| /* |
| * drivers/mtd/nand/pxa3xx_nand.c |
| * |
| * Copyright © 2005 Intel Corporation |
| * Copyright © 2006 Marvell International Ltd. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * See Documentation/mtd/nand/pxa3xx-nand.txt for more details. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/platform_device.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dma/pxa-dma.h> |
| #include <linux/delay.h> |
| #include <linux/clk.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/io.h> |
| #include <linux/iopoll.h> |
| #include <linux/irq.h> |
| #include <linux/slab.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/of_mtd.h> |
| |
| #if defined(CONFIG_ARM) && (defined(CONFIG_ARCH_PXA) || defined(CONFIG_ARCH_MMP)) |
| #define ARCH_HAS_DMA |
| #endif |
| |
| #include <linux/platform_data/mtd-nand-pxa3xx.h> |
| |
| #define CHIP_DELAY_TIMEOUT msecs_to_jiffies(200) |
| #define NAND_STOP_DELAY msecs_to_jiffies(40) |
| #define PAGE_CHUNK_SIZE (2048) |
| |
| /* |
| * Define a buffer size for the initial command that detects the flash device: |
| * STATUS, READID and PARAM. |
| * ONFI param page is 256 bytes, and there are three redundant copies |
| * to be read. JEDEC param page is 512 bytes, and there are also three |
| * redundant copies to be read. |
| * Hence this buffer should be at least 512 x 3. Let's pick 2048. |
| */ |
| #define INIT_BUFFER_SIZE 2048 |
| |
| /* registers and bit definitions */ |
| #define NDCR (0x00) /* Control register */ |
| #define NDTR0CS0 (0x04) /* Timing Parameter 0 for CS0 */ |
| #define NDTR1CS0 (0x0C) /* Timing Parameter 1 for CS0 */ |
| #define NDSR (0x14) /* Status Register */ |
| #define NDPCR (0x18) /* Page Count Register */ |
| #define NDBDR0 (0x1C) /* Bad Block Register 0 */ |
| #define NDBDR1 (0x20) /* Bad Block Register 1 */ |
| #define NDECCCTRL (0x28) /* ECC control */ |
| #define NDDB (0x40) /* Data Buffer */ |
| #define NDCB0 (0x48) /* Command Buffer0 */ |
| #define NDCB1 (0x4C) /* Command Buffer1 */ |
| #define NDCB2 (0x50) /* Command Buffer2 */ |
| |
| #define NDCR_SPARE_EN (0x1 << 31) |
| #define NDCR_ECC_EN (0x1 << 30) |
| #define NDCR_DMA_EN (0x1 << 29) |
| #define NDCR_ND_RUN (0x1 << 28) |
| #define NDCR_DWIDTH_C (0x1 << 27) |
| #define NDCR_DWIDTH_M (0x1 << 26) |
| #define NDCR_PAGE_SZ (0x1 << 24) |
| #define NDCR_NCSX (0x1 << 23) |
| #define NDCR_ND_MODE (0x3 << 21) |
| #define NDCR_NAND_MODE (0x0) |
| #define NDCR_CLR_PG_CNT (0x1 << 20) |
| #define NFCV1_NDCR_ARB_CNTL (0x1 << 19) |
| #define NFCV2_NDCR_STOP_ON_UNCOR (0x1 << 19) |
| #define NDCR_RD_ID_CNT_MASK (0x7 << 16) |
| #define NDCR_RD_ID_CNT(x) (((x) << 16) & NDCR_RD_ID_CNT_MASK) |
| |
| #define NDCR_RA_START (0x1 << 15) |
| #define NDCR_PG_PER_BLK (0x1 << 14) |
| #define NDCR_ND_ARB_EN (0x1 << 12) |
| #define NDCR_INT_MASK (0xFFF) |
| |
| #define NDSR_MASK (0xfff) |
| #define NDSR_ERR_CNT_OFF (16) |
| #define NDSR_ERR_CNT_MASK (0x1f) |
| #define NDSR_ERR_CNT(sr) ((sr >> NDSR_ERR_CNT_OFF) & NDSR_ERR_CNT_MASK) |
| #define NDSR_RDY (0x1 << 12) |
| #define NDSR_FLASH_RDY (0x1 << 11) |
| #define NDSR_CS0_PAGED (0x1 << 10) |
| #define NDSR_CS1_PAGED (0x1 << 9) |
| #define NDSR_CS0_CMDD (0x1 << 8) |
| #define NDSR_CS1_CMDD (0x1 << 7) |
| #define NDSR_CS0_BBD (0x1 << 6) |
| #define NDSR_CS1_BBD (0x1 << 5) |
| #define NDSR_UNCORERR (0x1 << 4) |
| #define NDSR_CORERR (0x1 << 3) |
| #define NDSR_WRDREQ (0x1 << 2) |
| #define NDSR_RDDREQ (0x1 << 1) |
| #define NDSR_WRCMDREQ (0x1) |
| |
| #define NDCB0_LEN_OVRD (0x1 << 28) |
| #define NDCB0_ST_ROW_EN (0x1 << 26) |
| #define NDCB0_AUTO_RS (0x1 << 25) |
| #define NDCB0_CSEL (0x1 << 24) |
| #define NDCB0_EXT_CMD_TYPE_MASK (0x7 << 29) |
| #define NDCB0_EXT_CMD_TYPE(x) (((x) << 29) & NDCB0_EXT_CMD_TYPE_MASK) |
| #define NDCB0_CMD_TYPE_MASK (0x7 << 21) |
| #define NDCB0_CMD_TYPE(x) (((x) << 21) & NDCB0_CMD_TYPE_MASK) |
| #define NDCB0_NC (0x1 << 20) |
| #define NDCB0_DBC (0x1 << 19) |
| #define NDCB0_ADDR_CYC_MASK (0x7 << 16) |
| #define NDCB0_ADDR_CYC(x) (((x) << 16) & NDCB0_ADDR_CYC_MASK) |
| #define NDCB0_CMD2_MASK (0xff << 8) |
| #define NDCB0_CMD1_MASK (0xff) |
| #define NDCB0_ADDR_CYC_SHIFT (16) |
| |
| #define EXT_CMD_TYPE_DISPATCH 6 /* Command dispatch */ |
| #define EXT_CMD_TYPE_NAKED_RW 5 /* Naked read or Naked write */ |
| #define EXT_CMD_TYPE_READ 4 /* Read */ |
| #define EXT_CMD_TYPE_DISP_WR 4 /* Command dispatch with write */ |
| #define EXT_CMD_TYPE_FINAL 3 /* Final command */ |
| #define EXT_CMD_TYPE_LAST_RW 1 /* Last naked read/write */ |
| #define EXT_CMD_TYPE_MONO 0 /* Monolithic read/write */ |
| |
| /* |
| * This should be large enough to read 'ONFI' and 'JEDEC'. |
| * Let's use 7 bytes, which is the maximum ID count supported |
| * by the controller (see NDCR_RD_ID_CNT_MASK). |
| */ |
| #define READ_ID_BYTES 7 |
| |
| /* macros for registers read/write */ |
| #define nand_writel(info, off, val) \ |
| writel_relaxed((val), (info)->mmio_base + (off)) |
| |
| #define nand_readl(info, off) \ |
| readl_relaxed((info)->mmio_base + (off)) |
| |
| /* error code and state */ |
| enum { |
| ERR_NONE = 0, |
| ERR_DMABUSERR = -1, |
| ERR_SENDCMD = -2, |
| ERR_UNCORERR = -3, |
| ERR_BBERR = -4, |
| ERR_CORERR = -5, |
| }; |
| |
| enum { |
| STATE_IDLE = 0, |
| STATE_PREPARED, |
| STATE_CMD_HANDLE, |
| STATE_DMA_READING, |
| STATE_DMA_WRITING, |
| STATE_DMA_DONE, |
| STATE_PIO_READING, |
| STATE_PIO_WRITING, |
| STATE_CMD_DONE, |
| STATE_READY, |
| }; |
| |
| enum pxa3xx_nand_variant { |
| PXA3XX_NAND_VARIANT_PXA, |
| PXA3XX_NAND_VARIANT_ARMADA370, |
| }; |
| |
| struct pxa3xx_nand_host { |
| struct nand_chip chip; |
| struct mtd_info *mtd; |
| void *info_data; |
| |
| /* page size of attached chip */ |
| int use_ecc; |
| int cs; |
| |
| /* calculated from pxa3xx_nand_flash data */ |
| unsigned int col_addr_cycles; |
| unsigned int row_addr_cycles; |
| }; |
| |
| struct pxa3xx_nand_info { |
| struct nand_hw_control controller; |
| struct platform_device *pdev; |
| |
| struct clk *clk; |
| void __iomem *mmio_base; |
| unsigned long mmio_phys; |
| struct completion cmd_complete, dev_ready; |
| |
| unsigned int buf_start; |
| unsigned int buf_count; |
| unsigned int buf_size; |
| unsigned int data_buff_pos; |
| unsigned int oob_buff_pos; |
| |
| /* DMA information */ |
| struct scatterlist sg; |
| enum dma_data_direction dma_dir; |
| struct dma_chan *dma_chan; |
| dma_cookie_t dma_cookie; |
| int drcmr_dat; |
| int drcmr_cmd; |
| |
| unsigned char *data_buff; |
| unsigned char *oob_buff; |
| dma_addr_t data_buff_phys; |
| int data_dma_ch; |
| |
| struct pxa3xx_nand_host *host[NUM_CHIP_SELECT]; |
| unsigned int state; |
| |
| /* |
| * This driver supports NFCv1 (as found in PXA SoC) |
| * and NFCv2 (as found in Armada 370/XP SoC). |
| */ |
| enum pxa3xx_nand_variant variant; |
| |
| int cs; |
| int use_ecc; /* use HW ECC ? */ |
| int ecc_bch; /* using BCH ECC? */ |
| int use_dma; /* use DMA ? */ |
| int use_spare; /* use spare ? */ |
| int need_wait; |
| |
| unsigned int data_size; /* data to be read from FIFO */ |
