| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2012,2013 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| * |
| * Derived from arch/arm/kvm/reset.c |
| * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| * Author: Christoffer Dall <c.dall@virtualopensystems.com> |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/kvm_host.h> |
| #include <linux/kvm.h> |
| #include <linux/hw_breakpoint.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| |
| #include <kvm/arm_arch_timer.h> |
| |
| #include <asm/cpufeature.h> |
| #include <asm/cputype.h> |
| #include <asm/fpsimd.h> |
| #include <asm/ptrace.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_asm.h> |
| #include <asm/kvm_coproc.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/virt.h> |
| |
| /* Maximum phys_shift supported for any VM on this host */ |
| static u32 kvm_ipa_limit; |
| |
| /* |
| * ARMv8 Reset Values |
| */ |
| #define VCPU_RESET_PSTATE_EL1 (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \ |
| PSR_F_BIT | PSR_D_BIT) |
| |
| #define VCPU_RESET_PSTATE_SVC (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \ |
| PSR_AA32_I_BIT | PSR_AA32_F_BIT) |
| |
| /** |
| * kvm_arch_vm_ioctl_check_extension |
| * |
| * We currently assume that the number of HW registers is uniform |
| * across all CPUs (see cpuinfo_sanity_check). |
| */ |
| int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext) |
| { |
| int r; |
| |
| switch (ext) { |
| case KVM_CAP_ARM_EL1_32BIT: |
| r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1); |
| break; |
| case KVM_CAP_GUEST_DEBUG_HW_BPS: |
| r = get_num_brps(); |
| break; |
| case KVM_CAP_GUEST_DEBUG_HW_WPS: |
| r = get_num_wrps(); |
| break; |
| case KVM_CAP_ARM_PMU_V3: |
| r = kvm_arm_support_pmu_v3(); |
| break; |
| case KVM_CAP_ARM_INJECT_SERROR_ESR: |
| r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN); |
| break; |
| case KVM_CAP_SET_GUEST_DEBUG: |
| case KVM_CAP_VCPU_ATTRIBUTES: |
| r = 1; |
| break; |
| case KVM_CAP_ARM_VM_IPA_SIZE: |
| r = kvm_ipa_limit; |
| break; |
| case KVM_CAP_ARM_SVE: |
| r = system_supports_sve(); |
| break; |
| case KVM_CAP_ARM_PTRAUTH_ADDRESS: |
| case KVM_CAP_ARM_PTRAUTH_GENERIC: |
| r = has_vhe() && system_supports_address_auth() && |
| system_supports_generic_auth(); |
| break; |
| default: |
| r = 0; |
| } |
| |
| return r; |
| } |
| |
| unsigned int kvm_sve_max_vl; |
| |
| int kvm_arm_init_sve(void) |
| { |
| if (system_supports_sve()) { |
| kvm_sve_max_vl = sve_max_virtualisable_vl; |
| |
| /* |
| * The get_sve_reg()/set_sve_reg() ioctl interface will need |
| * to be extended with multiple register slice support in |
| * order to support vector lengths greater than |
| * SVE_VL_ARCH_MAX: |
| */ |
| if (WARN_ON(kvm_sve_max_vl > SVE_VL_ARCH_MAX)) |
| kvm_sve_max_vl = SVE_VL_ARCH_MAX; |
| |
| /* |
| * Don't even try to make use of vector lengths that |
| * aren't available on all CPUs, for now: |
| */ |
| if (kvm_sve_max_vl < sve_max_vl) |
| pr_warn("KVM: SVE vector length for guests limited to %u bytes\n", |
| kvm_sve_max_vl); |
| } |
| |
| return 0; |
| } |
| |
| static int kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu) |
| { |
| if (!system_supports_sve()) |
| return -EINVAL; |
| |
| /* Verify that KVM startup enforced this when SVE was detected: */ |
| if (WARN_ON(!has_vhe())) |
| return -EINVAL; |
