blob: ff31da0ed846cb9c66b0e1c70fa6a6f6152f7265 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Broadcom GENET (Gigabit Ethernet) controller driver
*
* Copyright (c) 2014-2020 Broadcom
*/
#define pr_fmt(fmt) "bcmgenet: " fmt
#include <linux/acpi.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/if_ether.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/pm.h>
#include <linux/clk.h>
#include <net/arp.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/phy.h>
#include <linux/platform_data/bcmgenet.h>
#include <asm/unaligned.h>
#include "bcmgenet.h"
/* Maximum number of hardware queues, downsized if needed */
#define GENET_MAX_MQ_CNT 4
/* Default highest priority queue for multi queue support */
#define GENET_Q0_PRIORITY 0
#define GENET_Q16_RX_BD_CNT \
(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
#define GENET_Q16_TX_BD_CNT \
(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
#define RX_BUF_LENGTH 2048
#define SKB_ALIGNMENT 32
/* Tx/Rx DMA register offset, skip 256 descriptors */
#define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
#define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
#define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
TOTAL_DESC * DMA_DESC_SIZE)
#define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
TOTAL_DESC * DMA_DESC_SIZE)
/* Forward declarations */
static void bcmgenet_set_rx_mode(struct net_device *dev);
static inline void bcmgenet_writel(u32 value, void __iomem *offset)
{
/* MIPS chips strapped for BE will automagically configure the
* peripheral registers for CPU-native byte order.
*/
if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
__raw_writel(value, offset);
else
writel_relaxed(value, offset);
}
static inline u32 bcmgenet_readl(void __iomem *offset)
{
if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
return __raw_readl(offset);
else
return readl_relaxed(offset);
}
static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
void __iomem *d, u32 value)
{
bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
}
static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
void __iomem *d,
dma_addr_t addr)
{
bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
/* Register writes to GISB bus can take couple hundred nanoseconds
* and are done for each packet, save these expensive writes unless
* the platform is explicitly configured for 64-bits/LPAE.
*/
#ifdef CONFIG_PHYS_ADDR_T_64BIT
if (priv->hw_params->flags & GENET_HAS_40BITS)
bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
#endif
}
/* Combined address + length/status setter */
static inline void dmadesc_set(struct bcmgenet_priv *priv,
void __iomem *d, dma_addr_t addr, u32 val)
{
dmadesc_set_addr(priv, d, addr);
dmadesc_set_length_status(priv, d, val);
}
static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
void __iomem *d)
{
dma_addr_t addr;
addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
/* Register writes to GISB bus can take couple hundred nanoseconds
* and are done for each packet, save these expensive writes unless
* the platform is explicitly configured for 64-bits/LPAE.
*/
#ifdef CONFIG_PHYS_ADDR_T_64BIT
if (priv->hw_params->flags & GENET_HAS_40BITS)
addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
#endif
return addr;
}
#define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
#define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
NETIF_MSG_LINK)
static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
{
if (GENET_IS_V1(priv))
return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
else
return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
}
static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
{
if (GENET_IS_V1(priv))
bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
else
bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
}
/* These macros are defined to deal with register map change
* between GENET1.1 and GENET2. Only those currently being used
* by driver are defined.
*/
static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
{
if (GENET_IS_V1(priv))
return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
else
return bcmgenet_readl(priv->base +
priv->hw_params->tbuf_offset + TBUF_CTRL);
}
static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
{
if (GENET_IS_V1(priv))
bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
else
bcmgenet_writel(val, priv->base +
priv->hw_params->tbuf_offset + TBUF_CTRL);
}
static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
{
if (GENET_IS_V1(priv))
return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
else
return bcmgenet_readl(priv->base +
priv->hw_params->tbuf_offset + TBUF_BP_MC);
}
static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
{
if (GENET_IS_V1(priv))
bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
else
bcmgenet_writel(val, priv->base +
priv->hw_params->tbuf_offset + TBUF_BP_MC);
}
/* RX/TX DMA register accessors */
enum dma_reg {
DMA_RING_CFG = 0,
DMA_CTRL,
DMA_STATUS,
DMA_SCB_BURST_SIZE,
DMA_ARB_CTRL,
DMA_PRIORITY_0,
DMA_PRIORITY_1,
DMA_PRIORITY_2,
DMA_INDEX2RING_0,
DMA_INDEX2RING_1,
DMA_INDEX2RING_2,
DMA_INDEX2RING_3,
DMA_INDEX2RING_4,
DMA_INDEX2RING_5,
DMA_INDEX2RING_6,
DMA_INDEX2RING_7,
DMA_RING0_TIMEOUT,
DMA_RING1_TIMEOUT,
DMA_RING2_TIMEOUT,
DMA_RING3_TIMEOUT,
DMA_RING4_TIMEOUT,
DMA_RING5_TIMEOUT,
DMA_RING6_TIMEOUT,
DMA_RING7_TIMEOUT,
DMA_RING8_TIMEOUT,
DMA_RING9_TIMEOUT,
DMA_RING10_TIMEOUT,
DMA_RING11_TIMEOUT,
DMA_RING12_TIMEOUT,
DMA_RING13_TIMEOUT,
DMA_RING14_TIMEOUT,
DMA_RING15_TIMEOUT,
DMA_RING16_TIMEOUT,
};
static const u8 bcmgenet_dma_regs_v3plus[] = {
[DMA_RING_CFG] = 0x00,
[DMA_CTRL] = 0x04,
[DMA_STATUS] = 0x08,
[DMA_SCB_BURST_SIZE] = 0x0C,
[DMA_ARB_CTRL] = 0x2C,
[DMA_PRIORITY_0] = 0x30,
[DMA_PRIORITY_1] = 0x34,
[DMA_PRIORITY_2] = 0x38,
[DMA_RING0_TIMEOUT] = 0x2C,
[DMA_RING1_TIMEOUT] = 0x30,
[DMA_RING2_TIMEOUT] = 0x34,
[DMA_RING3_TIMEOUT] = 0x38,
[DMA_RING4_TIMEOUT] = 0x3c,
[DMA_RING5_TIMEOUT] = 0x40,
[DMA_RING6_TIMEOUT] = 0x44,
[DMA_RING7_TIMEOUT] = 0x48,
