| /* |
| * LZMA2 decoder |
| * |
| * Authors: Lasse Collin <lasse.collin@tukaani.org> |
| * Igor Pavlov <https://7-zip.org/> |
| * |
| * This file has been put into the public domain. |
| * You can do whatever you want with this file. |
| */ |
| |
| #include "xz_private.h" |
| #include "xz_lzma2.h" |
| |
| /* |
| * Range decoder initialization eats the first five bytes of each LZMA chunk. |
| */ |
| #define RC_INIT_BYTES 5 |
| |
| /* |
| * Minimum number of usable input buffer to safely decode one LZMA symbol. |
| * The worst case is that we decode 22 bits using probabilities and 26 |
| * direct bits. This may decode at maximum of 20 bytes of input. However, |
| * lzma_main() does an extra normalization before returning, thus we |
| * need to put 21 here. |
| */ |
| #define LZMA_IN_REQUIRED 21 |
| |
| /* |
| * Dictionary (history buffer) |
| * |
| * These are always true: |
| * start <= pos <= full <= end |
| * pos <= limit <= end |
| * |
| * In multi-call mode, also these are true: |
| * end == size |
| * size <= size_max |
| * allocated <= size |
| * |
| * Most of these variables are size_t to support single-call mode, |
| * in which the dictionary variables address the actual output |
| * buffer directly. |
| */ |
| struct dictionary { |
| /* Beginning of the history buffer */ |
| uint8_t *buf; |
| |
| /* Old position in buf (before decoding more data) */ |
| size_t start; |
| |
| /* Position in buf */ |
| size_t pos; |
| |
| /* |
| * How full dictionary is. This is used to detect corrupt input that |
| * would read beyond the beginning of the uncompressed stream. |
| */ |
| size_t full; |
| |
| /* Write limit; we don't write to buf[limit] or later bytes. */ |
| size_t limit; |
| |
| /* |
| * End of the dictionary buffer. In multi-call mode, this is |
| * the same as the dictionary size. In single-call mode, this |
| * indicates the size of the output buffer. |
| */ |
| size_t end; |
| |
| /* |
| * Size of the dictionary as specified in Block Header. This is used |
| * together with "full" to detect corrupt input that would make us |
| * read beyond the beginning of the uncompressed stream. |
| */ |
| uint32_t size; |
| |
| /* |
| * Maximum allowed dictionary size in multi-call mode. |
| * This is ignored in single-call mode. |
| */ |
| uint32_t size_max; |
| |
| /* |
| * Amount of memory currently allocated for the dictionary. |
| * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC, |
| * size_max is always the same as the allocated size.) |
| */ |
| uint32_t allocated; |
| |
| /* Operation mode */ |
| enum xz_mode mode; |
| }; |
| |
| /* Range decoder */ |
| struct rc_dec { |
| uint32_t range; |
| uint32_t code; |
| |
| /* |
| * Number of initializing bytes remaining to be read |
| * by rc_read_init(). |
| */ |
| uint32_t init_bytes_left; |
| |
| /* |
| * Buffer from which we read our input. It can be either |
| * temp.buf or the caller-provided input buffer. |
| */ |
| const uint8_t *in; |
| size_t in_pos; |
| size_t in_limit; |
| }; |
| |
| /* Probabilities for a length decoder. */ |
| struct lzma_len_dec { |
| /* Probability of match length being at least 10 */ |
| uint16_t choice; |
| |
| /* Probability of match length being at least 18 */ |
| uint16_t choice2; |
| |
| /* Probabilities for match lengths 2-9 */ |
| uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS]; |
| |
| /* Probabilities for match lengths 10-17 */ |
| uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS]; |
| |
| /* Probabilities for match lengths 18-273 */ |
| uint16_t high[LEN_HIGH_SYMBOLS]; |
| }; |
| |
| struct lzma_dec { |
| /* Distances of latest four matches */ |
| uint32_t rep0; |
| uint32_t rep1; |
| uint32_t rep2; |
| uint32_t rep3; |
| |
| /* Types of the most recently seen LZMA symbols */ |
| enum lzma_state state; |
| |
| /* |
| * Length of a match. This is updated so that dict_repeat can |
| * be called again to finish repeating the whole match. |
| */ |
| uint32_t len; |
| |
| /* |
| * LZMA properties or related bit masks (number of literal |