| |
| vcpu->arch.sve_max_vl = kvm_sve_max_vl; |
| |
| /* |
| * Userspace can still customize the vector lengths by writing |
| * KVM_REG_ARM64_SVE_VLS. Allocation is deferred until |
| * kvm_arm_vcpu_finalize(), which freezes the configuration. |
| */ |
| vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_SVE; |
| |
| return 0; |
| } |
| |
| /* |
| * Finalize vcpu's maximum SVE vector length, allocating |
| * vcpu->arch.sve_state as necessary. |
| */ |
| static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu) |
| { |
| void *buf; |
| unsigned int vl; |
| |
| vl = vcpu->arch.sve_max_vl; |
| |
| /* |
| * Responsibility for these properties is shared between |
| * kvm_arm_init_arch_resources(), kvm_vcpu_enable_sve() and |
| * set_sve_vls(). Double-check here just to be sure: |
| */ |
| if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl || |
| vl > SVE_VL_ARCH_MAX)) |
| return -EIO; |
| |
| buf = kzalloc(SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl)), GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| vcpu->arch.sve_state = buf; |
| vcpu->arch.flags |= KVM_ARM64_VCPU_SVE_FINALIZED; |
| return 0; |
| } |
| |
| int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature) |
| { |
| switch (feature) { |
| case KVM_ARM_VCPU_SVE: |
| if (!vcpu_has_sve(vcpu)) |
| return -EINVAL; |
| |
| if (kvm_arm_vcpu_sve_finalized(vcpu)) |
| return -EPERM; |
| |
| return kvm_vcpu_finalize_sve(vcpu); |
| } |
| |
| return -EINVAL; |
| } |
| |
| bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu)) |
| return false; |
| |
| return true; |
| } |
| |
| void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu) |
| { |
| kfree(vcpu->arch.sve_state); |
| } |
| |
| static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu_has_sve(vcpu)) |
| memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu)); |
| } |
| |
| static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu) |
| { |
| /* Support ptrauth only if the system supports these capabilities. */ |
| if (!has_vhe()) |
| return -EINVAL; |
| |
| if (!system_supports_address_auth() || |
| !system_supports_generic_auth()) |
| return -EINVAL; |
| /* |
| * For now make sure that both address/generic pointer authentication |
| * features are requested by the userspace together. |
| */ |
| if (!test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) || |
| !test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) |
| return -EINVAL; |
| |
| vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_PTRAUTH; |
| return 0; |
| } |
| |
| /** |
| * kvm_reset_vcpu - sets core registers and sys_regs to reset value |
| * @vcpu: The VCPU pointer |
| * |
| * This function finds the right table above and sets the registers on |
| * the virtual CPU struct to their architecturally defined reset |
| * values, except for registers whose reset is deferred until |
| * kvm_arm_vcpu_finalize(). |
| * |
| * Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT |
| * ioctl or as part of handling a request issued by another VCPU in the PSCI |
| * handling code. In the first case, the VCPU will not be loaded, and in the |
| * second case the VCPU will be loaded. Because this function operates purely |
| * on the memory-backed values of system registers, we want to do a full put if |
| * we were loaded (handling a request) and load the values back at the end of |
