| /* |
| * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com |
| * |
| * EXYNOS4 - CPU frequency scaling support |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/err.h> |
| #include <linux/clk.h> |
| #include <linux/io.h> |
| #include <linux/slab.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/cpufreq.h> |
| #include <linux/notifier.h> |
| #include <linux/suspend.h> |
| |
| #include <mach/map.h> |
| #include <mach/regs-clock.h> |
| #include <mach/regs-mem.h> |
| |
| #include <plat/clock.h> |
| #include <plat/pm.h> |
| |
| static struct clk *cpu_clk; |
| static struct clk *moutcore; |
| static struct clk *mout_mpll; |
| static struct clk *mout_apll; |
| |
| static struct regulator *arm_regulator; |
| |
| static struct cpufreq_freqs freqs; |
| |
| struct cpufreq_clkdiv { |
| unsigned int clkdiv; |
| }; |
| |
| static unsigned int locking_frequency; |
| static bool frequency_locked; |
| static DEFINE_MUTEX(cpufreq_lock); |
| |
| enum cpufreq_level_index { |
| L0, L1, L2, L3, L4, CPUFREQ_LEVEL_END, |
| }; |
| |
| static struct cpufreq_clkdiv exynos4_clkdiv_table[CPUFREQ_LEVEL_END]; |
| |
| static struct cpufreq_frequency_table exynos4_freq_table[] = { |
| {L0, 1200*1000}, |
| {L1, 1000*1000}, |
| {L2, 800*1000}, |
| {L3, 500*1000}, |
| {L4, 200*1000}, |
| {0, CPUFREQ_TABLE_END}, |
| }; |
| |
| static unsigned int clkdiv_cpu0[CPUFREQ_LEVEL_END][7] = { |
| /* |
| * Clock divider value for following |
| * { DIVCORE, DIVCOREM0, DIVCOREM1, DIVPERIPH, |
| * DIVATB, DIVPCLK_DBG, DIVAPLL } |
| */ |
| |
| /* ARM L0: 1200MHz */ |
| { 0, 3, 7, 3, 4, 1, 7 }, |
| |
| /* ARM L1: 1000MHz */ |
| { 0, 3, 7, 3, 4, 1, 7 }, |
| |
| /* ARM L2: 800MHz */ |
| { 0, 3, 7, 3, 3, 1, 7 }, |
| |
| /* ARM L3: 500MHz */ |
| { 0, 3, 7, 3, 3, 1, 7 }, |
| |
| /* ARM L4: 200MHz */ |
| { 0, 1, 3, 1, 3, 1, 0 }, |
| }; |
| |
| static unsigned int clkdiv_cpu1[CPUFREQ_LEVEL_END][2] = { |
| /* |
| * Clock divider value for following |
| * { DIVCOPY, DIVHPM } |
| */ |
| |
| /* ARM L0: 1200MHz */ |
| { 5, 0 }, |
| |
| /* ARM L1: 1000MHz */ |
| { 4, 0 }, |
| |
| /* ARM L2: 800MHz */ |
| { 3, 0 }, |
| |
| /* ARM L3: 500MHz */ |
| { 3, 0 }, |
| |
| /* ARM L4: 200MHz */ |
| { 3, 0 }, |
| }; |
| |
| struct cpufreq_voltage_table { |
| unsigned int index; /* any */ |
| unsigned int arm_volt; /* uV */ |
| }; |
| |
| static struct cpufreq_voltage_table exynos4_volt_table[CPUFREQ_LEVEL_END] = { |
| { |
| .index = L0, |
| .arm_volt = 1350000, |
| }, { |
| .index = L1, |
| .arm_volt = 1300000, |
| }, { |
| .index = L2, |
| .arm_volt = 1200000, |
| }, { |
| .index = L3, |
| .arm_volt = 1100000, |
| }, { |
| .index = L4, |
| .arm_volt = 1050000, |
| }, |
| }; |
| |
| static unsigned int exynos4_apll_pms_table[CPUFREQ_LEVEL_END] = { |
| /* APLL FOUT L0: 1200MHz */ |
| ((150 << 16) | (3 << 8) | 1), |
| |
| /* APLL FOUT L1: 1000MHz */ |