| * context bits, a mask dervied from the number of literal |
| * position bits, and a mask dervied from the number |
| * position bits) |
| */ |
| uint32_t lc; |
| uint32_t literal_pos_mask; /* (1 << lp) - 1 */ |
| uint32_t pos_mask; /* (1 << pb) - 1 */ |
| |
| /* If 1, it's a match. Otherwise it's a single 8-bit literal. */ |
| uint16_t is_match[STATES][POS_STATES_MAX]; |
| |
| /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */ |
| uint16_t is_rep[STATES]; |
| |
| /* |
| * If 0, distance of a repeated match is rep0. |
| * Otherwise check is_rep1. |
| */ |
| uint16_t is_rep0[STATES]; |
| |
| /* |
| * If 0, distance of a repeated match is rep1. |
| * Otherwise check is_rep2. |
| */ |
| uint16_t is_rep1[STATES]; |
| |
| /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */ |
| uint16_t is_rep2[STATES]; |
| |
| /* |
| * If 1, the repeated match has length of one byte. Otherwise |
| * the length is decoded from rep_len_decoder. |
| */ |
| uint16_t is_rep0_long[STATES][POS_STATES_MAX]; |
| |
| /* |
| * Probability tree for the highest two bits of the match |
| * distance. There is a separate probability tree for match |
| * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273]. |
| */ |
| uint16_t dist_slot[DIST_STATES][DIST_SLOTS]; |
| |
| /* |
| * Probility trees for additional bits for match distance |
| * when the distance is in the range [4, 127]. |
| */ |
| uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END]; |
| |
| /* |
| * Probability tree for the lowest four bits of a match |
| * distance that is equal to or greater than 128. |
| */ |
| uint16_t dist_align[ALIGN_SIZE]; |
| |
| /* Length of a normal match */ |
| struct lzma_len_dec match_len_dec; |
| |
| /* Length of a repeated match */ |
| struct lzma_len_dec rep_len_dec; |
| |
| /* Probabilities of literals */ |
| uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE]; |
| }; |
| |
| struct lzma2_dec { |
| /* Position in xz_dec_lzma2_run(). */ |
| enum lzma2_seq { |
| SEQ_CONTROL, |
| SEQ_UNCOMPRESSED_1, |
| SEQ_UNCOMPRESSED_2, |
| SEQ_COMPRESSED_0, |
| SEQ_COMPRESSED_1, |
| SEQ_PROPERTIES, |
| SEQ_LZMA_PREPARE, |
| SEQ_LZMA_RUN, |
| SEQ_COPY |
| } sequence; |
| |
| /* Next position after decoding the compressed size of the chunk. */ |
| enum lzma2_seq next_sequence; |
| |
| /* Uncompressed size of LZMA chunk (2 MiB at maximum) */ |
| uint32_t uncompressed; |
| |
| /* |
| * Compressed size of LZMA chunk or compressed/uncompressed |
| * size of uncompressed chunk (64 KiB at maximum) |
| */ |
| uint32_t compressed; |
| |
| /* |
| * True if dictionary reset is needed. This is false before |
| * the first chunk (LZMA or uncompressed). |
| */ |
| bool need_dict_reset; |
| |
| /* |
| * True if new LZMA properties are needed. This is false |
| * before the first LZMA chunk. |
| */ |
| bool need_props; |
| }; |
| |
| struct xz_dec_lzma2 { |
| /* |
| * The order below is important on x86 to reduce code size and |
| * it shouldn't hurt on other platforms. Everything up to and |
| * including lzma.pos_mask are in the first 128 bytes on x86-32, |
| * which allows using smaller instructions to access those |
| * variables. On x86-64, fewer variables fit into the first 128 |
| * bytes, but this is still the best order without sacrificing |
| * the readability by splitting the structures. |
| */ |
| struct rc_dec rc; |
| struct dictionary dict; |
| struct lzma2_dec lzma2; |
| struct lzma_dec lzma; |
| |
| /* |
| * Temporary buffer which holds small number of input bytes between |
| * decoder calls. See lzma2_lzma() for details. |
| */ |
| struct { |
| uint32_t size; |
| uint8_t buf[3 * LZMA_IN_REQUIRED]; |
| } temp; |
| }; |
| |
| /************** |
| * Dictionary * |
| **************/ |
| |
| /* |
| * Reset the dictionary state. When in single-call mode, set up the beginning |
| * of the dictionary to point to the actual output buffer. |
| */ |
| static void dict_reset(struct dictionary *dict, struct xz_buf *b) |
| { |
| if (DEC_IS_SINGLE(dict->mode)) { |
| dict->buf = b->out + b->out_pos; |
| dict->end = b->out_size - b->out_pos; |
