| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| */ |
| |
| #ifndef BTRFS_VOLUMES_H |
| #define BTRFS_VOLUMES_H |
| |
| #include <linux/bio.h> |
| #include <linux/sort.h> |
| #include <linux/btrfs.h> |
| #include "async-thread.h" |
| |
| #define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G) |
| |
| extern struct mutex uuid_mutex; |
| |
| #define BTRFS_STRIPE_LEN SZ_64K |
| |
| struct buffer_head; |
| |
| struct btrfs_io_geometry { |
| /* remaining bytes before crossing a stripe */ |
| u64 len; |
| /* offset of logical address in chunk */ |
| u64 offset; |
| /* length of single IO stripe */ |
| u64 stripe_len; |
| /* number of stripe where address falls */ |
| u64 stripe_nr; |
| /* offset of address in stripe */ |
| u64 stripe_offset; |
| /* offset of raid56 stripe into the chunk */ |
| u64 raid56_stripe_offset; |
| }; |
| |
| /* |
| * Use sequence counter to get consistent device stat data on |
| * 32-bit processors. |
| */ |
| #if BITS_PER_LONG==32 && defined(CONFIG_SMP) |
| #include <linux/seqlock.h> |
| #define __BTRFS_NEED_DEVICE_DATA_ORDERED |
| #define btrfs_device_data_ordered_init(device) \ |
| seqcount_init(&device->data_seqcount) |
| #else |
| #define btrfs_device_data_ordered_init(device) do { } while (0) |
| #endif |
| |
| #define BTRFS_DEV_STATE_WRITEABLE (0) |
| #define BTRFS_DEV_STATE_IN_FS_METADATA (1) |
| #define BTRFS_DEV_STATE_MISSING (2) |
| #define BTRFS_DEV_STATE_REPLACE_TGT (3) |
| #define BTRFS_DEV_STATE_FLUSH_SENT (4) |
| |
| struct btrfs_device { |
| struct list_head dev_list; /* device_list_mutex */ |
| struct list_head dev_alloc_list; /* chunk mutex */ |
| struct list_head post_commit_list; /* chunk mutex */ |
| struct btrfs_fs_devices *fs_devices; |
| struct btrfs_fs_info *fs_info; |
| |
| struct rcu_string *name; |
| |
| u64 generation; |
| |
| struct block_device *bdev; |
| |
| /* the mode sent to blkdev_get */ |
| fmode_t mode; |
| |
| unsigned long dev_state; |
| blk_status_t last_flush_error; |
| |
| #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED |
| seqcount_t data_seqcount; |
| #endif |
| |
| /* the internal btrfs device id */ |
| u64 devid; |
| |
| /* size of the device in memory */ |
| u64 total_bytes; |
| |
| /* size of the device on disk */ |
| u64 disk_total_bytes; |
| |
| /* bytes used */ |
| u64 bytes_used; |
| |
| /* optimal io alignment for this device */ |
| u32 io_align; |
| |
| /* optimal io width for this device */ |
| u32 io_width; |
| /* type and info about this device */ |
| u64 type; |
| |
| /* minimal io size for this device */ |
| u32 sector_size; |
| |
| /* physical drive uuid (or lvm uuid) */ |
| u8 uuid[BTRFS_UUID_SIZE]; |
| |
| /* |
| * size of the device on the current transaction |
| * |
| * This variant is update when committing the transaction, |
| * and protected by chunk mutex |
| */ |
| u64 commit_total_bytes; |
| |
| /* bytes used on the current transaction */ |
| u64 commit_bytes_used; |
| |
| /* for sending down flush barriers */ |
| struct bio *flush_bio; |
| struct completion flush_wait; |
| |
| /* per-device scrub information */ |
| struct scrub_ctx *scrub_ctx; |
| |
| /* readahead state */ |
| atomic_t reada_in_flight; |
| u64 reada_next; |
| struct reada_zone *reada_curr_zone; |
| struct radix_tree_root reada_zones; |
| struct radix_tree_root reada_extents; |
| |
| /* disk I/O failure stats. For detailed description refer to |
| * enum btrfs_dev_stat_values in ioctl.h */ |
| int dev_stats_valid; |
| |
| /* Counter to record the change of device stats */ |
| atomic_t dev_stats_ccnt; |
| atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX]; |
| |