| * the function. Otherwise we leave the state alone. In both cases, we |
| * disable preemption around the vcpu reset as we would otherwise race with |
| * preempt notifiers which also call put/load. |
| */ |
| int kvm_reset_vcpu(struct kvm_vcpu *vcpu) |
| { |
| int ret = -EINVAL; |
| bool loaded; |
| u32 pstate; |
| |
| /* Reset PMU outside of the non-preemptible section */ |
| kvm_pmu_vcpu_reset(vcpu); |
| |
| preempt_disable(); |
| loaded = (vcpu->cpu != -1); |
| if (loaded) |
| kvm_arch_vcpu_put(vcpu); |
| |
| if (!kvm_arm_vcpu_sve_finalized(vcpu)) { |
| if (test_bit(KVM_ARM_VCPU_SVE, vcpu->arch.features)) { |
| ret = kvm_vcpu_enable_sve(vcpu); |
| if (ret) |
| goto out; |
| } |
| } else { |
| kvm_vcpu_reset_sve(vcpu); |
| } |
| |
| if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) || |
| test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) { |
| if (kvm_vcpu_enable_ptrauth(vcpu)) |
| goto out; |
| } |
| |
| switch (vcpu->arch.target) { |
| default: |
| if (test_bit(KVM_ARM_VCPU_EL1_32BIT, vcpu->arch.features)) { |
| if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1)) |
| goto out; |
| pstate = VCPU_RESET_PSTATE_SVC; |
| } else { |
| pstate = VCPU_RESET_PSTATE_EL1; |
| } |
| |
| break; |
| } |
| |
| /* Reset core registers */ |
| memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu))); |
| vcpu_gp_regs(vcpu)->regs.pstate = pstate; |
| |
| /* Reset system registers */ |
| kvm_reset_sys_regs(vcpu); |
| |
| /* |
| * Additional reset state handling that PSCI may have imposed on us. |
| * Must be done after all the sys_reg reset. |
| */ |
| if (vcpu->arch.reset_state.reset) { |
| unsigned long target_pc = vcpu->arch.reset_state.pc; |
| |
| /* Gracefully handle Thumb2 entry point */ |
| if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) { |
| target_pc &= ~1UL; |
| vcpu_set_thumb(vcpu); |
| } |
| |
| /* Propagate caller endianness */ |
| if (vcpu->arch.reset_state.be) |
| kvm_vcpu_set_be(vcpu); |
| |
| *vcpu_pc(vcpu) = target_pc; |
| vcpu_set_reg(vcpu, 0, vcpu->arch.reset_state.r0); |
| |
| vcpu->arch.reset_state.reset = false; |
| } |
| |
| /* Default workaround setup is enabled (if supported) */ |
| if (kvm_arm_have_ssbd() == KVM_SSBD_KERNEL) |
| vcpu->arch.workaround_flags |= VCPU_WORKAROUND_2_FLAG; |
| |
| /* Reset timer */ |
| ret = kvm_timer_vcpu_reset(vcpu); |
| out: |
| if (loaded) |
| kvm_arch_vcpu_load(vcpu, smp_processor_id()); |
| preempt_enable(); |
| return ret; |
| } |
| |
| u32 get_kvm_ipa_limit(void) |
| { |
| return kvm_ipa_limit; |
| } |
| |
| int kvm_set_ipa_limit(void) |
| { |
| unsigned int ipa_max, pa_max, va_max, parange, tgran_2; |
| u64 mmfr0; |
| |
| mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); |
| parange = cpuid_feature_extract_unsigned_field(mmfr0, |
| ID_AA64MMFR0_PARANGE_SHIFT); |
| |
| /* |
| * Check with ARMv8.5-GTG that our PAGE_SIZE is supported at |
| * Stage-2. If not, things will stop very quickly. |
| */ |
| switch (PAGE_SIZE) { |
| default: |
| case SZ_4K: |
| tgran_2 = ID_AA64MMFR0_TGRAN4_2_SHIFT; |
| break; |
| case SZ_16K: |
| tgran_2 = ID_AA64MMFR0_TGRAN16_2_SHIFT; |
| break; |
| case SZ_64K: |
| tgran_2 = ID_AA64MMFR0_TGRAN64_2_SHIFT; |
| break; |
| } |
| |
| switch (cpuid_feature_extract_unsigned_field(mmfr0, tgran_2)) { |
| default: |
| case 1: |