[DMA_RING8_TIMEOUT] = 0x4c,
[DMA_RING9_TIMEOUT] = 0x50,
[DMA_RING10_TIMEOUT] = 0x54,
[DMA_RING11_TIMEOUT] = 0x58,
[DMA_RING12_TIMEOUT] = 0x5c,
[DMA_RING13_TIMEOUT] = 0x60,
[DMA_RING14_TIMEOUT] = 0x64,
[DMA_RING15_TIMEOUT] = 0x68,
[DMA_RING16_TIMEOUT] = 0x6C,
[DMA_INDEX2RING_0] = 0x70,
[DMA_INDEX2RING_1] = 0x74,
[DMA_INDEX2RING_2] = 0x78,
[DMA_INDEX2RING_3] = 0x7C,
[DMA_INDEX2RING_4] = 0x80,
[DMA_INDEX2RING_5] = 0x84,
[DMA_INDEX2RING_6] = 0x88,
[DMA_INDEX2RING_7] = 0x8C,
};
static const u8 bcmgenet_dma_regs_v2[] = {
[DMA_RING_CFG] = 0x00,
[DMA_CTRL] = 0x04,
[DMA_STATUS] = 0x08,
[DMA_SCB_BURST_SIZE] = 0x0C,
[DMA_ARB_CTRL] = 0x30,
[DMA_PRIORITY_0] = 0x34,
[DMA_PRIORITY_1] = 0x38,
[DMA_PRIORITY_2] = 0x3C,
[DMA_RING0_TIMEOUT] = 0x2C,
[DMA_RING1_TIMEOUT] = 0x30,
[DMA_RING2_TIMEOUT] = 0x34,
[DMA_RING3_TIMEOUT] = 0x38,
[DMA_RING4_TIMEOUT] = 0x3c,
[DMA_RING5_TIMEOUT] = 0x40,
[DMA_RING6_TIMEOUT] = 0x44,
[DMA_RING7_TIMEOUT] = 0x48,
[DMA_RING8_TIMEOUT] = 0x4c,
[DMA_RING9_TIMEOUT] = 0x50,
[DMA_RING10_TIMEOUT] = 0x54,
[DMA_RING11_TIMEOUT] = 0x58,
[DMA_RING12_TIMEOUT] = 0x5c,
[DMA_RING13_TIMEOUT] = 0x60,
[DMA_RING14_TIMEOUT] = 0x64,
[DMA_RING15_TIMEOUT] = 0x68,
[DMA_RING16_TIMEOUT] = 0x6C,
};
static const u8 bcmgenet_dma_regs_v1[] = {
[DMA_CTRL] = 0x00,
[DMA_STATUS] = 0x04,
[DMA_SCB_BURST_SIZE] = 0x0C,
[DMA_ARB_CTRL] = 0x30,
[DMA_PRIORITY_0] = 0x34,
[DMA_PRIORITY_1] = 0x38,
[DMA_PRIORITY_2] = 0x3C,
[DMA_RING0_TIMEOUT] = 0x2C,
[DMA_RING1_TIMEOUT] = 0x30,
[DMA_RING2_TIMEOUT] = 0x34,
[DMA_RING3_TIMEOUT] = 0x38,
[DMA_RING4_TIMEOUT] = 0x3c,
[DMA_RING5_TIMEOUT] = 0x40,
[DMA_RING6_TIMEOUT] = 0x44,
[DMA_RING7_TIMEOUT] = 0x48,
[DMA_RING8_TIMEOUT] = 0x4c,
[DMA_RING9_TIMEOUT] = 0x50,
[DMA_RING10_TIMEOUT] = 0x54,
[DMA_RING11_TIMEOUT] = 0x58,
[DMA_RING12_TIMEOUT] = 0x5c,
[DMA_RING13_TIMEOUT] = 0x60,
[DMA_RING14_TIMEOUT] = 0x64,
[DMA_RING15_TIMEOUT] = 0x68,
[DMA_RING16_TIMEOUT] = 0x6C,
};
/* Set at runtime once bcmgenet version is known */
static const u8 *bcmgenet_dma_regs;
static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
{
return netdev_priv(dev_get_drvdata(dev));
}
static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
enum dma_reg r)
{
return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}
static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
u32 val, enum dma_reg r)
{
bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}
static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
enum dma_reg r)
{
return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}
static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
u32 val, enum dma_reg r)
{
bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
}
/* RDMA/TDMA ring registers and accessors
* we merge the common fields and just prefix with T/D the registers
* having different meaning depending on the direction
*/
enum dma_ring_reg {
TDMA_READ_PTR = 0,
RDMA_WRITE_PTR = TDMA_READ_PTR,
TDMA_READ_PTR_HI,
RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
TDMA_CONS_INDEX,
RDMA_PROD_INDEX = TDMA_CONS_INDEX,
TDMA_PROD_INDEX,
RDMA_CONS_INDEX = TDMA_PROD_INDEX,
DMA_RING_BUF_SIZE,
DMA_START_ADDR,
DMA_START_ADDR_HI,
DMA_END_ADDR,
DMA_END_ADDR_HI,
DMA_MBUF_DONE_THRESH,
TDMA_FLOW_PERIOD,
RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
TDMA_WRITE_PTR,
RDMA_READ_PTR = TDMA_WRITE_PTR,
TDMA_WRITE_PTR_HI,
RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
};
/* GENET v4 supports 40-bits pointer addressing
* for obvious reasons the LO and HI word parts
* are contiguous, but this offsets the other
* registers.
*/
static const u8 genet_dma_ring_regs_v4[] = {
[TDMA_READ_PTR] = 0x00,
[TDMA_READ_PTR_HI] = 0x04,
[TDMA_CONS_INDEX] = 0x08,
[TDMA_PROD_INDEX] = 0x0C,
[DMA_RING_BUF_SIZE] = 0x10,
[DMA_START_ADDR] = 0x14,
[DMA_START_ADDR_HI] = 0x18,
[DMA_END_ADDR] = 0x1C,
[DMA_END_ADDR_HI] = 0x20,
[DMA_MBUF_DONE_THRESH] = 0x24,
[TDMA_FLOW_PERIOD] = 0x28,
[TDMA_WRITE_PTR] = 0x2C,
[TDMA_WRITE_PTR_HI] = 0x30,
};
static const u8 genet_dma_ring_regs_v123[] = {
[TDMA_READ_PTR] = 0x00,
[TDMA_CONS_INDEX] = 0x04,
[TDMA_PROD_INDEX] = 0x08,
[DMA_RING_BUF_SIZE] = 0x0C,
[DMA_START_ADDR] = 0x10,
[DMA_END_ADDR] = 0x14,
[DMA_MBUF_DONE_THRESH] = 0x18,
[TDMA_FLOW_PERIOD] = 0x1C,
[TDMA_WRITE_PTR] = 0x20,
};
/* Set at runtime once GENET version is known */
static const u8 *genet_dma_ring_regs;
static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
unsigned int ring,
enum dma_ring_reg r)
{
return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
(DMA_RING_SIZE * ring) +
genet_dma_ring_regs[r]);
}
static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
unsigned int ring, u32 val,
enum dma_ring_reg r)
{
bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
(DMA_RING_SIZE * ring) +
genet_dma_ring_regs[r]);
}
static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
unsigned int ring,
enum dma_ring_reg r)
{
return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
(DMA_RING_SIZE * ring) +
genet_dma_ring_regs[r]);
}
static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
unsigned int ring, u32 val,
enum dma_ring_reg r)
{
bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
(DMA_RING_SIZE * ring) +
genet_dma_ring_regs[r]);
}
static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
u32 f_index)
{
u32 offset;
u32 reg;
offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
reg = bcmgenet_hfb_reg_readl(priv, offset);
return !!(reg & (1 << (f_index % 32)));
}
static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
{
u32 offset;
u32 reg;
offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
reg = bcmgenet_hfb_reg_readl(priv, offset);
reg |= (1 << (f_index % 32));
bcmgenet_hfb_reg_writel(priv, reg, offset);
reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
reg |= RBUF_HFB_EN;
bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
}
static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
{
u32 offset, reg, reg1;
offset = HFB_FLT_ENABLE_V3PLUS;
reg = bcmgenet_hfb_reg_readl(priv, offset);
reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
