| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2015, 2016 ARM Ltd. |
| */ |
| |
| #include <linux/uaccess.h> |
| #include <linux/interrupt.h> |
| #include <linux/cpu.h> |
| #include <linux/kvm_host.h> |
| #include <kvm/arm_vgic.h> |
| #include <asm/kvm_mmu.h> |
| #include "vgic.h" |
| |
| /* |
| * Initialization rules: there are multiple stages to the vgic |
| * initialization, both for the distributor and the CPU interfaces. The basic |
| * idea is that even though the VGIC is not functional or not requested from |
| * user space, the critical path of the run loop can still call VGIC functions |
| * that just won't do anything, without them having to check additional |
| * initialization flags to ensure they don't look at uninitialized data |
| * structures. |
| * |
| * Distributor: |
| * |
| * - kvm_vgic_early_init(): initialization of static data that doesn't |
| * depend on any sizing information or emulation type. No allocation |
| * is allowed there. |
| * |
| * - vgic_init(): allocation and initialization of the generic data |
| * structures that depend on sizing information (number of CPUs, |
| * number of interrupts). Also initializes the vcpu specific data |
| * structures. Can be executed lazily for GICv2. |
| * |
| * CPU Interface: |
| * |
| * - kvm_vgic_vcpu_init(): initialization of static data that |
| * doesn't depend on any sizing information or emulation type. No |
| * allocation is allowed there. |
| */ |
| |
| /* EARLY INIT */ |
| |
| /** |
| * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures |
| * @kvm: The VM whose VGIC districutor should be initialized |
| * |
| * Only do initialization of static structures that don't require any |
| * allocation or sizing information from userspace. vgic_init() called |
| * kvm_vgic_dist_init() which takes care of the rest. |
| */ |
| void kvm_vgic_early_init(struct kvm *kvm) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| |
| INIT_LIST_HEAD(&dist->lpi_list_head); |
| raw_spin_lock_init(&dist->lpi_list_lock); |
| } |
| |
| /* CREATION */ |
| |
| /** |
| * kvm_vgic_create: triggered by the instantiation of the VGIC device by |
| * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only) |
| * or through the generic KVM_CREATE_DEVICE API ioctl. |
| * irqchip_in_kernel() tells you if this function succeeded or not. |
| * @kvm: kvm struct pointer |
| * @type: KVM_DEV_TYPE_ARM_VGIC_V[23] |
| */ |
| int kvm_vgic_create(struct kvm *kvm, u32 type) |
| { |
| int i, vcpu_lock_idx = -1, ret; |
| struct kvm_vcpu *vcpu; |
| |
| if (irqchip_in_kernel(kvm)) |
| return -EEXIST; |
| |
| /* |
| * This function is also called by the KVM_CREATE_IRQCHIP handler, |
| * which had no chance yet to check the availability of the GICv2 |
| * emulation. So check this here again. KVM_CREATE_DEVICE does |
| * the proper checks already. |
| */ |
| if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && |
| !kvm_vgic_global_state.can_emulate_gicv2) |
| return -ENODEV; |
| |
| /* |
| * Any time a vcpu is run, vcpu_load is called which tries to grab the |
| * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure |
| * that no other VCPUs are run while we create the vgic. |
| */ |
| ret = -EBUSY; |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (!mutex_trylock(&vcpu->mutex)) |
| goto out_unlock; |
| vcpu_lock_idx = i; |
| } |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (vcpu->arch.has_run_once) |
| goto out_unlock; |
| } |
| ret = 0; |
| |
| if (type == KVM_DEV_TYPE_ARM_VGIC_V2) |
| kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS; |
| else |
| kvm->arch.max_vcpus = VGIC_V3_MAX_CPUS; |
| |
| if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus) { |
| ret = -E2BIG; |