| struct extent_io_tree alloc_state; |
| |
| struct completion kobj_unregister; |
| /* For sysfs/FSID/devinfo/devid/ */ |
| struct kobject devid_kobj; |
| }; |
| |
| /* |
| * If we read those variants at the context of their own lock, we needn't |
| * use the following helpers, reading them directly is safe. |
| */ |
| #if BITS_PER_LONG==32 && defined(CONFIG_SMP) |
| #define BTRFS_DEVICE_GETSET_FUNCS(name) \ |
| static inline u64 \ |
| btrfs_device_get_##name(const struct btrfs_device *dev) \ |
| { \ |
| u64 size; \ |
| unsigned int seq; \ |
| \ |
| do { \ |
| seq = read_seqcount_begin(&dev->data_seqcount); \ |
| size = dev->name; \ |
| } while (read_seqcount_retry(&dev->data_seqcount, seq)); \ |
| return size; \ |
| } \ |
| \ |
| static inline void \ |
| btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ |
| { \ |
| preempt_disable(); \ |
| write_seqcount_begin(&dev->data_seqcount); \ |
| dev->name = size; \ |
| write_seqcount_end(&dev->data_seqcount); \ |
| preempt_enable(); \ |
| } |
| #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT) |
| #define BTRFS_DEVICE_GETSET_FUNCS(name) \ |
| static inline u64 \ |
| btrfs_device_get_##name(const struct btrfs_device *dev) \ |
| { \ |
| u64 size; \ |
| \ |
| preempt_disable(); \ |
| size = dev->name; \ |
| preempt_enable(); \ |
| return size; \ |
| } \ |
| \ |
| static inline void \ |
| btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ |
| { \ |
| preempt_disable(); \ |
| dev->name = size; \ |
| preempt_enable(); \ |
| } |
| #else |
| #define BTRFS_DEVICE_GETSET_FUNCS(name) \ |
| static inline u64 \ |
| btrfs_device_get_##name(const struct btrfs_device *dev) \ |
| { \ |
| return dev->name; \ |
| } \ |
| \ |
| static inline void \ |
| btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ |
| { \ |
| dev->name = size; \ |
| } |
| #endif |
| |
| BTRFS_DEVICE_GETSET_FUNCS(total_bytes); |
| BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes); |
| BTRFS_DEVICE_GETSET_FUNCS(bytes_used); |
| |
| struct btrfs_fs_devices { |
| u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ |
| u8 metadata_uuid[BTRFS_FSID_SIZE]; |
| bool fsid_change; |
| struct list_head fs_list; |
| |
| u64 num_devices; |
| u64 open_devices; |
| u64 rw_devices; |
| u64 missing_devices; |
| u64 total_rw_bytes; |
| u64 total_devices; |
| |
| /* Highest generation number of seen devices */ |
| u64 latest_generation; |
| |
| struct block_device *latest_bdev; |
| |
| /* all of the devices in the FS, protected by a mutex |
| * so we can safely walk it to write out the supers without |
| * worrying about add/remove by the multi-device code. |
| * Scrubbing super can kick off supers writing by holding |
| * this mutex lock. |
| */ |
| struct mutex device_list_mutex; |
| |
| /* List of all devices, protected by device_list_mutex */ |
| struct list_head devices; |
| |
| /* |
| * Devices which can satisfy space allocation. Protected by |
| * chunk_mutex |
| */ |
| struct list_head alloc_list; |
| |
| struct btrfs_fs_devices *seed; |
| bool seeding; |
| |
| int opened; |
| |
| /* set when we find or add a device that doesn't have the |
| * nonrot flag set |
| */ |
| bool rotating; |
| |
| struct btrfs_fs_info *fs_info; |
| /* sysfs kobjects */ |
| struct kobject fsid_kobj; |
| struct kobject *devices_kobj; |
| struct kobject *devinfo_kobj; |
| struct completion kobj_unregister; |
| }; |
| |
| #define BTRFS_BIO_INLINE_CSUM_SIZE 64 |
| |
| #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \ |
| - sizeof(struct btrfs_chunk)) \ |
| / sizeof(struct btrfs_stripe) + 1) |
| |
| #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ |
| - 2 * sizeof(struct btrfs_disk_key) \ |
| - 2 * sizeof(struct btrfs_chunk)) \ |
| / sizeof(struct btrfs_stripe) + 1) |
| |
| /* |
| * we need the mirror number and stripe index to be passed around |
| * the call chain while we are processing end_io (especially errors). |
| * Really, what we need is a btrfs_bio structure that has this info |
| * and is properly sized with its stripe array, but we're not there |
| * quite yet. We have our own btrfs bioset, and all of the bios |
| * we allocate are actually btrfs_io_bios. We'll cram as much of |
| * struct btrfs_bio as we can into this over time. |
| */ |
| struct btrfs_io_bio { |
| unsigned int mirror_num; |
| unsigned int stripe_index; |
| u64 logical; |
| u8 *csum; |
| u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE]; |
| struct bvec_iter iter; |
| /* |
| * This member must come last, bio_alloc_bioset will allocate enough |
| * bytes for entire btrfs_io_bio but relies on bio being last. |
| */ |
| struct bio bio; |
| }; |
| |
| static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio) |
| { |
| return container_of(bio, struct btrfs_io_bio, bio); |
| } |
| |
| static inline void btrfs_io_bio_free_csum(struct btrfs_io_bio *io_bio) |
| { |
| if (io_bio->csum != io_bio->csum_inline) { |
| kfree(io_bio->csum); |
| io_bio->csum = NULL; |
| } |
| } |
| |
| struct btrfs_bio_stripe { |
| struct btrfs_device *dev; |
| u64 physical; |
| u64 length; /* only used for discard mappings */ |
| }; |
| |
| struct btrfs_bio { |
| refcount_t refs; |
| atomic_t stripes_pending; |
| struct btrfs_fs_info *fs_info; |
| u64 map_type; /* get from map_lookup->type */ |
| bio_end_io_t *end_io; |
| struct bio *orig_bio; |
| void *private; |
| atomic_t error; |
| int max_errors; |
| int num_stripes; |
| int mirror_num; |
| int num_tgtdevs; |
| int *tgtdev_map; |
| /* |
| * logical block numbers for the start of each stripe |
| * The last one or two are p/q. These are sorted, |
| * so raid_map[0] is the start of our full stripe |
| */ |
| u64 *raid_map; |
| struct btrfs_bio_stripe stripes[]; |
| }; |
| |
| struct btrfs_device_info { |
| struct btrfs_device *dev; |
| u64 dev_offset; |
| u64 max_avail; |
| u64 total_avail; |
| }; |
| |
| struct btrfs_raid_attr { |
| u8 sub_stripes; /* sub_stripes info for map */ |
| u8 dev_stripes; /* stripes per dev */ |
| u8 devs_max; /* max devs to use */ |
| u8 devs_min; /* min devs needed */ |
| u8 tolerated_failures; /* max tolerated fail devs */ |
| u8 devs_increment; /* ndevs has to be a multiple of this */ |
| u8 ncopies; /* how many copies to data has */ |
| u8 nparity; /* number of stripes worth of bytes to store |
| * parity information */ |
| u8 mindev_error; /* error code if min devs requisite is unmet */ |
| const char raid_name[8]; /* name of the raid */ |
| u64 bg_flag; /* block group flag of the raid */ |
| }; |
| |
| extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES]; |
| |
| struct map_lookup { |
| u64 type; |
| int io_align; |
| int io_width; |
| u64 stripe_len; |
| int num_stripes; |
| int sub_stripes; |
| int verified_stripes; /* For mount time dev extent verification */ |
| struct btrfs_bio_stripe stripes[]; |
| }; |
| |
| #define map_lookup_size(n) (sizeof(struct map_lookup) + \ |
| (sizeof(struct btrfs_bio_stripe) * (n))) |
| |
| struct btrfs_balance_args; |
| struct btrfs_balance_progress; |
| struct btrfs_balance_control { |
| struct btrfs_balance_args data; |
| struct btrfs_balance_args meta; |
| struct btrfs_balance_args sys; |
| |
| u64 flags; |
| |
| struct btrfs_balance_progress stat; |
| }; |
| |
| enum btrfs_map_op { |
| BTRFS_MAP_READ, |
| BTRFS_MAP_WRITE, |