if (f_index < 32) {
reg1 &= ~(1 << (f_index % 32));
bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
} else {
reg &= ~(1 << (f_index % 32));
bcmgenet_hfb_reg_writel(priv, reg, offset);
}
if (!reg && !reg1) {
reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
reg &= ~RBUF_HFB_EN;
bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
}
}
static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
u32 f_index, u32 rx_queue)
{
u32 offset;
u32 reg;
offset = f_index / 8;
reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
reg &= ~(0xF << (4 * (f_index % 8)));
reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
}
static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
u32 f_index, u32 f_length)
{
u32 offset;
u32 reg;
offset = HFB_FLT_LEN_V3PLUS +
((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
sizeof(u32);
reg = bcmgenet_hfb_reg_readl(priv, offset);
reg &= ~(0xFF << (8 * (f_index % 4)));
reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
bcmgenet_hfb_reg_writel(priv, reg, offset);
}
static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
{
u32 f_index;
/* First MAX_NUM_OF_FS_RULES are reserved for Rx NFC filters */
for (f_index = MAX_NUM_OF_FS_RULES;
f_index < priv->hw_params->hfb_filter_cnt; f_index++)
if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
return f_index;
return -ENOMEM;
}
static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
{
while (size) {
switch (*(unsigned char *)mask++) {
case 0x00:
case 0x0f:
case 0xf0:
case 0xff:
size--;
continue;
default:
return -EINVAL;
}
}
return 0;
}
#define VALIDATE_MASK(x) \
bcmgenet_hfb_validate_mask(&(x), sizeof(x))
static int bcmgenet_hfb_insert_data(u32 *f, int offset,
void *val, void *mask, size_t size)
{
int index;
u32 tmp;
index = offset / 2;
tmp = f[index];
while (size--) {
if (offset++ & 1) {
tmp &= ~0x300FF;
tmp |= (*(unsigned char *)val++);
switch ((*(unsigned char *)mask++)) {
case 0xFF:
tmp |= 0x30000;
break;
case 0xF0:
tmp |= 0x20000;
break;
case 0x0F:
tmp |= 0x10000;
break;
}
f[index++] = tmp;
if (size)
tmp = f[index];
} else {
tmp &= ~0xCFF00;
tmp |= (*(unsigned char *)val++) << 8;
switch ((*(unsigned char *)mask++)) {
case 0xFF:
tmp |= 0xC0000;
break;
case 0xF0:
tmp |= 0x80000;
break;
case 0x0F:
tmp |= 0x40000;
break;
}
if (!size)
f[index] = tmp;
}
}
return 0;
}
static void bcmgenet_hfb_set_filter(struct bcmgenet_priv *priv, u32 *f_data,
u32 f_length, u32 rx_queue, int f_index)
{
u32 base = f_index * priv->hw_params->hfb_filter_size;
int i;
for (i = 0; i < f_length; i++)
bcmgenet_hfb_writel(priv, f_data[i], (base + i) * sizeof(u32));
bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
}
static int bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
struct bcmgenet_rxnfc_rule *rule)
{
struct ethtool_rx_flow_spec *fs = &rule->fs;
int err = 0, offset = 0, f_length = 0;
u16 val_16, mask_16;
u8 val_8, mask_8;
size_t size;
u32 *f_data;
f_data = kcalloc(priv->hw_params->hfb_filter_size, sizeof(u32),
GFP_KERNEL);
if (!f_data)
return -ENOMEM;
if (fs->flow_type & FLOW_MAC_EXT) {
bcmgenet_hfb_insert_data(f_data, 0,
&fs->h_ext.h_dest, &fs->m_ext.h_dest,
sizeof(fs->h_ext.h_dest));
}
if (fs->flow_type & FLOW_EXT) {
if (fs->m_ext.vlan_etype ||
fs->m_ext.vlan_tci) {
bcmgenet_hfb_insert_data(f_data, 12,
&fs->h_ext.vlan_etype,
&fs->m_ext.vlan_etype,
sizeof(fs->h_ext.vlan_etype));
bcmgenet_hfb_insert_data(f_data, 14,
&fs->h_ext.vlan_tci,
&fs->m_ext.vlan_tci,
sizeof(fs->h_ext.vlan_tci));
offset += VLAN_HLEN;
f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
}
}
switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
case ETHER_FLOW:
f_length += DIV_ROUND_UP(ETH_HLEN, 2);
bcmgenet_hfb_insert_data(f_data, 0,
&fs->h_u.ether_spec.h_dest,
&fs->m_u.ether_spec.h_dest,
sizeof(fs->h_u.ether_spec.h_dest));
bcmgenet_hfb_insert_data(f_data, ETH_ALEN,
&fs->h_u.ether_spec.h_source,
&fs->m_u.ether_spec.h_source,
sizeof(fs->h_u.ether_spec.h_source));
bcmgenet_hfb_insert_data(f_data, (2 * ETH_ALEN) + offset,
&fs->h_u.ether_spec.h_proto,
&fs->m_u.ether_spec.h_proto,
sizeof(fs->h_u.ether_spec.h_proto));
break;
case IP_USER_FLOW:
f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
/* Specify IP Ether Type */
val_16 = htons(ETH_P_IP);
mask_16 = 0xFFFF;
bcmgenet_hfb_insert_data(f_data, (2 * ETH_ALEN) + offset,
&val_16, &mask_16, sizeof(val_16));
bcmgenet_hfb_insert_data(f_data, 15 + offset,
&fs->h_u.usr_ip4_spec.tos,
&fs->m_u.usr_ip4_spec.tos,
sizeof(fs->h_u.usr_ip4_spec.tos));
bcmgenet_hfb_insert_data(f_data, 23 + offset,
&fs->h_u.usr_ip4_spec.proto,
&fs->m_u.usr_ip4_spec.proto,
sizeof(fs->h_u.usr_ip4_spec.proto));
bcmgenet_hfb_insert_data(f_data, 26 + offset,
&fs->h_u.usr_ip4_spec.ip4src,
&fs->m_u.usr_ip4_spec.ip4src,
sizeof(fs->h_u.usr_ip4_spec.ip4src));
bcmgenet_hfb_insert_data(f_data, 30 + offset,
&fs->h_u.usr_ip4_spec.ip4dst,
&fs->m_u.usr_ip4_spec.ip4dst,
sizeof(fs->h_u.usr_ip4_spec.ip4dst));
if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
break;
/* Only supports 20 byte IPv4 header */
val_8 = 0x45;
mask_8 = 0xFF;
bcmgenet_hfb_insert_data(f_data, ETH_HLEN + offset,
&val_8, &mask_8,
sizeof(val_8));
size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
bcmgenet_hfb_insert_data(f_data,
ETH_HLEN + 20 + offset,
&fs->h_u.usr_ip4_spec.l4_4_bytes,
&fs->m_u.usr_ip4_spec.l4_4_bytes,
size);
f_length += DIV_ROUND_UP(size, 2);
break;
}
if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
/* Ring 0 flows can be handled by the default Descriptor Ring
* We'll map them to ring 0, but don't enable the filter
*/
bcmgenet_hfb_set_filter(priv, f_data, f_length, 0,
fs->location);
rule->state = BCMGENET_RXNFC_STATE_DISABLED;
} else {
/* Other Rx rings are direct mapped here */
bcmgenet_hfb_set_filter(priv, f_data, f_length,
fs->ring_cookie, fs->location);
bcmgenet_hfb_enable_filter(priv, fs->location);
rule->state = BCMGENET_RXNFC_STATE_ENABLED;
}
kfree(f_data);
return err;
}
/* bcmgenet_hfb_add_filter
*
* Add new filter to Hardware Filter Block to match and direct Rx traffic to
* desired Rx queue.