| goto out_unlock; |
| } |
| |
| kvm->arch.vgic.in_kernel = true; |
| kvm->arch.vgic.vgic_model = type; |
| |
| kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF; |
| |
| if (type == KVM_DEV_TYPE_ARM_VGIC_V2) |
| kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF; |
| else |
| INIT_LIST_HEAD(&kvm->arch.vgic.rd_regions); |
| |
| out_unlock: |
| for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { |
| vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx); |
| mutex_unlock(&vcpu->mutex); |
| } |
| return ret; |
| } |
| |
| /* INIT/DESTROY */ |
| |
| /** |
| * kvm_vgic_dist_init: initialize the dist data structures |
| * @kvm: kvm struct pointer |
| * @nr_spis: number of spis, frozen by caller |
| */ |
| static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0); |
| int i; |
| |
| dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL); |
| if (!dist->spis) |
| return -ENOMEM; |
| |
| /* |
| * In the following code we do not take the irq struct lock since |
| * no other action on irq structs can happen while the VGIC is |
| * not initialized yet: |
| * If someone wants to inject an interrupt or does a MMIO access, we |
| * require prior initialization in case of a virtual GICv3 or trigger |
| * initialization when using a virtual GICv2. |
| */ |
| for (i = 0; i < nr_spis; i++) { |
| struct vgic_irq *irq = &dist->spis[i]; |
| |
| irq->intid = i + VGIC_NR_PRIVATE_IRQS; |
| INIT_LIST_HEAD(&irq->ap_list); |
| raw_spin_lock_init(&irq->irq_lock); |
| irq->vcpu = NULL; |
| irq->target_vcpu = vcpu0; |
| kref_init(&irq->refcount); |
| if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2) { |
| irq->targets = 0; |
| irq->group = 0; |
| } else { |
| irq->mpidr = 0; |
| irq->group = 1; |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * kvm_vgic_vcpu_init() - Initialize static VGIC VCPU data |
| * structures and register VCPU-specific KVM iodevs |
| * |
| * @vcpu: pointer to the VCPU being created and initialized |
| * |
| * Only do initialization, but do not actually enable the |
| * VGIC CPU interface |
| */ |
| int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| int ret = 0; |
| int i; |
| |
| vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF; |
| vgic_cpu->sgi_iodev.base_addr = VGIC_ADDR_UNDEF; |
| |
| INIT_LIST_HEAD(&vgic_cpu->ap_list_head); |
| raw_spin_lock_init(&vgic_cpu->ap_list_lock); |
| |
| /* |
| * Enable and configure all SGIs to be edge-triggered and |
| * configure all PPIs as level-triggered. |
| */ |
| for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) { |
| struct vgic_irq *irq = &vgic_cpu->private_irqs[i]; |
| |
| INIT_LIST_HEAD(&irq->ap_list); |
| raw_spin_lock_init(&irq->irq_lock); |
| irq->intid = i; |
| irq->vcpu = NULL; |
| irq->target_vcpu = vcpu; |
| irq->targets = 1U << vcpu->vcpu_id; |
| kref_init(&irq->refcount); |
| if (vgic_irq_is_sgi(i)) { |
| /* SGIs */ |
| irq->enabled = 1; |
| irq->config = VGIC_CONFIG_EDGE; |
| } else { |
| /* PPIs */ |
| irq->config = VGIC_CONFIG_LEVEL; |
| } |
| |
| if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) |
| irq->group = 1; |
| else |
| irq->group = 0; |
| } |
| |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| return 0; |
| |
| /* |
| * If we are creating a VCPU with a GICv3 we must also register the |
| * KVM io device for the redistributor that belongs to this VCPU. |
| */ |
| if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { |
| mutex_lock(&vcpu->kvm->lock); |
| ret = vgic_register_redist_iodev(vcpu); |
| mutex_unlock(&vcpu->kvm->lock); |
| } |
| return ret; |
| } |
| |
| static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu) |
| { |
| if (kvm_vgic_global_state.type == VGIC_V2) |
| vgic_v2_enable(vcpu); |
| else |