| } |
| |
| dict->start = 0; |
| dict->pos = 0; |
| dict->limit = 0; |
| dict->full = 0; |
| } |
| |
| /* Set dictionary write limit */ |
| static void dict_limit(struct dictionary *dict, size_t out_max) |
| { |
| if (dict->end - dict->pos <= out_max) |
| dict->limit = dict->end; |
| else |
| dict->limit = dict->pos + out_max; |
| } |
| |
| /* Return true if at least one byte can be written into the dictionary. */ |
| static inline bool dict_has_space(const struct dictionary *dict) |
| { |
| return dict->pos < dict->limit; |
| } |
| |
| /* |
| * Get a byte from the dictionary at the given distance. The distance is |
| * assumed to valid, or as a special case, zero when the dictionary is |
| * still empty. This special case is needed for single-call decoding to |
| * avoid writing a '\0' to the end of the destination buffer. |
| */ |
| static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist) |
| { |
| size_t offset = dict->pos - dist - 1; |
| |
| if (dist >= dict->pos) |
| offset += dict->end; |
| |
| return dict->full > 0 ? dict->buf[offset] : 0; |
| } |
| |
| /* |
| * Put one byte into the dictionary. It is assumed that there is space for it. |
| */ |
| static inline void dict_put(struct dictionary *dict, uint8_t byte) |
| { |
| dict->buf[dict->pos++] = byte; |
| |
| if (dict->full < dict->pos) |
| dict->full = dict->pos; |
| } |
| |
| /* |
| * Repeat given number of bytes from the given distance. If the distance is |
| * invalid, false is returned. On success, true is returned and *len is |
| * updated to indicate how many bytes were left to be repeated. |
| */ |
| static bool dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist) |
| { |
| size_t back; |
| uint32_t left; |
| |
| if (dist >= dict->full || dist >= dict->size) |
| return false; |
| |
| left = min_t(size_t, dict->limit - dict->pos, *len); |
| *len -= left; |
| |
| back = dict->pos - dist - 1; |
| if (dist >= dict->pos) |
| back += dict->end; |
| |
| do { |
| dict->buf[dict->pos++] = dict->buf[back++]; |
| if (back == dict->end) |
| back = 0; |
| } while (--left > 0); |
| |
| if (dict->full < dict->pos) |
| dict->full = dict->pos; |
| |
| return true; |
| } |
| |
| /* Copy uncompressed data as is from input to dictionary and output buffers. */ |
| static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b, |
| uint32_t *left) |
| { |
| size_t copy_size; |
| |
| while (*left > 0 && b->in_pos < b->in_size |
| && b->out_pos < b->out_size) { |
| copy_size = min(b->in_size - b->in_pos, |
| b->out_size - b->out_pos); |
| if (copy_size > dict->end - dict->pos) |
| copy_size = dict->end - dict->pos; |
| if (copy_size > *left) |
| copy_size = *left; |
| |
| *left -= copy_size; |
| |
| /* |
| * If doing in-place decompression in single-call mode and the |
| * uncompressed size of the file is larger than the caller |
| * thought (i.e. it is invalid input!), the buffers below may |
| * overlap and cause undefined behavior with memcpy(). |
| * With valid inputs memcpy() would be fine here. |
| */ |
| memmove(dict->buf + dict->pos, b->in + b->in_pos, copy_size); |
| dict->pos += copy_size; |
| |
| if (dict->full < dict->pos) |
| dict->full = dict->pos; |
| |
| if (DEC_IS_MULTI(dict->mode)) { |
| if (dict->pos == dict->end) |
| dict->pos = 0; |
| |
| /* |
| * Like above but for multi-call mode: use memmove() |
| * to avoid undefined behavior with invalid input. |
| */ |
| memmove(b->out + b->out_pos, b->in + b->in_pos, |
| copy_size); |
| } |
| |
| dict->start = dict->pos; |
| |
| b->out_pos += copy_size; |
| b->in_pos += copy_size; |
| } |
| } |
| |
| /* |
| * Flush pending data from dictionary to b->out. It is assumed that there is |
| * enough space in b->out. This is guaranteed because caller uses dict_limit() |
| * before decoding data into the dictionary. |
| */ |
| static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b) |
| { |
| size_t copy_size = dict->pos - dict->start; |
| |
| if (DEC_IS_MULTI(dict->mode)) { |
| if (dict->pos == dict->end) |
| dict->pos = 0; |
| |
| /* |