| unsigned int chunk_size; /* split commands chunk size */ |
| unsigned int oob_size; |
| unsigned int spare_size; |
| unsigned int ecc_size; |
| unsigned int ecc_err_cnt; |
| unsigned int max_bitflips; |
| int retcode; |
| |
| /* cached register value */ |
| uint32_t reg_ndcr; |
| uint32_t ndtr0cs0; |
| uint32_t ndtr1cs0; |
| |
| /* generated NDCBx register values */ |
| uint32_t ndcb0; |
| uint32_t ndcb1; |
| uint32_t ndcb2; |
| uint32_t ndcb3; |
| }; |
| |
| static bool use_dma = 1; |
| module_param(use_dma, bool, 0444); |
| MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW"); |
| |
| struct pxa3xx_nand_timing { |
| unsigned int tCH; /* Enable signal hold time */ |
| unsigned int tCS; /* Enable signal setup time */ |
| unsigned int tWH; /* ND_nWE high duration */ |
| unsigned int tWP; /* ND_nWE pulse time */ |
| unsigned int tRH; /* ND_nRE high duration */ |
| unsigned int tRP; /* ND_nRE pulse width */ |
| unsigned int tR; /* ND_nWE high to ND_nRE low for read */ |
| unsigned int tWHR; /* ND_nWE high to ND_nRE low for status read */ |
| unsigned int tAR; /* ND_ALE low to ND_nRE low delay */ |
| }; |
| |
| struct pxa3xx_nand_flash { |
| char *name; |
| uint32_t chip_id; |
| unsigned int page_per_block; /* Pages per block (PG_PER_BLK) */ |
| unsigned int page_size; /* Page size in bytes (PAGE_SZ) */ |
| unsigned int flash_width; /* Width of Flash memory (DWIDTH_M) */ |
| unsigned int dfc_width; /* Width of flash controller(DWIDTH_C) */ |
| unsigned int num_blocks; /* Number of physical blocks in Flash */ |
| |
| struct pxa3xx_nand_timing *timing; /* NAND Flash timing */ |
| }; |
| |
| static struct pxa3xx_nand_timing timing[] = { |
| { 40, 80, 60, 100, 80, 100, 90000, 400, 40, }, |
| { 10, 0, 20, 40, 30, 40, 11123, 110, 10, }, |
| { 10, 25, 15, 25, 15, 30, 25000, 60, 10, }, |
| { 10, 35, 15, 25, 15, 25, 25000, 60, 10, }, |
| }; |
| |
| static struct pxa3xx_nand_flash builtin_flash_types[] = { |
| { "DEFAULT FLASH", 0, 0, 2048, 8, 8, 0, &timing[0] }, |
| { "64MiB 16-bit", 0x46ec, 32, 512, 16, 16, 4096, &timing[1] }, |
| { "256MiB 8-bit", 0xdaec, 64, 2048, 8, 8, 2048, &timing[1] }, |
| { "4GiB 8-bit", 0xd7ec, 128, 4096, 8, 8, 8192, &timing[1] }, |
| { "128MiB 8-bit", 0xa12c, 64, 2048, 8, 8, 1024, &timing[2] }, |
| { "128MiB 16-bit", 0xb12c, 64, 2048, 16, 16, 1024, &timing[2] }, |
| { "512MiB 8-bit", 0xdc2c, 64, 2048, 8, 8, 4096, &timing[2] }, |
| { "512MiB 16-bit", 0xcc2c, 64, 2048, 16, 16, 4096, &timing[2] }, |
| { "256MiB 16-bit", 0xba20, 64, 2048, 16, 16, 2048, &timing[3] }, |
| }; |
| |
| static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; |
| static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; |
| |
| static struct nand_bbt_descr bbt_main_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| | NAND_BBT_2BIT | NAND_BBT_VERSION, |
| .offs = 8, |
| .len = 6, |
| .veroffs = 14, |
| .maxblocks = 8, /* Last 8 blocks in each chip */ |
| .pattern = bbt_pattern |
| }; |
| |
| static struct nand_bbt_descr bbt_mirror_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| | NAND_BBT_2BIT | NAND_BBT_VERSION, |
| .offs = 8, |
| .len = 6, |
| .veroffs = 14, |
| .maxblocks = 8, /* Last 8 blocks in each chip */ |
| .pattern = bbt_mirror_pattern |
| }; |
| |
| static struct nand_ecclayout ecc_layout_2KB_bch4bit = { |
| .eccbytes = 32, |
| .eccpos = { |
| 32, 33, 34, 35, 36, 37, 38, 39, |
| 40, 41, 42, 43, 44, 45, 46, 47, |
| 48, 49, 50, 51, 52, 53, 54, 55, |
| 56, 57, 58, 59, 60, 61, 62, 63}, |
| .oobfree = { {2, 30} } |
| }; |
| |
| static struct nand_ecclayout ecc_layout_4KB_bch4bit = { |
| .eccbytes = 64, |
| .eccpos = { |
| 32, 33, 34, 35, 36, 37, 38, 39, |
| 40, 41, 42, 43, 44, 45, 46, 47, |
| 48, 49, 50, 51, 52, 53, 54, 55, |
| 56, 57, 58, 59, 60, 61, 62, 63, |
| 96, 97, 98, 99, 100, 101, 102, 103, |
| 104, 105, 106, 107, 108, 109, 110, 111, |
| 112, 113, 114, 115, 116, 117, 118, 119, |
| 120, 121, 122, 123, 124, 125, 126, 127}, |
| /* Bootrom looks in bytes 0 & 5 for bad blocks */ |
| .oobfree = { {6, 26}, { 64, 32} } |
| }; |
| |
| static struct nand_ecclayout ecc_layout_4KB_bch8bit = { |
| .eccbytes = 128, |
| .eccpos = { |
| 32, 33, 34, 35, 36, 37, 38, 39, |
| 40, 41, 42, 43, 44, 45, 46, 47, |
| 48, 49, 50, 51, 52, 53, 54, 55, |
| 56, 57, 58, 59, 60, 61, 62, 63}, |
| .oobfree = { } |
| }; |
| |
| /* Define a default flash type setting serve as flash detecting only */ |
| #define DEFAULT_FLASH_TYPE (&builtin_flash_types[0]) |
| |
| #define NDTR0_tCH(c) (min((c), 7) << 19) |
| #define NDTR0_tCS(c) (min((c), 7) << 16) |
| #define NDTR0_tWH(c) (min((c), 7) << 11) |
| #define NDTR0_tWP(c) (min((c), 7) << 8) |
| #define NDTR0_tRH(c) (min((c), 7) << 3) |
| #define NDTR0_tRP(c) (min((c), 7) << 0) |
| |
| #define NDTR1_tR(c) (min((c), 65535) << 16) |
| #define NDTR1_tWHR(c) (min((c), 15) << 4) |
| #define NDTR1_tAR(c) (min((c), 15) << 0) |
| |
| /* convert nano-seconds to nand flash controller clock cycles */ |
| #define ns2cycle(ns, clk) (int)((ns) * (clk / 1000000) / 1000) |
| |
| static const struct of_device_id pxa3xx_nand_dt_ids[] = { |
| { |
| .compatible = "marvell,pxa3xx-nand", |
| .data = (void *)PXA3XX_NAND_VARIANT_PXA, |
| }, |
| { |
| .compatible = "marvell,armada370-nand", |
| .data = (void *)PXA3XX_NAND_VARIANT_ARMADA370, |
| }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, pxa3xx_nand_dt_ids); |
| |
| static enum pxa3xx_nand_variant |
| pxa3xx_nand_get_variant(struct platform_device *pdev) |
| { |
| const struct of_device_id *of_id = |
| of_match_device(pxa3xx_nand_dt_ids, &pdev->dev); |
| if (!of_id) |
| return PXA3XX_NAND_VARIANT_PXA; |
| return (enum pxa3xx_nand_variant)of_id->data; |
| } |
| |
| static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host, |
| const struct pxa3xx_nand_timing *t) |
| { |
| struct pxa3xx_nand_info *info = host->info_data; |
| unsigned long nand_clk = clk_get_rate(info->clk); |
| uint32_t ndtr0, ndtr1; |
| |
| ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) | |
| NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) | |
| NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) | |
| NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) | |
| NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) | |
| NDTR0_tRP(ns2cycle(t->tRP, nand_clk)); |
| |
| ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) | |
| NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) | |
| NDTR1_tAR(ns2cycle(t->tAR, nand_clk)); |
| |
| info->ndtr0cs0 = ndtr0; |
| info->ndtr1cs0 = ndtr1; |
| nand_writel(info, NDTR0CS0, ndtr0); |
| nand_writel(info, NDTR1CS0, ndtr1); |
| } |
| |
| /* |
| * Set the data and OOB size, depending on the selected |
| * spare and ECC configuration. |
| * Only applicable to READ0, READOOB and PAGEPROG commands. |
| */ |
| static void pxa3xx_set_datasize(struct pxa3xx_nand_info *info, |
| struct mtd_info *mtd) |
| { |
| int oob_enable = info->reg_ndcr & NDCR_SPARE_EN; |
| |
| info->data_size = mtd->writesize; |
| if (!oob_enable) |
| return; |
| |
| info->oob_size = info->spare_size; |
| if (!info->use_ecc) |