| BTRFS_MAP_DISCARD, |
| BTRFS_MAP_GET_READ_MIRRORS, |
| }; |
| |
| static inline enum btrfs_map_op btrfs_op(struct bio *bio) |
| { |
| switch (bio_op(bio)) { |
| case REQ_OP_DISCARD: |
| return BTRFS_MAP_DISCARD; |
| case REQ_OP_WRITE: |
| return BTRFS_MAP_WRITE; |
| default: |
| WARN_ON_ONCE(1); |
| /* fall through */ |
| case REQ_OP_READ: |
| return BTRFS_MAP_READ; |
| } |
| } |
| |
| void btrfs_get_bbio(struct btrfs_bio *bbio); |
| void btrfs_put_bbio(struct btrfs_bio *bbio); |
| int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, |
| u64 logical, u64 *length, |
| struct btrfs_bio **bbio_ret, int mirror_num); |
| int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, |
| u64 logical, u64 *length, |
| struct btrfs_bio **bbio_ret); |
| int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, |
| u64 logical, u64 len, struct btrfs_io_geometry *io_geom); |
| int btrfs_read_sys_array(struct btrfs_fs_info *fs_info); |
| int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info); |
| int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type); |
| void btrfs_mapping_tree_free(struct extent_map_tree *tree); |
| blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, |
| int mirror_num); |
| int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, |
| fmode_t flags, void *holder); |
| struct btrfs_device *btrfs_scan_one_device(const char *path, |
| fmode_t flags, void *holder); |
| int btrfs_forget_devices(const char *path); |
| int btrfs_close_devices(struct btrfs_fs_devices *fs_devices); |
| void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step); |
| void btrfs_assign_next_active_device(struct btrfs_device *device, |
| struct btrfs_device *this_dev); |
| struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, |
| u64 devid, |
| const char *devpath); |
| struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, |
| const u64 *devid, |
| const u8 *uuid); |
| void btrfs_free_device(struct btrfs_device *device); |
| int btrfs_rm_device(struct btrfs_fs_info *fs_info, |
| const char *device_path, u64 devid); |
| void __exit btrfs_cleanup_fs_uuids(void); |
| int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len); |
| int btrfs_grow_device(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device, u64 new_size); |
| struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, |
| u64 devid, u8 *uuid, u8 *fsid, bool seed); |
| int btrfs_shrink_device(struct btrfs_device *device, u64 new_size); |
| int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path); |
| int btrfs_balance(struct btrfs_fs_info *fs_info, |
| struct btrfs_balance_control *bctl, |
| struct btrfs_ioctl_balance_args *bargs); |
| void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf); |
| int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info); |
| int btrfs_recover_balance(struct btrfs_fs_info *fs_info); |
| int btrfs_pause_balance(struct btrfs_fs_info *fs_info); |
| int btrfs_cancel_balance(struct btrfs_fs_info *fs_info); |
| int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info); |
| int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info); |
| int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset); |
| int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, |
| u64 *start, u64 *max_avail); |
| void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index); |
| int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, |
| struct btrfs_ioctl_get_dev_stats *stats); |
| void btrfs_init_devices_late(struct btrfs_fs_info *fs_info); |
| int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info); |