| * These buffers cannot overlap even if doing in-place |
| * decompression because in multi-call mode dict->buf |
| * has been allocated by us in this file; it's not |
| * provided by the caller like in single-call mode. |
| */ |
| memcpy(b->out + b->out_pos, dict->buf + dict->start, |
| copy_size); |
| } |
| |
| dict->start = dict->pos; |
| b->out_pos += copy_size; |
| return copy_size; |
| } |
| |
| /***************** |
| * Range decoder * |
| *****************/ |
| |
| /* Reset the range decoder. */ |
| static void rc_reset(struct rc_dec *rc) |
| { |
| rc->range = (uint32_t)-1; |
| rc->code = 0; |
| rc->init_bytes_left = RC_INIT_BYTES; |
| } |
| |
| /* |
| * Read the first five initial bytes into rc->code if they haven't been |
| * read already. (Yes, the first byte gets completely ignored.) |
| */ |
| static bool rc_read_init(struct rc_dec *rc, struct xz_buf *b) |
| { |
| while (rc->init_bytes_left > 0) { |
| if (b->in_pos == b->in_size) |
| return false; |
| |
| rc->code = (rc->code << 8) + b->in[b->in_pos++]; |
| --rc->init_bytes_left; |
| } |
| |
| return true; |
| } |
| |
| /* Return true if there may not be enough input for the next decoding loop. */ |
| static inline bool rc_limit_exceeded(const struct rc_dec *rc) |
| { |
| return rc->in_pos > rc->in_limit; |
| } |
| |
| /* |
| * Return true if it is possible (from point of view of range decoder) that |
| * we have reached the end of the LZMA chunk. |
| */ |
| static inline bool rc_is_finished(const struct rc_dec *rc) |
| { |
| return rc->code == 0; |
| } |
| |
| /* Read the next input byte if needed. */ |
| static __always_inline void rc_normalize(struct rc_dec *rc) |
| { |
| if (rc->range < RC_TOP_VALUE) { |
| rc->range <<= RC_SHIFT_BITS; |
| rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++]; |
| } |
| } |
| |
| /* |
| * Decode one bit. In some versions, this function has been splitted in three |
| * functions so that the compiler is supposed to be able to more easily avoid |
| * an extra branch. In this particular version of the LZMA decoder, this |
| * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3 |
| * on x86). Using a non-splitted version results in nicer looking code too. |
| * |
| * NOTE: This must return an int. Do not make it return a bool or the speed |
| * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care, |
| * and it generates 10-20 % faster code than GCC 3.x from this file anyway.) |
| */ |
| static __always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob) |
| { |
| uint32_t bound; |
| int bit; |
| |
| rc_normalize(rc); |
| bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob; |
| if (rc->code < bound) { |
| rc->range = bound; |
| *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS; |
| bit = 0; |
| } else { |
| rc->range -= bound; |
| rc->code -= bound; |
| *prob -= *prob >> RC_MOVE_BITS; |
| bit = 1; |
| } |
| |
| return bit; |
| } |
| |
| /* Decode a bittree starting from the most significant bit. */ |
| static __always_inline uint32_t rc_bittree(struct rc_dec *rc, |
| uint16_t *probs, uint32_t limit) |
| { |
| uint32_t symbol = 1; |
| |
| do { |
| if (rc_bit(rc, &probs[symbol])) |
| symbol = (symbol << 1) + 1; |
| else |
| symbol <<= 1; |
| } while (symbol < limit); |
| |
| return symbol; |
| } |
| |
| /* Decode a bittree starting from the least significant bit. */ |
| static __always_inline void rc_bittree_reverse(struct rc_dec *rc, |
| uint16_t *probs, |
| uint32_t *dest, uint32_t limit) |
| { |
| uint32_t symbol = 1; |
| uint32_t i = 0; |
| |
| do { |
| if (rc_bit(rc, &probs[symbol])) { |
| symbol = (symbol << 1) + 1; |
| *dest += 1 << i; |
| } else { |
| symbol <<= 1; |
| } |
| } while (++i < limit); |
| } |
| |
| /* Decode direct bits (fixed fifty-fifty probability) */ |
| static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit) |
| { |
| uint32_t mask; |
| |
| do { |
| rc_normalize(rc); |
| rc->range >>= 1; |
| rc->code -= rc->range; |
| mask = (uint32_t)0 - (rc->code >> 31); |
| rc->code += rc->range & mask; |
| *dest = (*dest << 1) + (mask + 1); |