| ((250 << 16) | (6 << 8) | 1), |
| |
| /* APLL FOUT L2: 800MHz */ |
| ((200 << 16) | (6 << 8) | 1), |
| |
| /* APLL FOUT L3: 500MHz */ |
| ((250 << 16) | (6 << 8) | 2), |
| |
| /* APLL FOUT L4: 200MHz */ |
| ((200 << 16) | (6 << 8) | 3), |
| }; |
| |
| static int exynos4_verify_speed(struct cpufreq_policy *policy) |
| { |
| return cpufreq_frequency_table_verify(policy, exynos4_freq_table); |
| } |
| |
| static unsigned int exynos4_getspeed(unsigned int cpu) |
| { |
| return clk_get_rate(cpu_clk) / 1000; |
| } |
| |
| static void exynos4_set_clkdiv(unsigned int div_index) |
| { |
| unsigned int tmp; |
| |
| /* Change Divider - CPU0 */ |
| |
| tmp = exynos4_clkdiv_table[div_index].clkdiv; |
| |
| __raw_writel(tmp, S5P_CLKDIV_CPU); |
| |
| do { |
| tmp = __raw_readl(S5P_CLKDIV_STATCPU); |
| } while (tmp & 0x1111111); |
| |
| /* Change Divider - CPU1 */ |
| |
| tmp = __raw_readl(S5P_CLKDIV_CPU1); |
| |
| tmp &= ~((0x7 << 4) | 0x7); |
| |
| tmp |= ((clkdiv_cpu1[div_index][0] << 4) | |
| (clkdiv_cpu1[div_index][1] << 0)); |
| |
| __raw_writel(tmp, S5P_CLKDIV_CPU1); |
| |
| do { |
| tmp = __raw_readl(S5P_CLKDIV_STATCPU1); |
| } while (tmp & 0x11); |
| } |
| |
| static void exynos4_set_apll(unsigned int index) |
| { |
| unsigned int tmp; |
| |
| /* 1. MUX_CORE_SEL = MPLL, ARMCLK uses MPLL for lock time */ |
| clk_set_parent(moutcore, mout_mpll); |
| |
| do { |
| tmp = (__raw_readl(S5P_CLKMUX_STATCPU) |
| >> S5P_CLKSRC_CPU_MUXCORE_SHIFT); |
| tmp &= 0x7; |
| } while (tmp != 0x2); |
| |
| /* 2. Set APLL Lock time */ |
| __raw_writel(S5P_APLL_LOCKTIME, S5P_APLL_LOCK); |
| |
| /* 3. Change PLL PMS values */ |
| tmp = __raw_readl(S5P_APLL_CON0); |
| tmp &= ~((0x3ff << 16) | (0x3f << 8) | (0x7 << 0)); |
| tmp |= exynos4_apll_pms_table[index]; |
| __raw_writel(tmp, S5P_APLL_CON0); |
| |
| /* 4. wait_lock_time */ |
| do { |
| tmp = __raw_readl(S5P_APLL_CON0); |
| } while (!(tmp & (0x1 << S5P_APLLCON0_LOCKED_SHIFT))); |
| |
| /* 5. MUX_CORE_SEL = APLL */ |
| clk_set_parent(moutcore, mout_apll); |
| |
| do { |
| tmp = __raw_readl(S5P_CLKMUX_STATCPU); |
| tmp &= S5P_CLKMUX_STATCPU_MUXCORE_MASK; |
| } while (tmp != (0x1 << S5P_CLKSRC_CPU_MUXCORE_SHIFT)); |
| } |
| |
| static void exynos4_set_frequency(unsigned int old_index, unsigned int new_index) |
| { |
| unsigned int tmp; |
| |
| if (old_index > new_index) { |
| /* |
| * L1/L3, L2/L4 Level change require |
| * to only change s divider value |
| */ |
| if (((old_index == L3) && (new_index == L1)) || |
| ((old_index == L4) && (new_index == L2))) { |
| /* 1. Change the system clock divider values */ |
| exynos4_set_clkdiv(new_index); |
| |
| /* 2. Change just s value in apll m,p,s value */ |
| tmp = __raw_readl(S5P_APLL_CON0); |
| tmp &= ~(0x7 << 0); |
| tmp |= (exynos4_apll_pms_table[new_index] & 0x7); |
| __raw_writel(tmp, S5P_APLL_CON0); |
| } else { |