| info->oob_size += info->ecc_size; |
| } |
| |
| /** |
| * NOTE: it is a must to set ND_RUN firstly, then write |
| * command buffer, otherwise, it does not work. |
| * We enable all the interrupt at the same time, and |
| * let pxa3xx_nand_irq to handle all logic. |
| */ |
| static void pxa3xx_nand_start(struct pxa3xx_nand_info *info) |
| { |
| uint32_t ndcr; |
| |
| ndcr = info->reg_ndcr; |
| |
| if (info->use_ecc) { |
| ndcr |= NDCR_ECC_EN; |
| if (info->ecc_bch) |
| nand_writel(info, NDECCCTRL, 0x1); |
| } else { |
| ndcr &= ~NDCR_ECC_EN; |
| if (info->ecc_bch) |
| nand_writel(info, NDECCCTRL, 0x0); |
| } |
| |
| if (info->use_dma) |
| ndcr |= NDCR_DMA_EN; |
| else |
| ndcr &= ~NDCR_DMA_EN; |
| |
| if (info->use_spare) |
| ndcr |= NDCR_SPARE_EN; |
| else |
| ndcr &= ~NDCR_SPARE_EN; |
| |
| ndcr |= NDCR_ND_RUN; |
| |
| /* clear status bits and run */ |
| nand_writel(info, NDSR, NDSR_MASK); |
| nand_writel(info, NDCR, 0); |
| nand_writel(info, NDCR, ndcr); |
| } |
| |
| static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info) |
| { |
| uint32_t ndcr; |
| int timeout = NAND_STOP_DELAY; |
| |
| /* wait RUN bit in NDCR become 0 */ |
| ndcr = nand_readl(info, NDCR); |
| while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) { |
| ndcr = nand_readl(info, NDCR); |
| udelay(1); |
| } |
| |
| if (timeout <= 0) { |
| ndcr &= ~NDCR_ND_RUN; |
| nand_writel(info, NDCR, ndcr); |
| } |
| if (info->dma_chan) |
| dmaengine_terminate_all(info->dma_chan); |
| |
| /* clear status bits */ |
| nand_writel(info, NDSR, NDSR_MASK); |
| } |
| |
| static void __maybe_unused |
| enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) |
| { |
| uint32_t ndcr; |
| |
| ndcr = nand_readl(info, NDCR); |
| nand_writel(info, NDCR, ndcr & ~int_mask); |
| } |
| |
| static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) |
| { |
| uint32_t ndcr; |
| |
| ndcr = nand_readl(info, NDCR); |
| nand_writel(info, NDCR, ndcr | int_mask); |
| } |
| |
| static void drain_fifo(struct pxa3xx_nand_info *info, void *data, int len) |
| { |
| if (info->ecc_bch) { |
| u32 val; |
| int ret; |
| |
| /* |
| * According to the datasheet, when reading from NDDB |
| * with BCH enabled, after each 32 bytes reads, we |
| * have to make sure that the NDSR.RDDREQ bit is set. |
| * |
| * Drain the FIFO 8 32 bits reads at a time, and skip |
| * the polling on the last read. |
| */ |
| while (len > 8) { |
| ioread32_rep(info->mmio_base + NDDB, data, 8); |
| |
| ret = readl_relaxed_poll_timeout(info->mmio_base + NDSR, val, |
| val & NDSR_RDDREQ, 1000, 5000); |
| if (ret) { |
| dev_err(&info->pdev->dev, |
| "Timeout on RDDREQ while draining the FIFO\n"); |
| return; |
| } |
| |
| data += 32; |
| len -= 8; |
| } |
| } |
| |
| ioread32_rep(info->mmio_base + NDDB, data, len); |
| } |
| |
| static void handle_data_pio(struct pxa3xx_nand_info *info) |
| { |
| unsigned int do_bytes = min(info->data_size, info->chunk_size); |
| |
| switch (info->state) { |
| case STATE_PIO_WRITING: |
| writesl(info->mmio_base + NDDB, |
| info->data_buff + info->data_buff_pos, |
| DIV_ROUND_UP(do_bytes, 4)); |
| |
| if (info->oob_size > 0) |
| writesl(info->mmio_base + NDDB, |
| info->oob_buff + info->oob_buff_pos, |
| DIV_ROUND_UP(info->oob_size, 4)); |
| break; |
| case STATE_PIO_READING: |
| drain_fifo(info, |
| info->data_buff + info->data_buff_pos, |
| DIV_ROUND_UP(do_bytes, 4)); |
| |
| if (info->oob_size > 0) |
| drain_fifo(info, |
| info->oob_buff + info->oob_buff_pos, |
| DIV_ROUND_UP(info->oob_size, 4)); |
| break; |
| default: |
| dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__, |
| info->state); |
| BUG(); |
| } |
| |
| /* Update buffer pointers for multi-page read/write */ |
| info->data_buff_pos += do_bytes; |
| info->oob_buff_pos += info->oob_size; |
| info->data_size -= do_bytes; |
| } |
| |
| static void pxa3xx_nand_data_dma_irq(void *data) |
| { |
| struct pxa3xx_nand_info *info = data; |
| struct dma_tx_state state; |
| enum dma_status status; |
| |
| status = dmaengine_tx_status(info->dma_chan, info->dma_cookie, &state); |
| if (likely(status == DMA_COMPLETE)) { |
| info->state = STATE_DMA_DONE; |
| } else { |
| dev_err(&info->pdev->dev, "DMA error on data channel\n"); |
| info->retcode = ERR_DMABUSERR; |
| } |
| dma_unmap_sg(info->dma_chan->device->dev, &info->sg, 1, info->dma_dir); |
| |
| nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ); |
| enable_int(info, NDCR_INT_MASK); |
| } |
| |
| static void start_data_dma(struct pxa3xx_nand_info *info) |
| { |
| enum dma_transfer_direction direction; |
| struct dma_async_tx_descriptor *tx; |
| |
| switch (info->state) { |
| case STATE_DMA_WRITING: |
| info->dma_dir = DMA_TO_DEVICE; |
| direction = DMA_MEM_TO_DEV; |
| break; |
| case STATE_DMA_READING: |
| info->dma_dir = DMA_FROM_DEVICE; |
| direction = DMA_DEV_TO_MEM; |
| break; |
| default: |
| dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__, |
| info->state); |
| BUG(); |
| } |
| info->sg.length = info->data_size + |
| (info->oob_size ? info->spare_size + info->ecc_size : 0); |
| dma_map_sg(info->dma_chan->device->dev, &info->sg, 1, info->dma_dir); |
| |
| tx = dmaengine_prep_slave_sg(info->dma_chan, &info->sg, 1, direction, |
| DMA_PREP_INTERRUPT); |
| if (!tx) { |
| dev_err(&info->pdev->dev, "prep_slave_sg() failed\n"); |
| return; |
| } |
| tx->callback = pxa3xx_nand_data_dma_irq; |
| tx->callback_param = info; |
| info->dma_cookie = dmaengine_submit(tx); |
| dma_async_issue_pending(info->dma_chan); |
| dev_dbg(&info->pdev->dev, "%s(dir=%d cookie=%x size=%u)\n", |
| __func__, direction, info->dma_cookie, info->sg.length); |
| } |
| |
| static irqreturn_t pxa3xx_nand_irq_thread(int irq, void *data) |
| { |
| struct pxa3xx_nand_info *info = data; |
| |
| handle_data_pio(info); |
| |
| info->state = STATE_CMD_DONE; |
| nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t pxa3xx_nand_irq(int irq, void *devid) |
| { |
| struct pxa3xx_nand_info *info = devid; |
| unsigned int status, is_completed = 0, is_ready = 0; |
| unsigned int ready, cmd_done; |
| irqreturn_t ret = IRQ_HANDLED; |
| |
| if (info->cs == 0) { |
| ready = NDSR_FLASH_RDY; |
| cmd_done = NDSR_CS0_CMDD; |
| } else { |
| ready = NDSR_RDY; |
| cmd_done = NDSR_CS1_CMDD; |
| } |
| |
| status = nand_readl(info, NDSR); |
| |
| if (status & NDSR_UNCORERR) |
| info->retcode = ERR_UNCORERR; |
| if (status & NDSR_CORERR) { |
| info->retcode = ERR_CORERR; |
| if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 && |
| info->ecc_bch) |
| info->ecc_err_cnt = NDSR_ERR_CNT(status); |
| else |
| info->ecc_err_cnt = 1; |
| |
| /* |
| * Each chunk composing a page is corrected independently, |
| * and we need to store maximum number of corrected bitflips |
| * to return it to the MTD layer in ecc.read_page(). |
| */ |
| info->max_bitflips = max_t(unsigned int, |
| info->max_bitflips, |
| info->ecc_err_cnt); |
| } |
| if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) { |
| /* whether use dma to transfer data */ |
| if (info->use_dma) { |
