_entry *entry) |
| { |
| struct queue_entry_priv_mmio *entry_priv = entry->priv_data; |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| u32 word; |
| |
| if (entry->queue->qid == QID_RX) { |
| rt2x00_desc_read(entry_priv->desc, 0, &word); |
| rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma); |
| rt2x00_desc_write(entry_priv->desc, 0, word); |
| |
| rt2x00_desc_read(entry_priv->desc, 1, &word); |
| rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0); |
| rt2x00_desc_write(entry_priv->desc, 1, word); |
| |
| /* |
| * Set RX IDX in register to inform hardware that we have |
| * handled this entry and it is available for reuse again. |
| */ |
| rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX, |
| entry->entry_idx); |
| } else { |
| rt2x00_desc_read(entry_priv->desc, 1, &word); |
| rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1); |
| rt2x00_desc_write(entry_priv->desc, 1, word); |
| } |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry); |
| |
| int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev) |
| { |
| struct queue_entry_priv_mmio *entry_priv; |
| |
| /* |
| * Initialize registers. |
| */ |
| entry_priv = rt2x00dev->tx[0].entries[0].priv_data; |
| rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0, |
| entry_priv->desc_dma); |
| rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0, |
| rt2x00dev->tx[0].limit); |
| rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0); |
| rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0); |
| |
| entry_priv = rt2x00dev->tx[1].entries[0].priv_data; |
| rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1, |
| entry_priv->desc_dma); |
| rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1, |
| rt2x00dev->tx[1].limit); |
| rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0); |
| rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0); |
| |
| entry_priv = rt2x00dev->tx[2].entries[0].priv_data; |
| rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2, |
| entry_priv->desc_dma); |
| rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2, |
| rt2x00dev->tx[2].limit); |
| rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0); |
| rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0); |
| |
| entry_priv = rt2x00dev->tx[3].entries[0].priv_data; |
| rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3, |
| entry_priv->desc_dma); |
| rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3, |
| rt2x00dev->tx[3].limit); |
| rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0); |
| rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0); |
| |
| rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0); |
| rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0); |
| rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0); |
| rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0); |
| |
| rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0); |
| rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0); |
| rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0); |
| rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0); |
| |
| entry_priv = rt2x00dev->rx->entries[0].priv_data; |
| rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR, |
| entry_priv->desc_dma); |
| rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT, |
| rt2x00dev->rx[0].limit); |
| rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX, |
| rt2x00dev->rx[0].limit - 1); |
| rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0); |
| |
| rt2800_disable_wpdma(rt2x00dev); |
| |
| rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_init_queues); |
| |
| int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| /* |
| * Reset DMA indexes |
| */ |
| rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX, ®); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1); |
| rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1); |
| rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg); |
| |
| rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f); |
| rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00); |
| |
| if (rt2x00_is_pcie(rt2x00dev) && |
| (rt2x00_rt(rt2x00dev, RT3090) || |
| rt2x00_rt(rt2x00dev, RT3390) || |
| rt2x00_rt(rt2x00dev, RT3572) || |
| rt2x00_rt(rt2x00dev, RT3593) || |
| rt2x00_rt(rt2x00dev, RT5390) || |
| rt2x00_rt(rt2x00dev, RT5392) || |
| rt2x00_rt(rt2x00dev, RT5592))) { |
| rt2x00mmio_register_read(rt2x00dev, AUX_CTRL, ®); |
| rt2x00_set_field32(®, AUX_CTRL_FORCE_PCIE_CLK, 1); |
| rt2x00_set_field32(®, AUX_CTRL_WAKE_PCIE_EN, 1); |
| rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg); |
| } |
| |
| rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003); |
| |
| reg = 0; |
| rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1); |
| rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg); |
| |
| rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_init_registers); |
| |
| /* |
| * Device state switch handlers. |
| */ |
| int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| /* Wait for DMA, ignore error until we initialize queues. */ |
| rt2800_wait_wpdma_ready(rt2x00dev); |
| |
| if (unlikely(rt2800mmio_init_queues(rt2x00dev))) |
| return -EIO; |
| |
| return rt2800_enable_radio(rt2x00dev); |
| } |
| EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio); |
| |
| MODULE_AUTHOR(DRV_PROJECT); |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_DESCRIPTION("rt2800 MMIO library"); |
| MODULE_LICENSE("GPL"); |