| /* Clock Configuration Procedure */ |
| /* 1. Change the system clock divider values */ |
| exynos4_set_clkdiv(new_index); |
| /* 2. Change the apll m,p,s value */ |
| exynos4_set_apll(new_index); |
| } |
| } else if (old_index < new_index) { |
| /* |
| * L1/L3, L2/L4 Level change require |
| * to only change s divider value |
| */ |
| if (((old_index == L1) && (new_index == L3)) || |
| ((old_index == L2) && (new_index == L4))) { |
| /* 1. Change just s value in apll m,p,s value */ |
| tmp = __raw_readl(S5P_APLL_CON0); |
| tmp &= ~(0x7 << 0); |
| tmp |= (exynos4_apll_pms_table[new_index] & 0x7); |
| __raw_writel(tmp, S5P_APLL_CON0); |
| |
| /* 2. Change the system clock divider values */ |
| exynos4_set_clkdiv(new_index); |
| } else { |
| /* Clock Configuration Procedure */ |
| /* 1. Change the apll m,p,s value */ |
| exynos4_set_apll(new_index); |
| /* 2. Change the system clock divider values */ |
| exynos4_set_clkdiv(new_index); |
| } |
| } |
| } |
| |
| static int exynos4_target(struct cpufreq_policy *policy, |
| unsigned int target_freq, |
| unsigned int relation) |
| { |
| unsigned int index, old_index; |
| unsigned int arm_volt; |
| int err = -EINVAL; |
| |
| freqs.old = exynos4_getspeed(policy->cpu); |
| |
| mutex_lock(&cpufreq_lock); |
| |
| if (frequency_locked && target_freq != locking_frequency) { |
| err = -EAGAIN; |
| goto out; |
| } |
| |
| if (cpufreq_frequency_table_target(policy, exynos4_freq_table, |
| freqs.old, relation, &old_index)) |
| goto out; |
| |
| if (cpufreq_frequency_table_target(policy, exynos4_freq_table, |
| target_freq, relation, &index)) |
| goto out; |
| |
| err = 0; |
| |
| freqs.new = exynos4_freq_table[index].frequency; |
| freqs.cpu = policy->cpu; |
| |
| if (freqs.new == freqs.old) |
| goto out; |
| |
| /* get the voltage value */ |
| arm_volt = exynos4_volt_table[index].arm_volt; |
| |
| cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); |
| |
| /* control regulator */ |
| if (freqs.new > freqs.old) { |
| /* Voltage up */ |
| regulator_set_voltage(arm_regulator, arm_volt, arm_volt); |
| } |
| |
| /* Clock Configuration Procedure */ |
| exynos4_set_frequency(old_index, index); |
| |
| cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); |
| |
| /* control regulator */ |
| if (freqs.new < freqs.old) { |
| /* Voltage down */ |
| regulator_set_voltage(arm_regulator, arm_volt, arm_volt); |
| } |
| |
| out: |
| mutex_unlock(&cpufreq_lock); |
| return err; |
| } |
| |
| #ifdef CONFIG_PM |
| /* |
| * These suspend/resume are used as syscore_ops, it is already too |
| * late to set regulator voltages at this stage. |
| */ |
| static int exynos4_cpufreq_suspend(struct cpufreq_policy *policy) |
| { |
| return 0; |
| } |
| |
| static int exynos4_cpufreq_resume(struct cpufreq_policy *policy) |
| { |
| return 0; |
| } |
| #endif |
| |
| /** |