| disable_int(info, NDCR_INT_MASK); |
| info->state = (status & NDSR_RDDREQ) ? |
| STATE_DMA_READING : STATE_DMA_WRITING; |
| start_data_dma(info); |
| goto NORMAL_IRQ_EXIT; |
| } else { |
| info->state = (status & NDSR_RDDREQ) ? |
| STATE_PIO_READING : STATE_PIO_WRITING; |
| ret = IRQ_WAKE_THREAD; |
| goto NORMAL_IRQ_EXIT; |
| } |
| } |
| if (status & cmd_done) { |
| info->state = STATE_CMD_DONE; |
| is_completed = 1; |
| } |
| if (status & ready) { |
| info->state = STATE_READY; |
| is_ready = 1; |
| } |
| |
| /* |
| * Clear all status bit before issuing the next command, which |
| * can and will alter the status bits and will deserve a new |
| * interrupt on its own. This lets the controller exit the IRQ |
| */ |
| nand_writel(info, NDSR, status); |
| |
| if (status & NDSR_WRCMDREQ) { |
| status &= ~NDSR_WRCMDREQ; |
| info->state = STATE_CMD_HANDLE; |
| |
| /* |
| * Command buffer registers NDCB{0-2} (and optionally NDCB3) |
| * must be loaded by writing directly either 12 or 16 |
| * bytes directly to NDCB0, four bytes at a time. |
| * |
| * Direct write access to NDCB1, NDCB2 and NDCB3 is ignored |
| * but each NDCBx register can be read. |
| */ |
| nand_writel(info, NDCB0, info->ndcb0); |
| nand_writel(info, NDCB0, info->ndcb1); |
| nand_writel(info, NDCB0, info->ndcb2); |
| |
| /* NDCB3 register is available in NFCv2 (Armada 370/XP SoC) */ |
| if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370) |
| nand_writel(info, NDCB0, info->ndcb3); |
| } |
| |
| if (is_completed) |
| complete(&info->cmd_complete); |
| if (is_ready) |
| complete(&info->dev_ready); |
| NORMAL_IRQ_EXIT: |
| return ret; |
| } |
| |
| static inline int is_buf_blank(uint8_t *buf, size_t len) |
| { |
| for (; len > 0; len--) |
| if (*buf++ != 0xff) |
| return 0; |
| return 1; |
| } |
| |
| static void set_command_address(struct pxa3xx_nand_info *info, |
| unsigned int page_size, uint16_t column, int page_addr) |
| { |
| /* small page addr setting */ |
| if (page_size < PAGE_CHUNK_SIZE) { |
| info->ndcb1 = ((page_addr & 0xFFFFFF) << 8) |
| | (column & 0xFF); |
| |
| info->ndcb2 = 0; |
| } else { |
| info->ndcb1 = ((page_addr & 0xFFFF) << 16) |
| | (column & 0xFFFF); |
| |
| if (page_addr & 0xFF0000) |
| info->ndcb2 = (page_addr & 0xFF0000) >> 16; |
| else |
| info->ndcb2 = 0; |
| } |
| } |
| |
| static void prepare_start_command(struct pxa3xx_nand_info *info, int command) |
| { |
| struct pxa3xx_nand_host *host = info->host[info->cs]; |
| struct mtd_info *mtd = host->mtd; |
| |
| /* reset data and oob column point to handle data */ |
| info->buf_start = 0; |
| info->buf_count = 0; |
| info->oob_size = 0; |
| info->data_buff_pos = 0; |
| info->oob_buff_pos = 0; |
| info->use_ecc = 0; |
| info->use_spare = 1; |
| info->retcode = ERR_NONE; |
| info->ecc_err_cnt = 0; |
| info->ndcb3 = 0; |
| info->need_wait = 0; |
| |
| switch (command) { |
| case NAND_CMD_READ0: |
| case NAND_CMD_PAGEPROG: |
| info->use_ecc = 1; |
| case NAND_CMD_READOOB: |
| pxa3xx_set_datasize(info, mtd); |
| break; |
| case NAND_CMD_PARAM: |
| info->use_spare = 0; |
| break; |
| default: |
| info->ndcb1 = 0; |
| info->ndcb2 = 0; |
| break; |
| } |
| |
| /* |
| * If we are about to issue a read command, or about to set |
| * the write address, then clean the data buffer. |
| */ |
| if (command == NAND_CMD_READ0 || |
| command == NAND_CMD_READOOB || |
| command == NAND_CMD_SEQIN) { |
| |
| info->buf_count = mtd->writesize + mtd->oobsize; |
| memset(info->data_buff, 0xFF, info->buf_count); |
| } |
| |
| } |
| |
| static int prepare_set_command(struct pxa3xx_nand_info *info, int command, |
| int ext_cmd_type, uint16_t column, int page_addr) |
| { |
| int addr_cycle, exec_cmd; |
| struct pxa3xx_nand_host *host; |
| struct mtd_info *mtd; |
| |
| host = info->host[info->cs]; |
| mtd = host->mtd; |
| addr_cycle = 0; |
| exec_cmd = 1; |
| |
| if (info->cs != 0) |
| info->ndcb0 = NDCB0_CSEL; |
| else |
| info->ndcb0 = 0; |
| |
| if (command == NAND_CMD_SEQIN) |
| exec_cmd = 0; |
| |
| addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles |
| + host->col_addr_cycles); |
| |
| switch (command) { |
| case NAND_CMD_READOOB: |
| case NAND_CMD_READ0: |
| info->buf_start = column; |
| info->ndcb0 |= NDCB0_CMD_TYPE(0) |
| | addr_cycle |
| | NAND_CMD_READ0; |
| |
| if (command == NAND_CMD_READOOB) |
| info->buf_start += mtd->writesize; |
| |
| /* |
| * Multiple page read needs an 'extended command type' field, |
| * which is either naked-read or last-read according to the |
| * state. |
| */ |
| if (mtd->writesize == PAGE_CHUNK_SIZE) { |
| info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8); |
| } else if (mtd->writesize > PAGE_CHUNK_SIZE) { |
| info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8) |
| | NDCB0_LEN_OVRD |
| | NDCB0_EXT_CMD_TYPE(ext_cmd_type); |
| info->ndcb3 = info->chunk_size + |
| info->oob_size; |
| } |
| |
| set_command_address(info, mtd->writesize, column, page_addr); |
| break; |
| |
| case NAND_CMD_SEQIN: |
| |
| info->buf_start = column; |
| set_command_address(info, mtd->writesize, 0, page_addr); |
| |
| /* |
| * Multiple page programming needs to execute the initial |
| * SEQIN command that sets the page address. |
| */ |
| if (mtd->writesize > PAGE_CHUNK_SIZE) { |
| info->ndcb0 |= NDCB0_CMD_TYPE(0x1) |
| | NDCB0_EXT_CMD_TYPE(ext_cmd_type) |
| | addr_cycle |
| | command; |
| /* No data transfer in this case */ |
| info->data_size = 0; |
| exec_cmd = 1; |
| } |
| break; |
| |
| case NAND_CMD_PAGEPROG: |
| if (is_buf_blank(info->data_buff, |
| (mtd->writesize + mtd->oobsize))) { |
| exec_cmd = 0; |
| break; |
| } |
| |
| /* Second command setting for large pages */ |
| if (mtd->writesize > PAGE_CHUNK_SIZE) { |
| /* |
| * Multiple page write uses the 'extended command' |
| * field. This can be used to issue a command dispatch |
| * or a naked-write depending on the current stage. |
| */ |
| info->ndcb0 |= NDCB0_CMD_TYPE(0x1) |
| | NDCB0_LEN_OVRD |
| | NDCB0_EXT_CMD_TYPE(ext_cmd_type); |
| info->ndcb3 = info->chunk_size + |
| info->oob_size; |
| |
| /* |
| * This is the command dispatch that completes a chunked |
| * page program operation. |
| */ |
| if (info->data_size == 0) { |
| info->ndcb0 = NDCB0_CMD_TYPE(0x1) |
| | NDCB0_EXT_CMD_TYPE(ext_cmd_type) |
| | command; |
| info->ndcb1 = 0; |
| info->ndcb2 = 0; |
| info->ndcb3 = 0; |
| } |
| } else { |
| info->ndcb0 |= NDCB0_CMD_TYPE(0x1) |
| | NDCB0_AUTO_RS |
| | NDCB0_ST_ROW_EN |
| | NDCB0_DBC |
| | (NAND_CMD_PAGEPROG << 8) |
| | NAND_CMD_SEQIN |
| | addr_cycle; |
| } |
| break; |
| |
| case NAND_CMD_PARAM: |
| info->buf_count = INIT_BUFFER_SIZE; |
| info->ndcb0 |= NDCB0_CMD_TYPE(0) |
| | NDCB0_ADDR_CYC(1) |
| | NDCB0_LEN_OVRD |
| | command; |
| info->ndcb1 = (column & 0xFF); |
| info->ndcb3 = INIT_BUFFER_SIZE; |
| info->data_size = INIT_BUFFER_SIZE; |
| break; |
| |
| case NAND_CMD_READID: |
| info->buf_count = READ_ID_BYTES; |
| info->ndcb0 |= NDCB0_CMD_TYPE(3) |
| | NDCB0_ADDR_CYC(1) |
| | command; |
| info->ndcb1 = (column & 0xFF); |
| |
| info->data_size = 8; |