| } while (--limit > 0); |
| } |
| |
| /******** |
| * LZMA * |
| ********/ |
| |
| /* Get pointer to literal coder probability array. */ |
| static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s) |
| { |
| uint32_t prev_byte = dict_get(&s->dict, 0); |
| uint32_t low = prev_byte >> (8 - s->lzma.lc); |
| uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc; |
| return s->lzma.literal[low + high]; |
| } |
| |
| /* Decode a literal (one 8-bit byte) */ |
| static void lzma_literal(struct xz_dec_lzma2 *s) |
| { |
| uint16_t *probs; |
| uint32_t symbol; |
| uint32_t match_byte; |
| uint32_t match_bit; |
| uint32_t offset; |
| uint32_t i; |
| |
| probs = lzma_literal_probs(s); |
| |
| if (lzma_state_is_literal(s->lzma.state)) { |
| symbol = rc_bittree(&s->rc, probs, 0x100); |
| } else { |
| symbol = 1; |
| match_byte = dict_get(&s->dict, s->lzma.rep0) << 1; |
| offset = 0x100; |
| |
| do { |
| match_bit = match_byte & offset; |
| match_byte <<= 1; |
| i = offset + match_bit + symbol; |
| |
| if (rc_bit(&s->rc, &probs[i])) { |
| symbol = (symbol << 1) + 1; |
| offset &= match_bit; |
| } else { |
| symbol <<= 1; |
| offset &= ~match_bit; |
| } |
| } while (symbol < 0x100); |
| } |
| |
| dict_put(&s->dict, (uint8_t)symbol); |
| lzma_state_literal(&s->lzma.state); |
| } |
| |
| /* Decode the length of the match into s->lzma.len. */ |
| static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l, |
| uint32_t pos_state) |
| { |
| uint16_t *probs; |
| uint32_t limit; |
| |
| if (!rc_bit(&s->rc, &l->choice)) { |
| probs = l->low[pos_state]; |
| limit = LEN_LOW_SYMBOLS; |
| s->lzma.len = MATCH_LEN_MIN; |
| } else { |
| if (!rc_bit(&s->rc, &l->choice2)) { |
| probs = l->mid[pos_state]; |
| limit = LEN_MID_SYMBOLS; |
| s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS; |
| } else { |
| probs = l->high; |
| limit = LEN_HIGH_SYMBOLS; |
| s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS |
| + LEN_MID_SYMBOLS; |
| } |
| } |
| |
| s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit; |
| } |
| |
| /* Decode a match. The distance will be stored in s->lzma.rep0. */ |
| static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state) |
| { |
| uint16_t *probs; |
| uint32_t dist_slot; |
| uint32_t limit; |
| |
| lzma_state_match(&s->lzma.state); |
| |
| s->lzma.rep3 = s->lzma.rep2; |
| s->lzma.rep2 = s->lzma.rep1; |
| s->lzma.rep1 = s->lzma.rep0; |
| |
| lzma_len(s, &s->lzma.match_len_dec, pos_state); |
| |
| probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)]; |
| dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS; |
| |
| if (dist_slot < DIST_MODEL_START) { |
| s->lzma.rep0 = dist_slot; |
| } else { |
| limit = (dist_slot >> 1) - 1; |
| s->lzma.rep0 = 2 + (dist_slot & 1); |
| |
| if (dist_slot < DIST_MODEL_END) { |
| s->lzma.rep0 <<= limit; |
| probs = s->lzma.dist_special + s->lzma.rep0 |
| - dist_slot - 1; |
| rc_bittree_reverse(&s->rc, probs, |
| &s->lzma.rep0, limit); |
| } else { |
| rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS); |
| s->lzma.rep0 <<= ALIGN_BITS; |
| rc_bittree_reverse(&s->rc, s->lzma.dist_align, |
| &s->lzma.rep0, ALIGN_BITS); |
| } |
| } |
| } |
| |
| /* |
| * Decode a repeated match. The distance is one of the four most recently |
| * seen matches. The distance will be stored in s->lzma.rep0. |
| */ |
| static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state) |
| { |
| uint32_t tmp; |
| |
| if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) { |
| if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[ |
| s->lzma.state][pos_state])) { |
| lzma_state_short_rep(&s->lzma.state); |
| s->lzma.len = 1; |
| return; |
| } |
| } else { |
| if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) { |
| tmp = s->lzma.rep1; |
| } else { |
| if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) { |
| tmp = s->lzma.rep2; |
| } else { |
| tmp = s->lzma.rep3; |
| s->lzma.rep3 = s->lzma.rep2; |
| } |
| |
| s->lzma.rep2 = s->lzma.rep1; |
| } |
| |
| s->lzma.rep1 = s->lzma.rep0; |
| s->lzma.rep0 = tmp; |
| } |
| |