*
* f_data is an array of unsigned 32-bit integers where each 32-bit integer
* provides filter data for 2 bytes (4 nibbles) of Rx frame:
*
* bits 31:20 - unused
* bit 19 - nibble 0 match enable
* bit 18 - nibble 1 match enable
* bit 17 - nibble 2 match enable
* bit 16 - nibble 3 match enable
* bits 15:12 - nibble 0 data
* bits 11:8 - nibble 1 data
* bits 7:4 - nibble 2 data
* bits 3:0 - nibble 3 data
*
* Example:
* In order to match:
* - Ethernet frame type = 0x0800 (IP)
* - IP version field = 4
* - IP protocol field = 0x11 (UDP)
*
* The following filter is needed:
* u32 hfb_filter_ipv4_udp[] = {
* Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
* Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
* Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
* };
*
* To add the filter to HFB and direct the traffic to Rx queue 0, call:
* bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
* ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
*/
int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
u32 f_length, u32 rx_queue)
{
int f_index;
f_index = bcmgenet_hfb_find_unused_filter(priv);
if (f_index < 0)
return -ENOMEM;
if (f_length > priv->hw_params->hfb_filter_size)
return -EINVAL;
bcmgenet_hfb_set_filter(priv, f_data, f_length, rx_queue, f_index);
bcmgenet_hfb_enable_filter(priv, f_index);
return 0;
}
/* bcmgenet_hfb_clear
*
* Clear Hardware Filter Block and disable all filtering.
*/
static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
{
u32 i;
bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
bcmgenet_rdma_writel(priv, 0x0, i);
for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
bcmgenet_hfb_reg_writel(priv, 0x0,
HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
for (i = 0; i < priv->hw_params->hfb_filter_cnt *
priv->hw_params->hfb_filter_size; i++)
bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
}
static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
{
int i;
if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
return;
INIT_LIST_HEAD(&priv->rxnfc_list);
for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
}
bcmgenet_hfb_clear(priv);
}
static int bcmgenet_begin(struct net_device *dev)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
/* Turn on the clock */
return clk_prepare_enable(priv->clk);
}
static void bcmgenet_complete(struct net_device *dev)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
/* Turn off the clock */
clk_disable_unprepare(priv->clk);
}
static int bcmgenet_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
if (!netif_running(dev))
return -EINVAL;
if (!dev->phydev)
return -ENODEV;
phy_ethtool_ksettings_get(dev->phydev, cmd);
return 0;
}
static int bcmgenet_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
if (!netif_running(dev))
return -EINVAL;
if (!dev->phydev)
return -ENODEV;
return phy_ethtool_ksettings_set(dev->phydev, cmd);
}
static int bcmgenet_set_features(struct net_device *dev,
netdev_features_t features)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
u32 reg;
int ret;
ret = clk_prepare_enable(priv->clk);
if (ret)
return ret;
/* Make sure we reflect the value of CRC_CMD_FWD */
reg = bcmgenet_umac_readl(priv, UMAC_CMD);
priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
clk_disable_unprepare(priv->clk);
return ret;
}
static u32 bcmgenet_get_msglevel(struct net_device *dev)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
return priv->msg_enable;
}
static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
priv->msg_enable = level;
}
static int bcmgenet_get_coalesce(struct net_device *dev,
struct ethtool_coalesce *ec)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
struct bcmgenet_rx_ring *ring;
unsigned int i;
ec->tx_max_coalesced_frames =
bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
DMA_MBUF_DONE_THRESH);
ec->rx_max_coalesced_frames =
bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
DMA_MBUF_DONE_THRESH);
ec->rx_coalesce_usecs =
bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
for (i = 0; i < priv->hw_params->rx_queues; i++) {
ring = &priv->rx_rings[i];
ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
}
ring = &priv->rx_rings[DESC_INDEX];
ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
return 0;
}
static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
u32 usecs, u32 pkts)
{
struct bcmgenet_priv *priv = ring->priv;
unsigned int i = ring->index;
u32 reg;
bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
reg &= ~DMA_TIMEOUT_MASK;
reg |= DIV_ROUND_UP(usecs * 1000, 8192);
bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
}
static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
struct ethtool_coalesce *ec)
{
struct dim_cq_moder moder;
u32 usecs, pkts;
ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
usecs = ring->rx_coalesce_usecs;
pkts = ring->rx_max_coalesced_frames;
if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
usecs = moder.usec;
pkts = moder.pkts;
}
ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
bcmgenet_set_rx_coalesce(ring, usecs, pkts);
}
static int bcmgenet_set_coalesce(struct net_device *dev,
struct ethtool_coalesce *ec)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
unsigned int i;
/* Base system clock is 125Mhz, DMA timeout is this reference clock
* divided by 1024, which yields roughly 8.192us, our maximum value
* has to fit in the DMA_TIMEOUT_MASK (16 bits)
*/
if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
ec->tx_max_coalesced_frames == 0 ||
ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
return -EINVAL;
if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
return -EINVAL;
/* GENET TDMA hardware does not support a configurable timeout, but will
* always generate an interrupt either after MBDONE packets have been
* transmitted, or when the ring is empty.