| vgic_v3_enable(vcpu); |
| } |
| |
| /* |
| * vgic_init: allocates and initializes dist and vcpu data structures |
| * depending on two dimensioning parameters: |
| * - the number of spis |
| * - the number of vcpus |
| * The function is generally called when nr_spis has been explicitly set |
| * by the guest through the KVM DEVICE API. If not nr_spis is set to 256. |
| * vgic_initialized() returns true when this function has succeeded. |
| * Must be called with kvm->lock held! |
| */ |
| int vgic_init(struct kvm *kvm) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| struct kvm_vcpu *vcpu; |
| int ret = 0, i, idx; |
| |
| if (vgic_initialized(kvm)) |
| return 0; |
| |
| /* Are we also in the middle of creating a VCPU? */ |
| if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus)) |
| return -EBUSY; |
| |
| /* freeze the number of spis */ |
| if (!dist->nr_spis) |
| dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS; |
| |
| ret = kvm_vgic_dist_init(kvm, dist->nr_spis); |
| if (ret) |
| goto out; |
| |
| /* Initialize groups on CPUs created before the VGIC type was known */ |
| kvm_for_each_vcpu(idx, vcpu, kvm) { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| |
| for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) { |
| struct vgic_irq *irq = &vgic_cpu->private_irqs[i]; |
| if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) |
| irq->group = 1; |
| else |
| irq->group = 0; |
| } |
| } |
| |
| if (vgic_has_its(kvm)) { |
| ret = vgic_v4_init(kvm); |
| if (ret) |
| goto out; |
| } |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| kvm_vgic_vcpu_enable(vcpu); |
| |
| ret = kvm_vgic_setup_default_irq_routing(kvm); |
| if (ret) |
| goto out; |
| |
| vgic_debug_init(kvm); |
| |
| dist->implementation_rev = 2; |
| dist->initialized = true; |
| |
| out: |
| return ret; |
| } |
| |
| static void kvm_vgic_dist_destroy(struct kvm *kvm) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| struct vgic_redist_region *rdreg, *next; |
| |
| dist->ready = false; |
| dist->initialized = false; |
| |
| kfree(dist->spis); |
| dist->spis = NULL; |
| dist->nr_spis = 0; |
| |
| if (kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { |
| list_for_each_entry_safe(rdreg, next, &dist->rd_regions, list) { |
| list_del(&rdreg->list); |
| kfree(rdreg); |
| } |
| INIT_LIST_HEAD(&dist->rd_regions); |
| } |
| |
| if (vgic_supports_direct_msis(kvm)) |
| vgic_v4_teardown(kvm); |
| } |
| |
| void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| |
| INIT_LIST_HEAD(&vgic_cpu->ap_list_head); |
| } |
| |
| /* To be called with kvm->lock held */ |
| static void __kvm_vgic_destroy(struct kvm *kvm) |
| { |
| struct kvm_vcpu *vcpu; |
| int i; |
| |
| vgic_debug_destroy(kvm); |
| |
| kvm_vgic_dist_destroy(kvm); |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| kvm_vgic_vcpu_destroy(vcpu); |
| } |
| |
| void kvm_vgic_destroy(struct kvm *kvm) |
| { |
| mutex_lock(&kvm->lock); |
| __kvm_vgic_destroy(kvm); |
| mutex_unlock(&kvm->lock); |
| } |
| |
| /** |
| * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest |
| * is a GICv2. A GICv3 must be explicitly initialized by the guest using the |
| * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group. |
| * @kvm: kvm struct pointer |
| */ |
| int vgic_lazy_init(struct kvm *kvm) |
| { |
| int ret = 0; |
| |
| if (unlikely(!vgic_initialized(kvm))) { |
| /* |
| * We only provide the automatic initialization of the VGIC |
| * for the legacy case of a GICv2. Any other type must |
| * be explicitly initialized once setup with the respective |
| * KVM device call. |
| */ |
| if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) |
| return -EBUSY; |
| |
| mutex_lock(&kvm->lock); |
| ret = vgic_init(kvm); |