| lzma_state_long_rep(&s->lzma.state); |
| lzma_len(s, &s->lzma.rep_len_dec, pos_state); |
| } |
| |
| /* LZMA decoder core */ |
| static bool lzma_main(struct xz_dec_lzma2 *s) |
| { |
| uint32_t pos_state; |
| |
| /* |
| * If the dictionary was reached during the previous call, try to |
| * finish the possibly pending repeat in the dictionary. |
| */ |
| if (dict_has_space(&s->dict) && s->lzma.len > 0) |
| dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0); |
| |
| /* |
| * Decode more LZMA symbols. One iteration may consume up to |
| * LZMA_IN_REQUIRED - 1 bytes. |
| */ |
| while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) { |
| pos_state = s->dict.pos & s->lzma.pos_mask; |
| |
| if (!rc_bit(&s->rc, &s->lzma.is_match[ |
| s->lzma.state][pos_state])) { |
| lzma_literal(s); |
| } else { |
| if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state])) |
| lzma_rep_match(s, pos_state); |
| else |
| lzma_match(s, pos_state); |
| |
| if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0)) |
| return false; |
| } |
| } |
| |
| /* |
| * Having the range decoder always normalized when we are outside |
| * this function makes it easier to correctly handle end of the chunk. |
| */ |
| rc_normalize(&s->rc); |
| |
| return true; |
| } |
| |
| /* |
| * Reset the LZMA decoder and range decoder state. Dictionary is nore reset |
| * here, because LZMA state may be reset without resetting the dictionary. |
| */ |
| static void lzma_reset(struct xz_dec_lzma2 *s) |
| { |
| uint16_t *probs; |
| size_t i; |
| |
| s->lzma.state = STATE_LIT_LIT; |
| s->lzma.rep0 = 0; |
| s->lzma.rep1 = 0; |
| s->lzma.rep2 = 0; |
| s->lzma.rep3 = 0; |
| |
| /* |
| * All probabilities are initialized to the same value. This hack |
| * makes the code smaller by avoiding a separate loop for each |
| * probability array. |
| * |
| * This could be optimized so that only that part of literal |
| * probabilities that are actually required. In the common case |
| * we would write 12 KiB less. |
| */ |
| probs = s->lzma.is_match[0]; |
| for (i = 0; i < PROBS_TOTAL; ++i) |
| probs[i] = RC_BIT_MODEL_TOTAL / 2; |
| |
| rc_reset(&s->rc); |
| } |
| |
| /* |
| * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks |
| * from the decoded lp and pb values. On success, the LZMA decoder state is |
| * reset and true is returned. |
| */ |
| static bool lzma_props(struct xz_dec_lzma2 *s, uint8_t props) |
| { |
| if (props > (4 * 5 + 4) * 9 + 8) |
| return false; |
| |
| s->lzma.pos_mask = 0; |
| while (props >= 9 * 5) { |
| props -= 9 * 5; |
| ++s->lzma.pos_mask; |
| } |
| |
| s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1; |
| |
| s->lzma.literal_pos_mask = 0; |
| while (props >= 9) { |
| props -= 9; |
| ++s->lzma.literal_pos_mask; |
| } |
| |
| s->lzma.lc = props; |
| |
| if (s->lzma.lc + s->lzma.literal_pos_mask > 4) |
| return false; |
| |
| s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1; |
| |
| lzma_reset(s); |
| |
| return true; |
| } |
| |
| /********* |
| * LZMA2 * |
| *********/ |
| |
| /* |
| * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't |
| * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This |
| * wrapper function takes care of making the LZMA decoder's assumption safe. |
| * |
| * As long as there is plenty of input left to be decoded in the current LZMA |
| * chunk, we decode directly from the caller-supplied input buffer until |
| * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into |
| * s->temp.buf, which (hopefully) gets filled on the next call to this |
| * function. We decode a few bytes from the temporary buffer so that we can |
| * continue decoding from the caller-supplied input buffer again. |
| */ |
| static bool lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b) |
| { |
| size_t in_avail; |
| uint32_t tmp; |
| |
| in_avail = b->in_size - b->in_pos; |
| if (s->temp.size > 0 || s->lzma2.compressed == 0) { |
| tmp = 2 * LZMA_IN_REQUIRED - s->temp.size; |
| if (tmp > s->lzma2.compressed - s->temp.size) |
| tmp = s->lzma2.compressed - s->temp.size; |