| break; |
| case NAND_CMD_STATUS: |
| info->buf_count = 1; |
| info->ndcb0 |= NDCB0_CMD_TYPE(4) |
| | NDCB0_ADDR_CYC(1) |
| | command; |
| |
| info->data_size = 8; |
| break; |
| |
| case NAND_CMD_ERASE1: |
| info->ndcb0 |= NDCB0_CMD_TYPE(2) |
| | NDCB0_AUTO_RS |
| | NDCB0_ADDR_CYC(3) |
| | NDCB0_DBC |
| | (NAND_CMD_ERASE2 << 8) |
| | NAND_CMD_ERASE1; |
| info->ndcb1 = page_addr; |
| info->ndcb2 = 0; |
| |
| break; |
| case NAND_CMD_RESET: |
| info->ndcb0 |= NDCB0_CMD_TYPE(5) |
| | command; |
| |
| break; |
| |
| case NAND_CMD_ERASE2: |
| exec_cmd = 0; |
| break; |
| |
| default: |
| exec_cmd = 0; |
| dev_err(&info->pdev->dev, "non-supported command %x\n", |
| command); |
| break; |
| } |
| |
| return exec_cmd; |
| } |
| |
| static void nand_cmdfunc(struct mtd_info *mtd, unsigned command, |
| int column, int page_addr) |
| { |
| struct pxa3xx_nand_host *host = mtd->priv; |
| struct pxa3xx_nand_info *info = host->info_data; |
| int exec_cmd; |
| |
| /* |
| * if this is a x16 device ,then convert the input |
| * "byte" address into a "word" address appropriate |
| * for indexing a word-oriented device |
| */ |
| if (info->reg_ndcr & NDCR_DWIDTH_M) |
| column /= 2; |
| |
| /* |
| * There may be different NAND chip hooked to |
| * different chip select, so check whether |
| * chip select has been changed, if yes, reset the timing |
| */ |
| if (info->cs != host->cs) { |
| info->cs = host->cs; |
| nand_writel(info, NDTR0CS0, info->ndtr0cs0); |
| nand_writel(info, NDTR1CS0, info->ndtr1cs0); |
| } |
| |
| prepare_start_command(info, command); |
| |
| info->state = STATE_PREPARED; |
| exec_cmd = prepare_set_command(info, command, 0, column, page_addr); |
| |
| if (exec_cmd) { |
| init_completion(&info->cmd_complete); |
| init_completion(&info->dev_ready); |
| info->need_wait = 1; |
| pxa3xx_nand_start(info); |
| |
| if (!wait_for_completion_timeout(&info->cmd_complete, |
| CHIP_DELAY_TIMEOUT)) { |
| dev_err(&info->pdev->dev, "Wait time out!!!\n"); |
| /* Stop State Machine for next command cycle */ |
| pxa3xx_nand_stop(info); |
| } |
| } |
| info->state = STATE_IDLE; |
| } |
| |
| static void nand_cmdfunc_extended(struct mtd_info *mtd, |
| const unsigned command, |
| int column, int page_addr) |
| { |
| struct pxa3xx_nand_host *host = mtd->priv; |
| struct pxa3xx_nand_info *info = host->info_data; |
| int exec_cmd, ext_cmd_type; |
| |
| /* |
| * if this is a x16 device then convert the input |
| * "byte" address into a "word" address appropriate |
| * for indexing a word-oriented device |
| */ |
| if (info->reg_ndcr & NDCR_DWIDTH_M) |
| column /= 2; |
| |
| /* |
| * There may be different NAND chip hooked to |
| * different chip select, so check whether |
| * chip select has been changed, if yes, reset the timing |
| */ |
| if (info->cs != host->cs) { |
| info->cs = host->cs; |
| nand_writel(info, NDTR0CS0, info->ndtr0cs0); |
| nand_writel(info, NDTR1CS0, info->ndtr1cs0); |
| } |
| |
| /* Select the extended command for the first command */ |
| switch (command) { |
| case NAND_CMD_READ0: |
| case NAND_CMD_READOOB: |
| ext_cmd_type = EXT_CMD_TYPE_MONO; |
| break; |
| case NAND_CMD_SEQIN: |
| ext_cmd_type = EXT_CMD_TYPE_DISPATCH; |
| break; |
| case NAND_CMD_PAGEPROG: |
| ext_cmd_type = EXT_CMD_TYPE_NAKED_RW; |
| break; |
| default: |
| ext_cmd_type = 0; |
| break; |
| } |
| |
| prepare_start_command(info, command); |
| |
| /* |
| * Prepare the "is ready" completion before starting a command |
| * transaction sequence. If the command is not executed the |
| * completion will be completed, see below. |
| * |
| * We can do that inside the loop because the command variable |
| * is invariant and thus so is the exec_cmd. |
| */ |
| info->need_wait = 1; |
| init_completion(&info->dev_ready); |
| do { |
| info->state = STATE_PREPARED; |
| exec_cmd = prepare_set_command(info, command, ext_cmd_type, |
| column, page_addr); |
| if (!exec_cmd) { |
| info->need_wait = 0; |
| complete(&info->dev_ready); |
| break; |
| } |
| |
| init_completion(&info->cmd_complete); |
| pxa3xx_nand_start(info); |
| |
| if (!wait_for_completion_timeout(&info->cmd_complete, |
| CHIP_DELAY_TIMEOUT)) { |
| dev_err(&info->pdev->dev, "Wait time out!!!\n"); |
| /* Stop State Machine for next command cycle */ |
| pxa3xx_nand_stop(info); |
| break; |
| } |
| |
| /* Check if the sequence is complete */ |
| if (info->data_size == 0 && command != NAND_CMD_PAGEPROG) |
| break; |
| |
| /* |
| * After a splitted program command sequence has issued |
| * the command dispatch, the command sequence is complete. |
| */ |
| if (info->data_size == 0 && |
| command == NAND_CMD_PAGEPROG && |
| ext_cmd_type == EXT_CMD_TYPE_DISPATCH) |
| break; |
| |
| if (command == NAND_CMD_READ0 || command == NAND_CMD_READOOB) { |
| /* Last read: issue a 'last naked read' */ |
| if (info->data_size == info->chunk_size) |
| ext_cmd_type = EXT_CMD_TYPE_LAST_RW; |
| else |
| ext_cmd_type = EXT_CMD_TYPE_NAKED_RW; |
| |
| /* |
| * If a splitted program command has no more data to transfer, |
| * the command dispatch must be issued to complete. |
| */ |
| } else if (command == NAND_CMD_PAGEPROG && |
| info->data_size == 0) { |
| ext_cmd_type = EXT_CMD_TYPE_DISPATCH; |
| } |
| } while (1); |
| |
| info->state = STATE_IDLE; |
| } |
| |
| static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd, |
| struct nand_chip *chip, const uint8_t *buf, int oob_required, |
| int page) |
| { |
| chip->write_buf(mtd, buf, mtd->writesize); |
| chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| return 0; |
| } |
| |
| static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd, |
| struct nand_chip *chip, uint8_t *buf, int oob_required, |
| int page) |
| { |
| struct pxa3xx_nand_host *host = mtd->priv; |
| struct pxa3xx_nand_info *info = host->info_data; |
| |
| chip->read_buf(mtd, buf, mtd->writesize); |
| chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| if (info->retcode == ERR_CORERR && info->use_ecc) { |
| mtd->ecc_stats.corrected += info->ecc_err_cnt; |
| |
| } else if (info->retcode == ERR_UNCORERR) { |
| /* |
| * for blank page (all 0xff), HW will calculate its ECC as |
| * 0, which is different from the ECC information within |
| * OOB, ignore such uncorrectable errors |
| */ |
| if (is_buf_blank(buf, mtd->writesize)) |
| info->retcode = ERR_NONE; |
| else |
| mtd->ecc_stats.failed++; |
| } |
| |
| return info->max_bitflips; |
| } |
| |
| static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd) |
| { |
| struct pxa3xx_nand_host *host = mtd->priv; |
| struct pxa3xx_nand_info *info = host->info_data; |
| char retval = 0xFF; |
| |
| if (info->buf_start < info->buf_count) |
| /* Has just send a new command? */ |
| retval = info->data_buff[info->buf_start++]; |
| |
| return retval; |
| } |
| |
| static u16 pxa3xx_nand_read_word(struct mtd_info *mtd) |
| { |
| struct pxa3xx_nand_host *host = mtd->priv; |
| struct pxa3xx_nand_info *info = host->info_data; |
| u16 retval = 0xFFFF; |
| |
| if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) { |