| int btrfs_run_dev_stats(struct btrfs_trans_handle *trans); |
| void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev); |
| void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev); |
| void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev); |
| void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path); |
| int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, |
| u64 logical, u64 len); |
| unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, |
| u64 logical); |
| int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, |
| u64 chunk_offset, u64 chunk_size); |
| int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset); |
| struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, |
| u64 logical, u64 length); |
| |
| static inline void btrfs_dev_stat_inc(struct btrfs_device *dev, |
| int index) |
| { |
| atomic_inc(dev->dev_stat_values + index); |
| /* |
| * This memory barrier orders stores updating statistics before stores |
| * updating dev_stats_ccnt. |
| * |
| * It pairs with smp_rmb() in btrfs_run_dev_stats(). |
| */ |
| smp_mb__before_atomic(); |
| atomic_inc(&dev->dev_stats_ccnt); |
| } |
| |
| static inline int btrfs_dev_stat_read(struct btrfs_device *dev, |
| int index) |
| { |
| return atomic_read(dev->dev_stat_values + index); |
| } |
| |
| static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev, |
| int index) |
| { |
| int ret; |
| |
| ret = atomic_xchg(dev->dev_stat_values + index, 0); |
| /* |
| * atomic_xchg implies a full memory barriers as per atomic_t.txt: |
| * - RMW operations that have a return value are fully ordered; |
| * |
| * This implicit memory barriers is paired with the smp_rmb in |
| * btrfs_run_dev_stats |
| */ |
| atomic_inc(&dev->dev_stats_ccnt); |
| return ret; |
| } |
| |
| static inline void btrfs_dev_stat_set(struct btrfs_device *dev, |
| int index, unsigned long val) |
| { |
| atomic_set(dev->dev_stat_values + index, val); |
| /* |
| * This memory barrier orders stores updating statistics before stores |
| * updating dev_stats_ccnt. |
| * |
| * It pairs with smp_rmb() in btrfs_run_dev_stats(). |
| */ |
| smp_mb__before_atomic(); |
| atomic_inc(&dev->dev_stats_ccnt); |
| } |
| |
| /* |
| * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which |
| * can be used as index to access btrfs_raid_array[]. |
| */ |
| static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags) |
| { |
| if (flags & BTRFS_BLOCK_GROUP_RAID10) |
| return BTRFS_RAID_RAID10; |
| else if (flags & BTRFS_BLOCK_GROUP_RAID1) |
| return BTRFS_RAID_RAID1; |
| else if (flags & BTRFS_BLOCK_GROUP_RAID1C3) |
| return BTRFS_RAID_RAID1C3; |
| else if (flags & BTRFS_BLOCK_GROUP_RAID1C4) |
| return BTRFS_RAID_RAID1C4; |
| else if (flags & BTRFS_BLOCK_GROUP_DUP) |
| return BTRFS_RAID_DUP; |
| else if (flags & BTRFS_BLOCK_GROUP_RAID0) |
| return BTRFS_RAID_RAID0; |
| else if (flags & BTRFS_BLOCK_GROUP_RAID5) |
| return BTRFS_RAID_RAID5; |
| else if (flags & BTRFS_BLOCK_GROUP_RAID6) |
| return BTRFS_RAID_RAID6; |
| |
| return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ |
| } |
| |
| void btrfs_commit_device_sizes(struct btrfs_transaction *trans); |
| |
| struct list_head * __attribute_const__ btrfs_get_fs_uuids(void); |
| void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info); |
| void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info); |
| bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, |
| struct btrfs_device *failing_dev); |
| |
| int btrfs_bg_type_to_factor(u64 flags); |
| const char *btrfs_bg_type_to_raid_name(u64 flags); |
| int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info); |
| |
| #endif |