| if (tmp > in_avail) |
| tmp = in_avail; |
| |
| memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp); |
| |
| if (s->temp.size + tmp == s->lzma2.compressed) { |
| memzero(s->temp.buf + s->temp.size + tmp, |
| sizeof(s->temp.buf) |
| - s->temp.size - tmp); |
| s->rc.in_limit = s->temp.size + tmp; |
| } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) { |
| s->temp.size += tmp; |
| b->in_pos += tmp; |
| return true; |
| } else { |
| s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED; |
| } |
| |
| s->rc.in = s->temp.buf; |
| s->rc.in_pos = 0; |
| |
| if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp) |
| return false; |
| |
| s->lzma2.compressed -= s->rc.in_pos; |
| |
| if (s->rc.in_pos < s->temp.size) { |
| s->temp.size -= s->rc.in_pos; |
| memmove(s->temp.buf, s->temp.buf + s->rc.in_pos, |
| s->temp.size); |
| return true; |
| } |
| |
| b->in_pos += s->rc.in_pos - s->temp.size; |
| s->temp.size = 0; |
| } |
| |
| in_avail = b->in_size - b->in_pos; |
| if (in_avail >= LZMA_IN_REQUIRED) { |
| s->rc.in = b->in; |
| s->rc.in_pos = b->in_pos; |
| |
| if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED) |
| s->rc.in_limit = b->in_pos + s->lzma2.compressed; |
| else |
| s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED; |
| |
| if (!lzma_main(s)) |
| return false; |
| |
| in_avail = s->rc.in_pos - b->in_pos; |
| if (in_avail > s->lzma2.compressed) |
| return false; |
| |
| s->lzma2.compressed -= in_avail; |
| b->in_pos = s->rc.in_pos; |
| } |
| |
| in_avail = b->in_size - b->in_pos; |
| if (in_avail < LZMA_IN_REQUIRED) { |
| if (in_avail > s->lzma2.compressed) |
| in_avail = s->lzma2.compressed; |
| |
| memcpy(s->temp.buf, b->in + b->in_pos, in_avail); |
| s->temp.size = in_avail; |
| b->in_pos += in_avail; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Take care of the LZMA2 control layer, and forward the job of actual LZMA |
| * decoding or copying of uncompressed chunks to other functions. |
| */ |
| XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s, |
| struct xz_buf *b) |
| { |
| uint32_t tmp; |
| |
| while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) { |
| switch (s->lzma2.sequence) { |
| case SEQ_CONTROL: |
| /* |
| * LZMA2 control byte |
| * |
| * Exact values: |
| * 0x00 End marker |
| * 0x01 Dictionary reset followed by |
| * an uncompressed chunk |
| * 0x02 Uncompressed chunk (no dictionary reset) |
| * |
| * Highest three bits (s->control & 0xE0): |
| * 0xE0 Dictionary reset, new properties and state |
| * reset, followed by LZMA compressed chunk |
| * 0xC0 New properties and state reset, followed |
| * by LZMA compressed chunk (no dictionary |
| * reset) |
| * 0xA0 State reset using old properties, |
| * followed by LZMA compressed chunk (no |
| * dictionary reset) |
| * 0x80 LZMA chunk (no dictionary or state reset) |
| * |
| * For LZMA compressed chunks, the lowest five bits |
| * (s->control & 1F) are the highest bits of the |
| * uncompressed size (bits 16-20). |
| * |
| * A new LZMA2 stream must begin with a dictionary |
| * reset. The first LZMA chunk must set new |
| * properties and reset the LZMA state. |
| * |
| * Values that don't match anything described above |
| * are invalid and we return XZ_DATA_ERROR. |
| */ |
| tmp = b->in[b->in_pos++]; |
| |
| if (tmp == 0x00) |
| return XZ_STREAM_END; |
| |
| if (tmp >= 0xE0 || tmp == 0x01) { |
| s->lzma2.need_props = true; |
| s->lzma2.need_dict_reset = false; |
| dict_reset(&s->dict, b); |
| } else if (s->lzma2.need_dict_reset) { |
| return XZ_DATA_ERROR; |
| } |
| |
| if (tmp >= 0x80) { |
| s->lzma2.uncompressed = (tmp & 0x1F) << 16; |
| s->lzma2.sequence = SEQ_UNCOMPRESSED_1; |
| |
| if (tmp >= 0xC0) { |
| /* |
| * When there are new properties, |
| * state reset is done at |
| * SEQ_PROPERTIES. |
| */ |
| s->lzma2.need_props = false; |
| s->lzma2.next_sequence |
| = SEQ_PROPERTIES; |
| |
| } else if (s->lzma2.need_props) { |
| return XZ_DATA_ERROR; |
| |
| } else { |
| s->lzma2.next_sequence |
| = SEQ_LZMA_PREPARE; |
| if (tmp >= 0xA0) |