| retval = *((u16 *)(info->data_buff+info->buf_start)); |
| info->buf_start += 2; |
| } |
| return retval; |
| } |
| |
| static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| struct pxa3xx_nand_host *host = mtd->priv; |
| struct pxa3xx_nand_info *info = host->info_data; |
| int real_len = min_t(size_t, len, info->buf_count - info->buf_start); |
| |
| memcpy(buf, info->data_buff + info->buf_start, real_len); |
| info->buf_start += real_len; |
| } |
| |
| static void pxa3xx_nand_write_buf(struct mtd_info *mtd, |
| const uint8_t *buf, int len) |
| { |
| struct pxa3xx_nand_host *host = mtd->priv; |
| struct pxa3xx_nand_info *info = host->info_data; |
| int real_len = min_t(size_t, len, info->buf_count - info->buf_start); |
| |
| memcpy(info->data_buff + info->buf_start, buf, real_len); |
| info->buf_start += real_len; |
| } |
| |
| static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip) |
| { |
| return; |
| } |
| |
| static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this) |
| { |
| struct pxa3xx_nand_host *host = mtd->priv; |
| struct pxa3xx_nand_info *info = host->info_data; |
| |
| if (info->need_wait) { |
| info->need_wait = 0; |
| if (!wait_for_completion_timeout(&info->dev_ready, |
| CHIP_DELAY_TIMEOUT)) { |
| dev_err(&info->pdev->dev, "Ready time out!!!\n"); |
| return NAND_STATUS_FAIL; |
| } |
| } |
| |
| /* pxa3xx_nand_send_command has waited for command complete */ |
| if (this->state == FL_WRITING || this->state == FL_ERASING) { |
| if (info->retcode == ERR_NONE) |
| return 0; |
| else |
| return NAND_STATUS_FAIL; |
| } |
| |
| return NAND_STATUS_READY; |
| } |
| |
| static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info, |
| const struct pxa3xx_nand_flash *f) |
| { |
| struct platform_device *pdev = info->pdev; |
| struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); |
| struct pxa3xx_nand_host *host = info->host[info->cs]; |
| uint32_t ndcr = 0x0; /* enable all interrupts */ |
| |
| if (f->page_size != 2048 && f->page_size != 512) { |
| dev_err(&pdev->dev, "Current only support 2048 and 512 size\n"); |
| return -EINVAL; |
| } |
| |
| if (f->flash_width != 16 && f->flash_width != 8) { |
| dev_err(&pdev->dev, "Only support 8bit and 16 bit!\n"); |
| return -EINVAL; |
| } |
| |
| /* calculate addressing information */ |
| host->col_addr_cycles = (f->page_size == 2048) ? 2 : 1; |
| |
| if (f->num_blocks * f->page_per_block > 65536) |
| host->row_addr_cycles = 3; |
| else |
| host->row_addr_cycles = 2; |
| |
| ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0; |
| ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0; |
| ndcr |= (f->page_per_block == 64) ? NDCR_PG_PER_BLK : 0; |
| ndcr |= (f->page_size == 2048) ? NDCR_PAGE_SZ : 0; |
| ndcr |= (f->flash_width == 16) ? NDCR_DWIDTH_M : 0; |
| ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0; |
| |
| ndcr |= NDCR_RD_ID_CNT(READ_ID_BYTES); |
| ndcr |= NDCR_SPARE_EN; /* enable spare by default */ |
| |
| info->reg_ndcr = ndcr; |
| |
| pxa3xx_nand_set_timing(host, f->timing); |
| return 0; |
| } |
| |
| static int pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info) |
| { |
| uint32_t ndcr = nand_readl(info, NDCR); |
| |
| /* Set an initial chunk size */ |
| info->chunk_size = ndcr & NDCR_PAGE_SZ ? 2048 : 512; |
| info->reg_ndcr = ndcr & |
| ~(NDCR_INT_MASK | NDCR_ND_ARB_EN | NFCV1_NDCR_ARB_CNTL); |
| info->ndtr0cs0 = nand_readl(info, NDTR0CS0); |
| info->ndtr1cs0 = nand_readl(info, NDTR1CS0); |
| return 0; |
| } |
| |
| static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info) |
| { |
| struct platform_device *pdev = info->pdev; |
| struct dma_slave_config config; |
| dma_cap_mask_t mask; |
| struct pxad_param param; |
| int ret; |
| |
| info->data_buff = kmalloc(info->buf_size, GFP_KERNEL); |
| if (info->data_buff == NULL) |
| return -ENOMEM; |
| if (use_dma == 0) |
| return 0; |
| |
| ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); |
| if (ret) |
| return ret; |
| |
| sg_init_one(&info->sg, info->data_buff, info->buf_size); |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| param.prio = PXAD_PRIO_LOWEST; |
| param.drcmr = info->drcmr_dat; |
| info->dma_chan = dma_request_slave_channel_compat(mask, pxad_filter_fn, |
| ¶m, &pdev->dev, |
| "data"); |
| if (!info->dma_chan) { |
| dev_err(&pdev->dev, "unable to request data dma channel\n"); |
| return -ENODEV; |
| } |
| |
| memset(&config, 0, sizeof(config)); |
| config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| config.src_addr = info->mmio_phys + NDDB; |
| config.dst_addr = info->mmio_phys + NDDB; |
| config.src_maxburst = 32; |
| config.dst_maxburst = 32; |
| ret = dmaengine_slave_config(info->dma_chan, &config); |
| if (ret < 0) { |
| dev_err(&info->pdev->dev, |
| "dma channel configuration failed: %d\n", |
| ret); |
| return ret; |
| } |
| |
| /* |
| * Now that DMA buffers are allocated we turn on |
| * DMA proper for I/O operations. |
| */ |
| info->use_dma = 1; |
| return 0; |
| } |
| |
| static void pxa3xx_nand_free_buff(struct pxa3xx_nand_info *info) |
| { |
| if (info->use_dma) { |
| dmaengine_terminate_all(info->dma_chan); |
| dma_release_channel(info->dma_chan); |
| } |
| kfree(info->data_buff); |
| } |
| |
| static int pxa3xx_nand_sensing(struct pxa3xx_nand_info *info) |
| { |
| struct mtd_info *mtd; |
| struct nand_chip *chip; |
| int ret; |
| |
| mtd = info->host[info->cs]->mtd; |
| chip = mtd->priv; |
| |
| /* use the common timing to make a try */ |
| ret = pxa3xx_nand_config_flash(info, &builtin_flash_types[0]); |
| if (ret) |
| return ret; |
| |
| chip->cmdfunc(mtd, NAND_CMD_RESET, 0, 0); |
| ret = chip->waitfunc(mtd, chip); |
| if (ret & NAND_STATUS_FAIL) |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| static int pxa_ecc_init(struct pxa3xx_nand_info *info, |
| struct nand_ecc_ctrl *ecc, |
| int strength, int ecc_stepsize, int page_size) |
| { |
| if (strength == 1 && ecc_stepsize == 512 && page_size == 2048) { |
| info->chunk_size = 2048; |
| info->spare_size = 40; |
| info->ecc_size = 24; |
| ecc->mode = NAND_ECC_HW; |
| ecc->size = 512; |
| ecc->strength = 1; |
| |
| } else if (strength == 1 && ecc_stepsize == 512 && page_size == 512) { |
| info->chunk_size = 512; |
| info->spare_size = 8; |
| info->ecc_size = 8; |
| ecc->mode = NAND_ECC_HW; |
| ecc->size = 512; |
| ecc->strength = 1; |
| |
| /* |
| * Required ECC: 4-bit correction per 512 bytes |
| * Select: 16-bit correction per 2048 bytes |
| */ |
| } else if (strength == 4 && ecc_stepsize == 512 && page_size == 2048) { |
| info->ecc_bch = 1; |
| info->chunk_size = 2048; |
| info->spare_size = 32; |
| info->ecc_size = 32; |
| ecc->mode = NAND_ECC_HW; |
| ecc->size = info->chunk_size; |
| ecc->layout = &ecc_layout_2KB_bch4bit; |
| ecc->strength = 16; |
| |
| } else if (strength == 4 && ecc_stepsize == 512 && page_size == 4096) { |
| info->ecc_bch = 1; |
| info->chunk_size = 2048; |
| info->spare_size = 32; |
| info->ecc_size = 32; |
| ecc->mode = NAND_ECC_HW; |
| ecc->size = info->chunk_size; |
| ecc->layout = &ecc_layout_4KB_bch4bit; |