| * exynos4_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume |
| * context |
| * @notifier |
| * @pm_event |
| * @v |
| * |
| * While frequency_locked == true, target() ignores every frequency but |
| * locking_frequency. The locking_frequency value is the initial frequency, |
| * which is set by the bootloader. In order to eliminate possible |
| * inconsistency in clock values, we save and restore frequencies during |
| * suspend and resume and block CPUFREQ activities. Note that the standard |
| * suspend/resume cannot be used as they are too deep (syscore_ops) for |
| * regulator actions. |
| */ |
| static int exynos4_cpufreq_pm_notifier(struct notifier_block *notifier, |
| unsigned long pm_event, void *v) |
| { |
| struct cpufreq_policy *policy = cpufreq_cpu_get(0); /* boot CPU */ |
| static unsigned int saved_frequency; |
| unsigned int temp; |
| |
| mutex_lock(&cpufreq_lock); |
| switch (pm_event) { |
| case PM_SUSPEND_PREPARE: |
| if (frequency_locked) |
| goto out; |
| frequency_locked = true; |
| |
| if (locking_frequency) { |
| saved_frequency = exynos4_getspeed(0); |
| |
| mutex_unlock(&cpufreq_lock); |
| exynos4_target(policy, locking_frequency, |
| CPUFREQ_RELATION_H); |
| mutex_lock(&cpufreq_lock); |
| } |
| |
| break; |
| case PM_POST_SUSPEND: |
| |
| if (saved_frequency) { |
| /* |
| * While frequency_locked, only locking_frequency |
| * is valid for target(). In order to use |
| * saved_frequency while keeping frequency_locked, |
| * we temporarly overwrite locking_frequency. |
| */ |
| temp = locking_frequency; |
| locking_frequency = saved_frequency; |
| |
| mutex_unlock(&cpufreq_lock); |
| exynos4_target(policy, locking_frequency, |
| CPUFREQ_RELATION_H); |
| mutex_lock(&cpufreq_lock); |
| |
| locking_frequency = temp; |
| } |
| |
| frequency_locked = false; |
| break; |
| } |
| out: |
| mutex_unlock(&cpufreq_lock); |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block exynos4_cpufreq_nb = { |
| .notifier_call = exynos4_cpufreq_pm_notifier, |
| }; |
| |
| static int exynos4_cpufreq_cpu_init(struct cpufreq_policy *policy) |
| { |
| int ret; |
| |
| policy->cur = policy->min = policy->max = exynos4_getspeed(policy->cpu); |
| |
| cpufreq_frequency_table_get_attr(exynos4_freq_table, policy->cpu); |
| |
| /* set the transition latency value */ |
| policy->cpuinfo.transition_latency = 100000; |
| |
| /* |
| * EXYNOS4 multi-core processors has 2 cores |
| * that the frequency cannot be set independently. |
| * Each cpu is bound to the same speed. |
| * So the affected cpu is all of the cpus. |
| */ |
| if (!cpu_online(1)) { |
| cpumask_copy(policy->related_cpus, cpu_possible_mask); |
| cpumask_copy(policy->cpus, cpu_online_mask); |
| } else { |
| cpumask_setall(policy->cpus); |
| } |
| |
| ret = cpufreq_frequency_table_cpuinfo(policy, exynos4_freq_table); |
| if (ret) |