| lzma_reset(s); |
| } |
| } else { |
| if (tmp > 0x02) |
| return XZ_DATA_ERROR; |
| |
| s->lzma2.sequence = SEQ_COMPRESSED_0; |
| s->lzma2.next_sequence = SEQ_COPY; |
| } |
| |
| break; |
| |
| case SEQ_UNCOMPRESSED_1: |
| s->lzma2.uncompressed |
| += (uint32_t)b->in[b->in_pos++] << 8; |
| s->lzma2.sequence = SEQ_UNCOMPRESSED_2; |
| break; |
| |
| case SEQ_UNCOMPRESSED_2: |
| s->lzma2.uncompressed |
| += (uint32_t)b->in[b->in_pos++] + 1; |
| s->lzma2.sequence = SEQ_COMPRESSED_0; |
| break; |
| |
| case SEQ_COMPRESSED_0: |
| s->lzma2.compressed |
| = (uint32_t)b->in[b->in_pos++] << 8; |
| s->lzma2.sequence = SEQ_COMPRESSED_1; |
| break; |
| |
| case SEQ_COMPRESSED_1: |
| s->lzma2.compressed |
| += (uint32_t)b->in[b->in_pos++] + 1; |
| s->lzma2.sequence = s->lzma2.next_sequence; |
| break; |
| |
| case SEQ_PROPERTIES: |
| if (!lzma_props(s, b->in[b->in_pos++])) |
| return XZ_DATA_ERROR; |
| |
| s->lzma2.sequence = SEQ_LZMA_PREPARE; |
| |
| /* fall through */ |
| |
| case SEQ_LZMA_PREPARE: |
| if (s->lzma2.compressed < RC_INIT_BYTES) |
| return XZ_DATA_ERROR; |
| |
| if (!rc_read_init(&s->rc, b)) |
| return XZ_OK; |
| |
| s->lzma2.compressed -= RC_INIT_BYTES; |
| s->lzma2.sequence = SEQ_LZMA_RUN; |
| |
| /* fall through */ |
| |
| case SEQ_LZMA_RUN: |
| /* |
| * Set dictionary limit to indicate how much we want |
| * to be encoded at maximum. Decode new data into the |
| * dictionary. Flush the new data from dictionary to |
| * b->out. Check if we finished decoding this chunk. |
| * In case the dictionary got full but we didn't fill |
| * the output buffer yet, we may run this loop |
| * multiple times without changing s->lzma2.sequence. |
| */ |
| dict_limit(&s->dict, min_t(size_t, |
| b->out_size - b->out_pos, |
| s->lzma2.uncompressed)); |
| if (!lzma2_lzma(s, b)) |
| return XZ_DATA_ERROR; |
| |
| s->lzma2.uncompressed -= dict_flush(&s->dict, b); |
| |
| if (s->lzma2.uncompressed == 0) { |
| if (s->lzma2.compressed > 0 || s->lzma.len > 0 |
| || !rc_is_finished(&s->rc)) |
| return XZ_DATA_ERROR; |
| |
| rc_reset(&s->rc); |
| s->lzma2.sequence = SEQ_CONTROL; |
| |
| } else if (b->out_pos == b->out_size |
| || (b->in_pos == b->in_size |
| && s->temp.size |
| < s->lzma2.compressed)) { |
| return XZ_OK; |
| } |
| |
| break; |
| |
| case SEQ_COPY: |
| dict_uncompressed(&s->dict, b, &s->lzma2.compressed); |
| if (s->lzma2.compressed > 0) |
| return XZ_OK; |
| |
| s->lzma2.sequence = SEQ_CONTROL; |
| break; |
| } |
| } |
| |
| return XZ_OK; |
| } |
| |
| XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode, |
| uint32_t dict_max) |
| { |
| struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL); |
| if (s == NULL) |
| return NULL; |
| |
| s->dict.mode = mode; |
| s->dict.size_max = dict_max; |
| |
| if (DEC_IS_PREALLOC(mode)) { |
| s->dict.buf = vmalloc(dict_max); |
| if (s->dict.buf == NULL) { |
| kfree(s); |
| return NULL; |
| } |
| } else if (DEC_IS_DYNALLOC(mode)) { |
| s->dict.buf = NULL; |
| s->dict.allocated = 0; |
| } |
| |
| return s; |
| } |
| |
| XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props) |
| { |
| /* This limits dictionary size to 3 GiB to keep parsing simpler. */ |
| if (props > 39) |
| return XZ_OPTIONS_ERROR; |
| |
| s->dict.size = 2 + (props & 1); |
| s->dict.size <<= (props >> 1) + 11; |
| |
| if (DEC_IS_MULTI(s->dict.mode)) { |
| if (s->dict.size > s->dict.size_max) |
| return XZ_MEMLIMIT_ERROR; |
| |
| s->dict.end = s->dict.size; |
| |
| if (DEC_IS_DYNALLOC(s->dict.mode)) { |
| if (s->dict.allocated < s->dict.size) { |
| s->dict.allocated = s->dict.size; |
| vfree(s->dict.buf); |
| s->dict.buf = vmalloc(s->dict.size); |
| if (s->dict.buf == NULL) { |
| s->dict.allocated = 0; |
| return XZ_MEM_ERROR; |
| } |
| } |
| } |
| } |
| |
| s->lzma.len = 0; |
| |
| s->lzma2.sequence = SEQ_CONTROL; |
| s->lzma2.need_dict_reset = true; |
| |
| s->temp.size = 0; |
| |
| return XZ_OK; |
| } |
| |
| XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s) |
| { |
| if (DEC_IS_MULTI(s->dict.mode)) |
| vfree(s->dict.buf); |
| |
| kfree(s); |
| } |