| kvm_err("PAGE_SIZE not supported at Stage-2, giving up\n"); |
| return -EINVAL; |
| case 0: |
| kvm_debug("PAGE_SIZE supported at Stage-2 (default)\n"); |
| break; |
| case 2: |
| kvm_debug("PAGE_SIZE supported at Stage-2 (advertised)\n"); |
| break; |
| } |
| |
| pa_max = id_aa64mmfr0_parange_to_phys_shift(parange); |
| |
| /* Clamp the IPA limit to the PA size supported by the kernel */ |
| ipa_max = (pa_max > PHYS_MASK_SHIFT) ? PHYS_MASK_SHIFT : pa_max; |
| /* |
| * Since our stage2 table is dependent on the stage1 page table code, |
| * we must always honor the following condition: |
| * |
| * Number of levels in Stage1 >= Number of levels in Stage2. |
| * |
| * So clamp the ipa limit further down to limit the number of levels. |
| * Since we can concatenate upto 16 tables at entry level, we could |
| * go upto 4bits above the maximum VA addressable with the current |
| * number of levels. |
| */ |
| va_max = PGDIR_SHIFT + PAGE_SHIFT - 3; |
| va_max += 4; |
| |
| if (va_max < ipa_max) |
| ipa_max = va_max; |
| |
| /* |
| * If the final limit is lower than the real physical address |
| * limit of the CPUs, report the reason. |
| */ |
| if (ipa_max < pa_max) |
| pr_info("kvm: Limiting the IPA size due to kernel %s Address limit\n", |
| (va_max < pa_max) ? "Virtual" : "Physical"); |
| |
| WARN(ipa_max < KVM_PHYS_SHIFT, |
| "KVM IPA limit (%d bit) is smaller than default size\n", ipa_max); |
| kvm_ipa_limit = ipa_max; |
| kvm_info("IPA Size Limit: %dbits\n", kvm_ipa_limit); |
| |
| return 0; |
| } |
| |
| /* |
| * Configure the VTCR_EL2 for this VM. The VTCR value is common |
| * across all the physical CPUs on the system. We use system wide |
| * sanitised values to fill in different fields, except for Hardware |
| * Management of Access Flags. HA Flag is set unconditionally on |
| * all CPUs, as it is safe to run with or without the feature and |
| * the bit is RES0 on CPUs that don't support it. |
| */ |
| int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type) |
| { |
| u64 vtcr = VTCR_EL2_FLAGS, mmfr0; |
| u32 parange, phys_shift; |
| u8 lvls; |
| |
| if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK) |
| return -EINVAL; |
| |
| phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type); |
| if (phys_shift) { |
| if (phys_shift > kvm_ipa_limit || |
| phys_shift < 32) |
| return -EINVAL; |
| } else { |
| phys_shift = KVM_PHYS_SHIFT; |
| } |
| |
| mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); |
| parange = cpuid_feature_extract_unsigned_field(mmfr0, |
| ID_AA64MMFR0_PARANGE_SHIFT); |
| if (parange > ID_AA64MMFR0_PARANGE_MAX) |
| parange = ID_AA64MMFR0_PARANGE_MAX; |
| vtcr |= parange << VTCR_EL2_PS_SHIFT; |
| |
| vtcr |= VTCR_EL2_T0SZ(phys_shift); |
| /* |
| * Use a minimum 2 level page table to prevent splitting |
| * host PMD huge pages at stage2. |
| */ |
| lvls = stage2_pgtable_levels(phys_shift); |
| if (lvls < 2) |
| lvls = 2; |
| vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls); |
| |
| /* |
| * Enable the Hardware Access Flag management, unconditionally |
| * on all CPUs. The features is RES0 on CPUs without the support |
| * and must be ignored by the CPUs. |
| */ |
| vtcr |= VTCR_EL2_HA; |
| |
| /* Set the vmid bits */ |
| vtcr |= (kvm_get_vmid_bits() == 16) ? |
| VTCR_EL2_VS_16BIT : |
| VTCR_EL2_VS_8BIT; |
| kvm->arch.vtcr = vtcr; |
| return 0; |
| } |