| return ret; |
| |
| cpufreq_frequency_table_get_attr(exynos4_freq_table, policy->cpu); |
| |
| return 0; |
| } |
| |
| static int exynos4_cpufreq_cpu_exit(struct cpufreq_policy *policy) |
| { |
| cpufreq_frequency_table_put_attr(policy->cpu); |
| return 0; |
| } |
| |
| static struct freq_attr *exynos4_cpufreq_attr[] = { |
| &cpufreq_freq_attr_scaling_available_freqs, |
| NULL, |
| }; |
| |
| static struct cpufreq_driver exynos4_driver = { |
| .flags = CPUFREQ_STICKY, |
| .verify = exynos4_verify_speed, |
| .target = exynos4_target, |
| .get = exynos4_getspeed, |
| .init = exynos4_cpufreq_cpu_init, |
| .exit = exynos4_cpufreq_cpu_exit, |
| .name = "exynos4_cpufreq", |
| .attr = exynos4_cpufreq_attr, |
| #ifdef CONFIG_PM |
| .suspend = exynos4_cpufreq_suspend, |
| .resume = exynos4_cpufreq_resume, |
| #endif |
| }; |
| |
| static int __init exynos4_cpufreq_init(void) |
| { |
| int i; |
| unsigned int tmp; |
| |
| cpu_clk = clk_get(NULL, "armclk"); |
| if (IS_ERR(cpu_clk)) |
| return PTR_ERR(cpu_clk); |
| |
| locking_frequency = exynos4_getspeed(0); |
| |
| moutcore = clk_get(NULL, "moutcore"); |
| if (IS_ERR(moutcore)) |
| goto out; |
| |
| mout_mpll = clk_get(NULL, "mout_mpll"); |
| if (IS_ERR(mout_mpll)) |
| goto out; |
| |
| mout_apll = clk_get(NULL, "mout_apll"); |
| if (IS_ERR(mout_apll)) |
| goto out; |
| |
| arm_regulator = regulator_get(NULL, "vdd_arm"); |
| if (IS_ERR(arm_regulator)) { |
| printk(KERN_ERR "failed to get resource %s\n", "vdd_arm"); |
| goto out; |
| } |
| |
| register_pm_notifier(&exynos4_cpufreq_nb); |
| |
| tmp = __raw_readl(S5P_CLKDIV_CPU); |
| |
| for (i = L0; i < CPUFREQ_LEVEL_END; i++) { |
| tmp &= ~(S5P_CLKDIV_CPU0_CORE_MASK | |
| S5P_CLKDIV_CPU0_COREM0_MASK | |
| S5P_CLKDIV_CPU0_COREM1_MASK | |
| S5P_CLKDIV_CPU0_PERIPH_MASK | |
| S5P_CLKDIV_CPU0_ATB_MASK | |
| S5P_CLKDIV_CPU0_PCLKDBG_MASK | |
| S5P_CLKDIV_CPU0_APLL_MASK); |
| |
| tmp |= ((clkdiv_cpu0[i][0] << S5P_CLKDIV_CPU0_CORE_SHIFT) | |
| (clkdiv_cpu0[i][1] << S5P_CLKDIV_CPU0_COREM0_SHIFT) | |
| (clkdiv_cpu0[i][2] << S5P_CLKDIV_CPU0_COREM1_SHIFT) | |
| (clkdiv_cpu0[i][3] << S5P_CLKDIV_CPU0_PERIPH_SHIFT) | |
| (clkdiv_cpu0[i][4] << S5P_CLKDIV_CPU0_ATB_SHIFT) | |
| (clkdiv_cpu0[i][5] << S5P_CLKDIV_CPU0_PCLKDBG_SHIFT) | |
| (clkdiv_cpu0[i][6] << S5P_CLKDIV_CPU0_APLL_SHIFT)); |
| |
| exynos4_clkdiv_table[i].clkdiv = tmp; |
| } |
| |
| return cpufreq_register_driver(&exynos4_driver); |
| |
| out: |
| if (!IS_ERR(cpu_clk)) |
| clk_put(cpu_clk); |
| |
| if (!IS_ERR(moutcore)) |
| clk_put(moutcore); |
| |
| if (!IS_ERR(mout_mpll)) |
| clk_put(mout_mpll); |
| |
| if (!IS_ERR(mout_apll)) |
| clk_put(mout_apll); |
| |
| if (!IS_ERR(arm_regulator)) |
| regulator_put(arm_regulator); |
| |
| printk(KERN_ERR "%s: failed initialization\n", __func__); |
| |
| return -EINVAL; |
| } |
| late_initcall(exynos4_cpufreq_init); |