*/
/* Program all TX queues with the same values, as there is no
* ethtool knob to do coalescing on a per-queue basis
*/
for (i = 0; i < priv->hw_params->tx_queues; i++)
bcmgenet_tdma_ring_writel(priv, i,
ec->tx_max_coalesced_frames,
DMA_MBUF_DONE_THRESH);
bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
ec->tx_max_coalesced_frames,
DMA_MBUF_DONE_THRESH);
for (i = 0; i < priv->hw_params->rx_queues; i++)
bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
return 0;
}
/* standard ethtool support functions. */
enum bcmgenet_stat_type {
BCMGENET_STAT_NETDEV = -1,
BCMGENET_STAT_MIB_RX,
BCMGENET_STAT_MIB_TX,
BCMGENET_STAT_RUNT,
BCMGENET_STAT_MISC,
BCMGENET_STAT_SOFT,
};
struct bcmgenet_stats {
char stat_string[ETH_GSTRING_LEN];
int stat_sizeof;
int stat_offset;
enum bcmgenet_stat_type type;
/* reg offset from UMAC base for misc counters */
u16 reg_offset;
};
#define STAT_NETDEV(m) { \
.stat_string = __stringify(m), \
.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
.stat_offset = offsetof(struct net_device_stats, m), \
.type = BCMGENET_STAT_NETDEV, \
}
#define STAT_GENET_MIB(str, m, _type) { \
.stat_string = str, \
.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
.stat_offset = offsetof(struct bcmgenet_priv, m), \
.type = _type, \
}
#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
#define STAT_GENET_MISC(str, m, offset) { \
.stat_string = str, \
.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
.stat_offset = offsetof(struct bcmgenet_priv, m), \
.type = BCMGENET_STAT_MISC, \
.reg_offset = offset, \
}
#define STAT_GENET_Q(num) \
STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
tx_rings[num].packets), \
STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
tx_rings[num].bytes), \
STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
rx_rings[num].bytes), \
STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
rx_rings[num].packets), \
STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
rx_rings[num].errors), \
STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
rx_rings[num].dropped)
/* There is a 0xC gap between the end of RX and beginning of TX stats and then
* between the end of TX stats and the beginning of the RX RUNT
*/
#define BCMGENET_STAT_OFFSET 0xc
/* Hardware counters must be kept in sync because the order/offset
* is important here (order in structure declaration = order in hardware)
*/
static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
/* general stats */
STAT_NETDEV(rx_packets),
STAT_NETDEV(tx_packets),
STAT_NETDEV(rx_bytes),
STAT_NETDEV(tx_bytes),
STAT_NETDEV(rx_errors),
STAT_NETDEV(tx_errors),
STAT_NETDEV(rx_dropped),
STAT_NETDEV(tx_dropped),
STAT_NETDEV(multicast),
/* UniMAC RSV counters */
STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
/* UniMAC TSV counters */
STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
/* UniMAC RUNT counters */
STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
/* Misc UniMAC counters */
STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
UMAC_RBUF_OVFL_CNT_V1),
STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
UMAC_RBUF_ERR_CNT_V1),
STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
mib.tx_realloc_tsb_failed),
/* Per TX queues */
STAT_GENET_Q(0),
STAT_GENET_Q(1),
STAT_GENET_Q(2),
STAT_GENET_Q(3),
STAT_GENET_Q(16),
};
#define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
static void bcmgenet_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
}
static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
{
switch (string_set) {
case ETH_SS_STATS:
return BCMGENET_STATS_LEN;
default:
return -EOPNOTSUPP;
}
}
static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
u8 *data)
{
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < BCMGENET_STATS_LEN; i++) {
memcpy(data + i * ETH_GSTRING_LEN,
bcmgenet_gstrings_stats[i].stat_string,
ETH_GSTRING_LEN);
}
break;
}
}
static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
{
u16 new_offset;
u32 val;
switch (offset) {
case UMAC_RBUF_OVFL_CNT_V1:
if (GENET_IS_V2(priv))
new_offset = RBUF_OVFL_CNT_V2;
else
new_offset = RBUF_OVFL_CNT_V3PLUS;
val = bcmgenet_rbuf_readl(priv, new_offset);
/* clear if overflowed */
if (val == ~0)
bcmgenet_rbuf_writel(priv, 0, new_offset);
break;
case UMAC_RBUF_ERR_CNT_V1:
if (GENET_IS_V2(priv))
new_offset = RBUF_ERR_CNT_V2;
else
new_offset = RBUF_ERR_CNT_V3PLUS;
val = bcmgenet_rbuf_readl(priv, new_offset);
/* clear if overflowed */
if (val == ~0)
bcmgenet_rbuf_writel(priv, 0, new_offset);
break;
default:
val = bcmgenet_umac_readl(priv, offset);
/* clear if overflowed */
if (val == ~0)
bcmgenet_umac_writel(priv, 0, offset);
break;
}
return val;
}
static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
{
int i, j = 0;
for (i = 0; i < BCMGENET_STATS_LEN; i++) {
const struct bcmgenet_stats *s;
u8 offset = 0;
u32 val = 0;
char *p;
s = &bcmgenet_gstrings_stats[i];
switch (s->type) {
case BCMGENET_STAT_NETDEV:
case BCMGENET_STAT_SOFT:
continue;
case BCMGENET_STAT_RUNT:
offset += BCMGENET_STAT_OFFSET;
/* fall through */
case BCMGENET_STAT_MIB_TX:
offset += BCMGENET_STAT_OFFSET;
/* fall through */
case BCMGENET_STAT_MIB_RX:
val = bcmgenet_umac_readl(priv,
UMAC_MIB_START + j + offset);
offset = 0; /* Reset Offset */
break;
case BCMGENET_STAT_MISC:
if (GENET_IS_V1(priv)) {
val = bcmgenet_umac_readl(priv, s->reg_offset);
/* clear if overflowed */
if (val == ~0)
bcmgenet_umac_writel(priv, 0,
s->reg_offset);
} else {
val = bcmgenet_update_stat_misc(priv,
s->reg_offset);
}
break;
}
j += s->stat_sizeof;
p = (char *)priv + s->stat_offset;
*(u32 *)p = val;
}
}
static void bcmgenet_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats,
u64 *data)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
int i;
if (netif_running(dev))
bcmgenet_update_mib_counters(priv);
dev->netdev_ops->ndo_get_stats(dev);
for (i = 0; i < BCMGENET_STATS_LEN; i++) {
const struct bcmgenet_stats *s;
char *p;
s = &bcmgenet_gstrings_stats[i];
if (s->type == BCMGENET_STAT_NETDEV)
p = (char *)&dev->stats;
else
p = (char *)priv;
p += s->stat_offset;
if (sizeof(unsigned long) != sizeof(u32) &&
s->stat_sizeof == sizeof(unsigned long))
data[i] = *(unsigned long *)p;
else
data[i] = *(u32 *)p;
}
}
static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
u32 reg;
if (enable && !priv->clk_eee_enabled) {
clk_prepare_enable(priv->clk_eee);
priv->clk_eee_enabled = true;
}
reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
if (enable)
reg |= EEE_EN;
else
reg &= ~EEE_EN;
bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
/* Enable EEE and switch to a 27Mhz clock automatically */
reg = bcmgenet_readl(priv->base + off);
if (enable)
reg |= TBUF_EEE_EN | TBUF_PM_EN;
else
reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
bcmgenet_writel(reg, priv->base + off);
/* Do the same for thing for RBUF */
reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
if (enable)
reg |= RBUF_EEE_EN | RBUF_PM_EN;
else
reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
if (!enable && priv->clk_eee_enabled) {
clk_disable_unprepare(priv->clk_eee);
priv->clk_eee_enabled = false;
}
priv->eee.eee_enabled = enable;
priv->eee.eee_active = enable;
}
static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
struct ethtool_eee *p = &priv->eee;
if (GENET_IS_V1(priv))
return -EOPNOTSUPP;
if (!dev->phydev)