| ecc->strength = 16; |
| |
| /* |
| * Required ECC: 8-bit correction per 512 bytes |
| * Select: 16-bit correction per 1024 bytes |
| */ |
| } else if (strength == 8 && ecc_stepsize == 512 && page_size == 4096) { |
| info->ecc_bch = 1; |
| info->chunk_size = 1024; |
| info->spare_size = 0; |
| info->ecc_size = 32; |
| ecc->mode = NAND_ECC_HW; |
| ecc->size = info->chunk_size; |
| ecc->layout = &ecc_layout_4KB_bch8bit; |
| ecc->strength = 16; |
| } else { |
| dev_err(&info->pdev->dev, |
| "ECC strength %d at page size %d is not supported\n", |
| strength, page_size); |
| return -ENODEV; |
| } |
| |
| dev_info(&info->pdev->dev, "ECC strength %d, ECC step size %d\n", |
| ecc->strength, ecc->size); |
| return 0; |
| } |
| |
| static int pxa3xx_nand_scan(struct mtd_info *mtd) |
| { |
| struct pxa3xx_nand_host *host = mtd->priv; |
| struct pxa3xx_nand_info *info = host->info_data; |
| struct platform_device *pdev = info->pdev; |
| struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); |
| struct nand_flash_dev pxa3xx_flash_ids[2], *def = NULL; |
| const struct pxa3xx_nand_flash *f = NULL; |
| struct nand_chip *chip = mtd->priv; |
| uint32_t id = -1; |
| uint64_t chipsize; |
| int i, ret, num; |
| uint16_t ecc_strength, ecc_step; |
| |
| if (pdata->keep_config && !pxa3xx_nand_detect_config(info)) |
| goto KEEP_CONFIG; |
| |
| /* Set a default chunk size */ |
| info->chunk_size = 512; |
| |
| ret = pxa3xx_nand_sensing(info); |
| if (ret) { |
| dev_info(&info->pdev->dev, "There is no chip on cs %d!\n", |
| info->cs); |
| |
| return ret; |
| } |
| |
| chip->cmdfunc(mtd, NAND_CMD_READID, 0, 0); |
| id = *((uint16_t *)(info->data_buff)); |
| if (id != 0) |
| dev_info(&info->pdev->dev, "Detect a flash id %x\n", id); |
| else { |
| dev_warn(&info->pdev->dev, |
| "Read out ID 0, potential timing set wrong!!\n"); |
| |
| return -EINVAL; |
| } |
| |
| num = ARRAY_SIZE(builtin_flash_types) - 1; |
| for (i = 0; i < num; i++) { |
| f = &builtin_flash_types[i + 1]; |
| |
| /* find the chip in default list */ |
| if (f->chip_id == id) |
| break; |
| } |
| |
| if (i >= (ARRAY_SIZE(builtin_flash_types) - 1)) { |
| dev_err(&info->pdev->dev, "ERROR!! flash not defined!!!\n"); |
| |
| return -EINVAL; |
| } |
| |
| ret = pxa3xx_nand_config_flash(info, f); |
| if (ret) { |
| dev_err(&info->pdev->dev, "ERROR! Configure failed\n"); |
| return ret; |
| } |
| |
| memset(pxa3xx_flash_ids, 0, sizeof(pxa3xx_flash_ids)); |
| |
| pxa3xx_flash_ids[0].name = f->name; |
| pxa3xx_flash_ids[0].dev_id = (f->chip_id >> 8) & 0xffff; |
| pxa3xx_flash_ids[0].pagesize = f->page_size; |
| chipsize = (uint64_t)f->num_blocks * f->page_per_block * f->page_size; |
| pxa3xx_flash_ids[0].chipsize = chipsize >> 20; |
| pxa3xx_flash_ids[0].erasesize = f->page_size * f->page_per_block; |
| if (f->flash_width == 16) |
| pxa3xx_flash_ids[0].options = NAND_BUSWIDTH_16; |
| pxa3xx_flash_ids[1].name = NULL; |
| def = pxa3xx_flash_ids; |
| KEEP_CONFIG: |
| info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0; |
| if (info->reg_ndcr & NDCR_DWIDTH_M) |
| chip->options |= NAND_BUSWIDTH_16; |
| |
| /* Device detection must be done with ECC disabled */ |
| if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370) |
| nand_writel(info, NDECCCTRL, 0x0); |
| |
| if (nand_scan_ident(mtd, 1, def)) |
| return -ENODEV; |
| |
| if (pdata->flash_bbt) { |
| /* |
| * We'll use a bad block table stored in-flash and don't |
| * allow writing the bad block marker to the flash. |
| */ |
| chip->bbt_options |= NAND_BBT_USE_FLASH | |
| NAND_BBT_NO_OOB_BBM; |
| chip->bbt_td = &bbt_main_descr; |
| chip->bbt_md = &bbt_mirror_descr; |
| } |
| |
| /* |
| * If the page size is bigger than the FIFO size, let's check |
| * we are given the right variant and then switch to the extended |
| * (aka splitted) command handling, |
| */ |
| if (mtd->writesize > PAGE_CHUNK_SIZE) { |
| if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370) { |
| chip->cmdfunc = nand_cmdfunc_extended; |
| } else { |
| dev_err(&info->pdev->dev, |
| "unsupported page size on this variant\n"); |
| return -ENODEV; |
| } |
| } |
| |
| if (pdata->ecc_strength && pdata->ecc_step_size) { |
| ecc_strength = pdata->ecc_strength; |
| ecc_step = pdata->ecc_step_size; |
| } else { |
| ecc_strength = chip->ecc_strength_ds; |
| ecc_step = chip->ecc_step_ds; |
| } |
| |
| /* Set default ECC strength requirements on non-ONFI devices */ |
| if (ecc_strength < 1 && ecc_step < 1) { |
| ecc_strength = 1; |
| ecc_step = 512; |
| } |
| |
| ret = pxa_ecc_init(info, &chip->ecc, ecc_strength, |
| ecc_step, mtd->writesize); |
| if (ret) |
| return ret; |
| |
| /* calculate addressing information */ |
| if (mtd->writesize >= 2048) |
| host->col_addr_cycles = 2; |
| else |
| host->col_addr_cycles = 1; |
| |
| /* release the initial buffer */ |
| kfree(info->data_buff); |
| |
| /* allocate the real data + oob buffer */ |
| info->buf_size = mtd->writesize + mtd->oobsize; |
| ret = pxa3xx_nand_init_buff(info); |
| if (ret) |
| return ret; |
| info->oob_buff = info->data_buff + mtd->writesize; |
| |
| if ((mtd->size >> chip->page_shift) > 65536) |
| host->row_addr_cycles = 3; |
| else |
| host->row_addr_cycles = 2; |
| return nand_scan_tail(mtd); |
| } |
| |
| static int alloc_nand_resource(struct platform_device *pdev) |
| { |
| struct pxa3xx_nand_platform_data *pdata; |
| struct pxa3xx_nand_info *info; |
| struct pxa3xx_nand_host *host; |
| struct nand_chip *chip = NULL; |
| struct mtd_info *mtd; |
| struct resource *r; |
| int ret, irq, cs; |
| |
| pdata = dev_get_platdata(&pdev->dev); |
| if (pdata->num_cs <= 0) |
| return -ENODEV; |
| info = devm_kzalloc(&pdev->dev, sizeof(*info) + (sizeof(*mtd) + |
| sizeof(*host)) * pdata->num_cs, GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| info->pdev = pdev; |
| info->variant = pxa3xx_nand_get_variant(pdev); |
| for (cs = 0; cs < pdata->num_cs; cs++) { |
| mtd = (void *)&info[1] + (sizeof(*mtd) + sizeof(*host)) * cs; |
| chip = (struct nand_chip *)(&mtd[1]); |
| host = (struct pxa3xx_nand_host *)chip; |
| info->host[cs] = host; |
| host->mtd = mtd; |
| host->cs = cs; |
| host->info_data = info; |
| mtd->priv = host; |
| mtd->dev.parent = &pdev->dev; |
| |
| chip->ecc.read_page = pxa3xx_nand_read_page_hwecc; |
| chip->ecc.write_page = pxa3xx_nand_write_page_hwecc; |
| chip->controller = &info->controller; |
| chip->waitfunc = pxa3xx_nand_waitfunc; |
| chip->select_chip = pxa3xx_nand_select_chip; |
| chip->read_word = pxa3xx_nand_read_word; |
| chip->read_byte = pxa3xx_nand_read_byte; |
| chip->read_buf = pxa3xx_nand_read_buf; |
| chip->write_buf = pxa3xx_nand_write_buf; |
| chip->options |= NAND_NO_SUBPAGE_WRITE; |
| chip->cmdfunc = nand_cmdfunc; |
| } |
| |
| spin_lock_init(&chip->controller->lock); |
| init_waitqueue_head(&chip->controller->wq); |
| info->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(info->clk)) { |
| dev_err(&pdev->dev, "failed to get nand clock\n"); |
| return PTR_ERR(info->clk); |
| } |
| ret = clk_prepare_enable(info->clk); |