| mutex_unlock(&kvm->lock); |
| } |
| |
| return ret; |
| } |
| |
| /* RESOURCE MAPPING */ |
| |
| /** |
| * Map the MMIO regions depending on the VGIC model exposed to the guest |
| * called on the first VCPU run. |
| * Also map the virtual CPU interface into the VM. |
| * v2/v3 derivatives call vgic_init if not already done. |
| * vgic_ready() returns true if this function has succeeded. |
| * @kvm: kvm struct pointer |
| */ |
| int kvm_vgic_map_resources(struct kvm *kvm) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| int ret = 0; |
| |
| mutex_lock(&kvm->lock); |
| if (!irqchip_in_kernel(kvm)) |
| goto out; |
| |
| if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2) |
| ret = vgic_v2_map_resources(kvm); |
| else |
| ret = vgic_v3_map_resources(kvm); |
| |
| if (ret) |
| __kvm_vgic_destroy(kvm); |
| |
| out: |
| mutex_unlock(&kvm->lock); |
| return ret; |
| } |
| |
| /* GENERIC PROBE */ |
| |
| static int vgic_init_cpu_starting(unsigned int cpu) |
| { |
| enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0); |
| return 0; |
| } |
| |
| |
| static int vgic_init_cpu_dying(unsigned int cpu) |
| { |
| disable_percpu_irq(kvm_vgic_global_state.maint_irq); |
| return 0; |
| } |
| |
| static irqreturn_t vgic_maintenance_handler(int irq, void *data) |
| { |
| /* |
| * We cannot rely on the vgic maintenance interrupt to be |
| * delivered synchronously. This means we can only use it to |
| * exit the VM, and we perform the handling of EOIed |
| * interrupts on the exit path (see vgic_fold_lr_state). |
| */ |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware |
| * |
| * For a specific CPU, initialize the GIC VE hardware. |
| */ |
| void kvm_vgic_init_cpu_hardware(void) |
| { |
| BUG_ON(preemptible()); |
| |
| /* |
| * We want to make sure the list registers start out clear so that we |
| * only have the program the used registers. |
| */ |
| if (kvm_vgic_global_state.type == VGIC_V2) |
| vgic_v2_init_lrs(); |
| else |
| kvm_call_hyp(__vgic_v3_init_lrs); |
| } |
| |
| /** |
| * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable |
| * according to the host GIC model. Accordingly calls either |
| * vgic_v2/v3_probe which registers the KVM_DEVICE that can be |
| * instantiated by a guest later on . |
| */ |
| int kvm_vgic_hyp_init(void) |
| { |
| const struct gic_kvm_info *gic_kvm_info; |
| int ret; |
| |
| gic_kvm_info = gic_get_kvm_info(); |
| if (!gic_kvm_info) |
| return -ENODEV; |
| |
| if (!gic_kvm_info->maint_irq) { |
| kvm_err("No vgic maintenance irq\n"); |
| return -ENXIO; |
| } |
| |
| switch (gic_kvm_info->type) { |
| case GIC_V2: |
| ret = vgic_v2_probe(gic_kvm_info); |
| break; |
| case GIC_V3: |
| ret = vgic_v3_probe(gic_kvm_info); |
| if (!ret) { |
| static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif); |
| kvm_info("GIC system register CPU interface enabled\n"); |
| } |
| break; |
| default: |
| ret = -ENODEV; |
| }; |
| |
| if (ret) |
| return ret; |
| |
| kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq; |
| ret = request_percpu_irq(kvm_vgic_global_state.maint_irq, |
| vgic_maintenance_handler, |
| "vgic", kvm_get_running_vcpus()); |
| if (ret) { |
| kvm_err("Cannot register interrupt %d\n", |
| kvm_vgic_global_state.maint_irq); |
| return ret; |
| } |
| |
| ret = cpuhp_setup_state(CPUHP_AP_KVM_ARM_VGIC_INIT_STARTING, |
| "kvm/arm/vgic:starting", |
| vgic_init_cpu_starting, vgic_init_cpu_dying); |
| if (ret) { |
| kvm_err("Cannot register vgic CPU notifier\n"); |
| goto out_free_irq; |
| } |
| |
| kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq); |
| return 0; |
| |
| out_free_irq: |
| free_percpu_irq(kvm_vgic_global_state.maint_irq, |
| kvm_get_running_vcpus()); |
| return ret; |
| } |