return -ENODEV;
e->eee_enabled = p->eee_enabled;
e->eee_active = p->eee_active;
e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
return phy_ethtool_get_eee(dev->phydev, e);
}
static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
struct ethtool_eee *p = &priv->eee;
int ret = 0;
if (GENET_IS_V1(priv))
return -EOPNOTSUPP;
if (!dev->phydev)
return -ENODEV;
p->eee_enabled = e->eee_enabled;
if (!p->eee_enabled) {
bcmgenet_eee_enable_set(dev, false);
} else {
ret = phy_init_eee(dev->phydev, 0);
if (ret) {
netif_err(priv, hw, dev, "EEE initialization failed\n");
return ret;
}
bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
bcmgenet_eee_enable_set(dev, true);
}
return phy_ethtool_set_eee(dev->phydev, e);
}
static int bcmgenet_validate_flow(struct net_device *dev,
struct ethtool_rxnfc *cmd)
{
struct ethtool_usrip4_spec *l4_mask;
struct ethhdr *eth_mask;
if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
netdev_err(dev, "rxnfc: Invalid location (%d)\n",
cmd->fs.location);
return -EINVAL;
}
switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
case IP_USER_FLOW:
l4_mask = &cmd->fs.m_u.usr_ip4_spec;
/* don't allow mask which isn't valid */
if (VALIDATE_MASK(l4_mask->ip4src) ||
VALIDATE_MASK(l4_mask->ip4dst) ||
VALIDATE_MASK(l4_mask->l4_4_bytes) ||
VALIDATE_MASK(l4_mask->proto) ||
VALIDATE_MASK(l4_mask->ip_ver) ||
VALIDATE_MASK(l4_mask->tos)) {
netdev_err(dev, "rxnfc: Unsupported mask\n");
return -EINVAL;
}
break;
case ETHER_FLOW:
eth_mask = &cmd->fs.m_u.ether_spec;
/* don't allow mask which isn't valid */
if (VALIDATE_MASK(eth_mask->h_source) ||
VALIDATE_MASK(eth_mask->h_source) ||
VALIDATE_MASK(eth_mask->h_proto)) {
netdev_err(dev, "rxnfc: Unsupported mask\n");
return -EINVAL;
}
break;
default:
netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
cmd->fs.flow_type);
return -EINVAL;
}
if ((cmd->fs.flow_type & FLOW_EXT)) {
/* don't allow mask which isn't valid */
if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
netdev_err(dev, "rxnfc: Unsupported mask\n");
return -EINVAL;
}
if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
netdev_err(dev, "rxnfc: user-def not supported\n");
return -EINVAL;
}
}
if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
/* don't allow mask which isn't valid */
if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
netdev_err(dev, "rxnfc: Unsupported mask\n");
return -EINVAL;
}
}
return 0;
}
static int bcmgenet_insert_flow(struct net_device *dev,
struct ethtool_rxnfc *cmd)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
struct bcmgenet_rxnfc_rule *loc_rule;
int err;
if (priv->hw_params->hfb_filter_size < 128) {
netdev_err(dev, "rxnfc: Not supported by this device\n");
return -EINVAL;
}
if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
cmd->fs.ring_cookie);
return -EINVAL;
}
err = bcmgenet_validate_flow(dev, cmd);
if (err)
return err;
loc_rule = &priv->rxnfc_rules[cmd->fs.location];
if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED)
list_del(&loc_rule->list);
loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
memcpy(&loc_rule->fs, &cmd->fs,
sizeof(struct ethtool_rx_flow_spec));
err = bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
if (err) {
netdev_err(dev, "rxnfc: Could not install rule (%d)\n",
err);
return err;
}
list_add_tail(&loc_rule->list, &priv->rxnfc_list);
return 0;
}
static int bcmgenet_delete_flow(struct net_device *dev,
struct ethtool_rxnfc *cmd)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
struct bcmgenet_rxnfc_rule *rule;
int err = 0;
if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
return -EINVAL;
rule = &priv->rxnfc_rules[cmd->fs.location];
if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
err = -ENOENT;
goto out;
}
if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
list_del(&rule->list);
rule->state = BCMGENET_RXNFC_STATE_UNUSED;
memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
out:
return err;
}
static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
int err = 0;
switch (cmd->cmd) {
case ETHTOOL_SRXCLSRLINS:
err = bcmgenet_insert_flow(dev, cmd);
break;
case ETHTOOL_SRXCLSRLDEL:
err = bcmgenet_delete_flow(dev, cmd);
break;
default:
netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
cmd->cmd);
return -EINVAL;
}
return err;
}
static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
int loc)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
struct bcmgenet_rxnfc_rule *rule;
int err = 0;
if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
return -EINVAL;
rule = &priv->rxnfc_rules[loc];
if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
err = -ENOENT;
else
memcpy(&cmd->fs, &rule->fs,
sizeof(struct ethtool_rx_flow_spec));
return err;
}
static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
{
struct list_head *pos;
int res = 0;
list_for_each(pos, &priv->rxnfc_list)
res++;
return res;
}
static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
u32 *rule_locs)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
struct bcmgenet_rxnfc_rule *rule;
int err = 0;
int i = 0;
switch (cmd->cmd) {
case ETHTOOL_GRXRINGS:
cmd->data = priv->hw_params->rx_queues ?: 1;
break;
case ETHTOOL_GRXCLSRLCNT:
cmd->rule_cnt = bcmgenet_get_num_flows(priv);
cmd->data = MAX_NUM_OF_FS_RULES;
break;
case ETHTOOL_GRXCLSRULE:
err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
break;
case ETHTOOL_GRXCLSRLALL:
list_for_each_entry(rule, &priv->rxnfc_list, list)
if (i < cmd->rule_cnt)
rule_locs[i++] = rule->fs.location;
cmd->rule_cnt = i;
cmd->data = MAX_NUM_OF_FS_RULES;
break;
default:
err = -EOPNOTSUPP;
break;
}
return err;
}
/* standard ethtool support functions. */
static const struct ethtool_ops bcmgenet_ethtool_ops = {
.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
ETHTOOL_COALESCE_MAX_FRAMES |
ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
.begin = bcmgenet_begin,
.complete = bcmgenet_complete,
.get_strings = bcmgenet_get_strings,
.get_sset_count = bcmgenet_get_sset_count,
.get_ethtool_stats = bcmgenet_get_ethtool_stats,
.get_drvinfo = bcmgenet_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_msglevel = bcmgenet_get_msglevel,
.set_msglevel = bcmgenet_set_msglevel,
.get_wol = bcmgenet_get_wol,
.set_wol = bcmgenet_set_wol,
.get_eee = bcmgenet_get_eee,
.set_eee = bcmgenet_set_eee,
.nway_reset = phy_ethtool_nway_reset,
.get_coalesce = bcmgenet_get_coalesce,
.set_coalesce = bcmgenet_set_coalesce,
.get_link_ksettings = bcmgenet_get_link_ksettings,
.set_link_ksettings = bcmgenet_set_link_ksettings,
.get_ts_info = ethtool_op_get_ts_info,
.get_rxnfc = bcmgenet_get_rxnfc,
.set_rxnfc = bcmgenet_set_rxnfc,
};
/* Power down the unimac, based on mode. */
static int bcmgenet_power_down(struct bcmgenet_priv *priv,
enum bcmgenet_power_mode mode)
{
int ret = 0;
u32 reg;
switch (mode) {
case GENET_POWER_CABLE_SENSE:
phy_detach(priv->dev->phydev);
break;
case GENET_POWER_WOL_MAGIC:
ret = bcmgenet_wol_power_down_cfg(priv, mode);
break;
case GENET_POWER_PASSIVE:
/* Power down LED */
if (priv->hw_params->flags & GENET_HAS_EXT) {
reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
if (GENET_IS_V5(priv))
reg |= EXT_PWR_DOWN_PHY_EN |
EXT_PWR_DOWN_PHY_RD |
EXT_PWR_DOWN_PHY_SD |
EXT_PWR_DOWN_PHY_RX |
EXT_PWR_DOWN_PHY_TX |
EXT_IDDQ_GLBL_PWR;
else
reg |= EXT_PWR_DOWN_PHY;
reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