| if (ret < 0) |
| return ret; |
| |
| if (use_dma) { |
| r = platform_get_resource(pdev, IORESOURCE_DMA, 0); |
| if (r == NULL) { |
| dev_err(&pdev->dev, |
| "no resource defined for data DMA\n"); |
| ret = -ENXIO; |
| goto fail_disable_clk; |
| } |
| info->drcmr_dat = r->start; |
| |
| r = platform_get_resource(pdev, IORESOURCE_DMA, 1); |
| if (r == NULL) { |
| dev_err(&pdev->dev, |
| "no resource defined for cmd DMA\n"); |
| ret = -ENXIO; |
| goto fail_disable_clk; |
| } |
| info->drcmr_cmd = r->start; |
| } |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) { |
| dev_err(&pdev->dev, "no IRQ resource defined\n"); |
| ret = -ENXIO; |
| goto fail_disable_clk; |
| } |
| |
| r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| info->mmio_base = devm_ioremap_resource(&pdev->dev, r); |
| if (IS_ERR(info->mmio_base)) { |
| ret = PTR_ERR(info->mmio_base); |
| goto fail_disable_clk; |
| } |
| info->mmio_phys = r->start; |
| |
| /* Allocate a buffer to allow flash detection */ |
| info->buf_size = INIT_BUFFER_SIZE; |
| info->data_buff = kmalloc(info->buf_size, GFP_KERNEL); |
| if (info->data_buff == NULL) { |
| ret = -ENOMEM; |
| goto fail_disable_clk; |
| } |
| |
| /* initialize all interrupts to be disabled */ |
| disable_int(info, NDSR_MASK); |
| |
| ret = request_threaded_irq(irq, pxa3xx_nand_irq, |
| pxa3xx_nand_irq_thread, IRQF_ONESHOT, |
| pdev->name, info); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "failed to request IRQ\n"); |
| goto fail_free_buf; |
| } |
| |
| platform_set_drvdata(pdev, info); |
| |
| return 0; |
| |
| fail_free_buf: |
| free_irq(irq, info); |
| kfree(info->data_buff); |
| fail_disable_clk: |
| clk_disable_unprepare(info->clk); |
| return ret; |
| } |
| |
| static int pxa3xx_nand_remove(struct platform_device *pdev) |
| { |
| struct pxa3xx_nand_info *info = platform_get_drvdata(pdev); |
| struct pxa3xx_nand_platform_data *pdata; |
| int irq, cs; |
| |
| if (!info) |
| return 0; |
| |
| pdata = dev_get_platdata(&pdev->dev); |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq >= 0) |
| free_irq(irq, info); |
| pxa3xx_nand_free_buff(info); |
| |
| /* |
| * In the pxa3xx case, the DFI bus is shared between the SMC and NFC. |
| * In order to prevent a lockup of the system bus, the DFI bus |
| * arbitration is granted to SMC upon driver removal. This is done by |
| * setting the x_ARB_CNTL bit, which also prevents the NAND to have |
| * access to the bus anymore. |
| */ |
| nand_writel(info, NDCR, |
| (nand_readl(info, NDCR) & ~NDCR_ND_ARB_EN) | |
| NFCV1_NDCR_ARB_CNTL); |
| clk_disable_unprepare(info->clk); |
| |
| for (cs = 0; cs < pdata->num_cs; cs++) |
| nand_release(info->host[cs]->mtd); |
| return 0; |
| } |
| |
| static int pxa3xx_nand_probe_dt(struct platform_device *pdev) |
| { |
| struct pxa3xx_nand_platform_data *pdata; |
| struct device_node *np = pdev->dev.of_node; |
| const struct of_device_id *of_id = |
| of_match_device(pxa3xx_nand_dt_ids, &pdev->dev); |
| |
| if (!of_id) |
| return 0; |
| |
| pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); |
| if (!pdata) |
| return -ENOMEM; |
| |
| if (of_get_property(np, "marvell,nand-enable-arbiter", NULL)) |
| pdata->enable_arbiter = 1; |
| if (of_get_property(np, "marvell,nand-keep-config", NULL)) |
| pdata->keep_config = 1; |
| of_property_read_u32(np, "num-cs", &pdata->num_cs); |
| pdata->flash_bbt = of_get_nand_on_flash_bbt(np); |
| |
| pdata->ecc_strength = of_get_nand_ecc_strength(np); |
| if (pdata->ecc_strength < 0) |
| pdata->ecc_strength = 0; |
| |
| pdata->ecc_step_size = of_get_nand_ecc_step_size(np); |
| if (pdata->ecc_step_size < 0) |
| pdata->ecc_step_size = 0; |
| |
| pdev->dev.platform_data = pdata; |
| |
| return 0; |
| } |
| |
| static int pxa3xx_nand_probe(struct platform_device *pdev) |
| { |
| struct pxa3xx_nand_platform_data *pdata; |
| struct mtd_part_parser_data ppdata = {}; |
| struct pxa3xx_nand_info *info; |
| int ret, cs, probe_success, dma_available; |
| |
| dma_available = IS_ENABLED(CONFIG_ARM) && |
| (IS_ENABLED(CONFIG_ARCH_PXA) || IS_ENABLED(CONFIG_ARCH_MMP)); |
| if (use_dma && !dma_available) { |
| use_dma = 0; |
| dev_warn(&pdev->dev, |
| "This platform can't do DMA on this device\n"); |
| } |
| |
| ret = pxa3xx_nand_probe_dt(pdev); |
| if (ret) |
| return ret; |
| |
| pdata = dev_get_platdata(&pdev->dev); |
| if (!pdata) { |
| dev_err(&pdev->dev, "no platform data defined\n"); |
| return -ENODEV; |
| } |
| |
| ret = alloc_nand_resource(pdev); |
| if (ret) { |
| dev_err(&pdev->dev, "alloc nand resource failed\n"); |
| return ret; |
| } |
| |
| info = platform_get_drvdata(pdev); |
| probe_success = 0; |
| for (cs = 0; cs < pdata->num_cs; cs++) { |
| struct mtd_info *mtd = info->host[cs]->mtd; |
| |
| /* |
| * The mtd name matches the one used in 'mtdparts' kernel |
| * parameter. This name cannot be changed or otherwise |
| * user's mtd partitions configuration would get broken. |
| */ |
| mtd->name = "pxa3xx_nand-0"; |
| info->cs = cs; |
| ret = pxa3xx_nand_scan(mtd); |
| if (ret) { |
| dev_warn(&pdev->dev, "failed to scan nand at cs %d\n", |
| cs); |
| continue; |
| } |
| |
| ppdata.of_node = pdev->dev.of_node; |
| ret = mtd_device_parse_register(mtd, NULL, |
| &ppdata, pdata->parts[cs], |
| pdata->nr_parts[cs]); |
| if (!ret) |
| probe_success = 1; |
| } |
| |
| if (!probe_success) { |
| pxa3xx_nand_remove(pdev); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int pxa3xx_nand_suspend(struct device *dev) |
| { |
| struct pxa3xx_nand_info *info = dev_get_drvdata(dev); |
| |
| if (info->state) { |
| dev_err(dev, "driver busy, state = %d\n", info->state); |
| return -EAGAIN; |
| } |
| |
| return 0; |
| } |
| |
| static int pxa3xx_nand_resume(struct device *dev) |
| { |
| struct pxa3xx_nand_info *info = dev_get_drvdata(dev); |
| |
| /* We don't want to handle interrupt without calling mtd routine */ |
| disable_int(info, NDCR_INT_MASK); |
| |
| /* |
| * Directly set the chip select to a invalid value, |
| * then the driver would reset the timing according |
| * to current chip select at the beginning of cmdfunc |
| */ |
| info->cs = 0xff; |
| |
| /* |
| * As the spec says, the NDSR would be updated to 0x1800 when |
| * doing the nand_clk disable/enable. |
| * To prevent it damaging state machine of the driver, clear |
| * all status before resume |
| */ |
| nand_writel(info, NDSR, NDSR_MASK); |
| |
| return 0; |
| } |
| #else |
| #define pxa3xx_nand_suspend NULL |
| #define pxa3xx_nand_resume NULL |
| #endif |
| |
| static const struct dev_pm_ops pxa3xx_nand_pm_ops = { |
| .suspend = pxa3xx_nand_suspend, |
| .resume = pxa3xx_nand_resume, |
| }; |
| |
| static struct platform_driver pxa3xx_nand_driver = { |
| .driver = { |
| .name = "pxa3xx-nand", |
| .of_match_table = pxa3xx_nand_dt_ids, |
| .pm = &pxa3xx_nand_pm_ops, |
| }, |
| .probe = pxa3xx_nand_probe, |
| .remove = pxa3xx_nand_remove, |
| }; |
| |
| module_platform_driver(pxa3xx_nand_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("PXA3xx NAND controller driver"); |