bcmgenet_phy_power_set(priv->dev, false);
}
break;
default:
break;
}
return ret;
}
static void bcmgenet_power_up(struct bcmgenet_priv *priv,
enum bcmgenet_power_mode mode)
{
u32 reg;
if (!(priv->hw_params->flags & GENET_HAS_EXT))
return;
reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
switch (mode) {
case GENET_POWER_PASSIVE:
reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
if (GENET_IS_V5(priv)) {
reg &= ~(EXT_PWR_DOWN_PHY_EN |
EXT_PWR_DOWN_PHY_RD |
EXT_PWR_DOWN_PHY_SD |
EXT_PWR_DOWN_PHY_RX |
EXT_PWR_DOWN_PHY_TX |
EXT_IDDQ_GLBL_PWR);
reg |= EXT_PHY_RESET;
bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
mdelay(1);
reg &= ~EXT_PHY_RESET;
} else {
reg &= ~EXT_PWR_DOWN_PHY;
reg |= EXT_PWR_DN_EN_LD;
}
bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
bcmgenet_phy_power_set(priv->dev, true);
break;
case GENET_POWER_CABLE_SENSE:
/* enable APD */
if (!GENET_IS_V5(priv)) {
reg |= EXT_PWR_DN_EN_LD;
bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
}
break;
case GENET_POWER_WOL_MAGIC:
bcmgenet_wol_power_up_cfg(priv, mode);
return;
default:
break;
}
}
static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
struct bcmgenet_tx_ring *ring)
{
struct enet_cb *tx_cb_ptr;
tx_cb_ptr = ring->cbs;
tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
/* Advancing local write pointer */
if (ring->write_ptr == ring->end_ptr)
ring->write_ptr = ring->cb_ptr;
else
ring->write_ptr++;
return tx_cb_ptr;
}
static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
struct bcmgenet_tx_ring *ring)
{
struct enet_cb *tx_cb_ptr;
tx_cb_ptr = ring->cbs;
tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
/* Rewinding local write pointer */
if (ring->write_ptr == ring->cb_ptr)
ring->write_ptr = ring->end_ptr;
else
ring->write_ptr--;
return tx_cb_ptr;
}
static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
{
bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
INTRL2_CPU_MASK_SET);
}
static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
{
bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
INTRL2_CPU_MASK_CLEAR);
}
static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
{
bcmgenet_intrl2_1_writel(ring->priv,
1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
INTRL2_CPU_MASK_SET);
}
static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
{
bcmgenet_intrl2_1_writel(ring->priv,
1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
INTRL2_CPU_MASK_CLEAR);
}
static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
{
bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
INTRL2_CPU_MASK_SET);
}
static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
{
bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
INTRL2_CPU_MASK_CLEAR);
}
static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
{
bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
INTRL2_CPU_MASK_CLEAR);
}
static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
{
bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
INTRL2_CPU_MASK_SET);
}
/* Simple helper to free a transmit control block's resources
* Returns an skb when the last transmit control block associated with the
* skb is freed. The skb should be freed by the caller if necessary.
*/
static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
struct enet_cb *cb)
{
struct sk_buff *skb;
skb = cb->skb;
if (skb) {
cb->skb = NULL;
if (cb == GENET_CB(skb)->first_cb)
dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
dma_unmap_len(cb, dma_len),
DMA_TO_DEVICE);
else
dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
dma_unmap_len(cb, dma_len),
DMA_TO_DEVICE);
dma_unmap_addr_set(cb, dma_addr, 0);
if (cb == GENET_CB(skb)->last_cb)
return skb;
} else if (dma_unmap_addr(cb, dma_addr)) {
dma_unmap_page(dev,
dma_unmap_addr(cb, dma_addr),
dma_unmap_len(cb, dma_len),
DMA_TO_DEVICE);
dma_unmap_addr_set(cb, dma_addr, 0);
}
return NULL;
}
/* Simple helper to free a receive control block's resources */
static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
struct enet_cb *cb)
{
struct sk_buff *skb;
skb = cb->skb;
cb->skb = NULL;
if (dma_unmap_addr(cb, dma_addr)) {
dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
dma_unmap_addr_set(cb, dma_addr, 0);
}
return skb;
}
/* Unlocked version of the reclaim routine */
static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
struct bcmgenet_tx_ring *ring)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
unsigned int txbds_processed = 0;
unsigned int bytes_compl = 0;
unsigned int pkts_compl = 0;
unsigned int txbds_ready;
unsigned int c_index;
struct sk_buff *skb;
/* Clear status before servicing to reduce spurious interrupts */
if (ring->index == DESC_INDEX)
bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
INTRL2_CPU_CLEAR);
else
bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
INTRL2_CPU_CLEAR);
/* Compute how many buffers are transmitted since last xmit call */
c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
& DMA_C_INDEX_MASK;
txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
netif_dbg(priv, tx_done, dev,
"%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
__func__, ring->index, ring->c_index, c_index, txbds_ready);
/* Reclaim transmitted buffers */
while (txbds_processed < txbds_ready) {
skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
&priv->tx_cbs[ring->clean_ptr]);
if (skb) {
pkts_compl++;
bytes_compl += GENET_CB(skb)->bytes_sent;
dev_consume_skb_any(skb);
}
txbds_processed++;
if (likely(ring->clean_ptr < ring->end_ptr))
ring->clean_ptr++;
else
ring->clean_ptr = ring->cb_ptr;
}
ring->free_bds += txbds_processed;
ring->c_index = c_index;
ring->packets += pkts_compl;
ring->bytes += bytes_compl;
netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
pkts_compl, bytes_compl);
return txbds_processed;
}
static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
struct bcmgenet_tx_ring *ring)
{
unsigned int released;
spin_lock_bh(&ring->lock);
released = __bcmgenet_tx_reclaim(dev, ring);
spin_unlock_bh(&ring->lock);
return released;
}
static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
{
struct bcmgenet_tx_ring *ring =
container_of(napi, struct bcmgenet_tx_ring, napi);
unsigned int work_done = 0;
struct netdev_queue *txq;
spin_lock(&ring->lock);
work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
netif_tx_wake_queue(txq);
}
spin_unlock(&ring->lock);
if (work_done == 0) {
napi_complete(napi);
ring->int_enable(ring);
return 0;
}
return budget;
}
static void bcmgenet_tx_reclaim_all(struct net_device *dev)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
int i;
if (netif_is_multiqueue(dev)) {
for (i = 0; i < priv->hw_params->tx_queues; i++)
bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
}
bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
}
/* Reallocate the SKB to put enough headroom in front of it and insert
* the transmit checksum offsets in the descriptors
*/
static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
struct sk_buff *skb)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
struct status_64 *status = NULL;
struct sk_buff *new_skb;
u16 offset;
u8 ip_proto;
__be16 ip_ver;
u32 tx_csum_info;
if (unlikely(skb_headroom(skb) < sizeof(*status))) {
/* If 64 byte status block enabled, must make sure skb has
* enough headroom for us to insert 64B status block.
*/
new_skb = skb_realloc_headroom(skb, sizeof(*status));
if (!new_skb) {
dev_kfree_skb_any(skb);
priv->mib.tx_realloc_tsb_failed++;
dev->stats.tx_dropped++;
return NULL;
}
dev_consume_skb_any(skb);
skb = new_skb;
priv->mib.tx_realloc_tsb++;
}
skb_push(skb, sizeof(*status));
status = (struct status_64 *)skb->data;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
ip_ver = skb->protocol;
switch (ip_ver) {
case htons(ETH_P_IP):
ip_proto = ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
ip_proto = ipv6_hdr(skb)->nexthdr;
break;
default:
/* don't use UDP flag */
ip_proto = 0;
break;
}
offset = skb_checksum_start_offset(skb) - sizeof(*status);
tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
(offset + skb->csum_offset) |
STATUS_TX_CSUM_LV;
/* Set the special UDP flag for UDP */
if (ip_proto == IPPROTO_UDP)
tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
status->tx_csum_info = tx_csum_info;
}
return skb;
}
static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
struct device *kdev = &priv->pdev->dev;
struct bcmgenet_tx_ring *ring = NULL;
struct enet_cb *tx_cb_ptr;
struct netdev_queue *txq;
int nr_frags, index;
dma_addr_t mapping;
unsigned int size;
skb_frag_t *frag;
u32 len_stat;
int ret;
int i;
index = skb_get_queue_mapping(skb);
/* Mapping strategy:
* queue_mapping = 0, unclassified, packet xmited through ring16
* queue_mapping = 1, goes to ring 0. (highest priority queue
* queue_mapping = 2, goes to ring 1.
* queue_mapping = 3, goes to ring 2.
* queue_mapping = 4, goes to ring 3.
*/
if (index == 0)
index = DESC_INDEX;
else
index -= 1;
ring = &priv->tx_rings[index];
txq = netdev_get_tx_queue(dev, ring->queue);
nr_frags = skb_shinfo(skb)->nr_frags;
spin_lock(&ring->lock);
if (ring->free_bds <= (nr_frags + 1)) {
if (!netif_tx_queue_stopped(txq)) {
netif_tx_stop_queue(txq);
netdev_err(dev,
"%s: tx ring %d full when queue %d awake\n",
__func__, index, ring->queue);
}
ret = NETDEV_TX_BUSY;
goto out;
}
if (skb_padto(skb, ETH_ZLEN)) {
ret = NETDEV_TX_OK;
goto out;
}
/* Retain how many bytes will be sent on the wire, without TSB inserted
* by transmit checksum offload
*/
GENET_CB(skb)->bytes_sent = skb->len;
/* add the Transmit Status Block */
skb = bcmgenet_add_tsb(dev, skb);
if (!skb) {
ret = NETDEV_TX_OK;
goto out;
}
for (i = 0; i <= nr_frags; i++) {
tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
BUG_ON(!tx_cb_ptr);
if (!i) {
/* Transmit single SKB or head of fragment list */
GENET_CB(skb)->first_cb = tx_cb_ptr;
size = skb_headlen(skb);
mapping = dma_map_single(kdev, skb->data, size,
DMA_TO_DEVICE);
} else {
/* xmit fragment */
frag = &skb_shinfo(skb)->frags[i - 1];
size = skb_frag_size(frag);
mapping = skb_frag_dma_map(kdev, frag, 0, size,
DMA_TO_DEVICE);
}
ret = dma_mapping_error(kdev, mapping);
if (ret) {
priv->mib.tx_dma_failed++;
netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
ret = NETDEV_TX_OK;
goto out_unmap_frags;
}
dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
dma_unmap_len_set(tx_cb_ptr, dma_len, size);
tx_cb_ptr->skb = skb;
len_stat = (size << DMA_BUFLENGTH_SHIFT) |
(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
if (!i) {
len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
if (skb->ip_summed == CHECKSUM_PARTIAL)
len_stat |= DMA_TX_DO_CSUM;
}
if (i == nr_frags)
len_stat |= DMA_EOP;
dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
}
GENET_CB(skb)->last_cb = tx_cb_ptr;
skb_tx_timestamp(skb);
/* Decrement total BD count and advance our write pointer */
ring->free_bds -= nr_frags + 1;
ring->prod_index += nr_frags + 1;
ring->prod_index &= DMA_P_INDEX_MASK;
netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
netif_tx_stop_queue(txq);
if (!netdev_xmit_more() || netif_xmit_stopped(txq))
/* Packets are ready, update producer index */
bcmgenet_tdma_ring_writel(priv, ring->index,
ring->prod_index, TDMA_PROD_INDEX);
out:
spin_unlock(&ring->lock);
return ret;
out_unmap_frags:
/* Back up for failed control block mapping */
bcmgenet_put_txcb(priv, ring);
/* Unmap successfully mapped control blocks */
while (i-- > 0) {
tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
}
dev_kfree_skb(skb);
goto out;
}
static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
struct enet_cb *cb)
{
struct device *kdev = &priv->pdev->dev;
struct sk_buff *skb;
struct sk_buff *rx_skb;
dma_addr_t mapping;
/* Allocate a new Rx skb */
skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
GFP_ATOMIC | __GFP_NOWARN);
if (!skb) {
priv->mib.alloc_rx_buff_failed++;
netif_err(priv, rx_err, priv->dev,
"%s: Rx skb allocation failed\n", __func__);
return NULL;
}
/* DMA-map the new Rx skb */
mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
DMA_FROM_DEVICE);
if (dma_mapping_error(kdev, mapping)) {
priv->mib.rx_dma_failed++;
dev_kfree_skb_any(skb);
netif_err(priv, rx_err, priv->dev,
"%s: Rx skb DMA mapping failed\n", __func__);
return NULL;
}
/* Grab the current Rx skb from the ring and DMA-unmap it */
rx_skb = bcmgenet_free_rx_cb(kdev, cb);
/* Put the new Rx skb on the ring */
cb->skb = skb;
dma_unmap_addr_set(cb, dma_addr, mapping);
dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
dmadesc_set_addr(priv, cb->bd_addr, mapping);
/* Return the current Rx skb to caller */
return rx_skb;
}
/* bcmgenet_desc_rx - descriptor based rx process.
* this could be called from bottom half, or from NAPI polling method.
*/
static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
unsigned int budget)
{
struct bcmgenet_priv *priv = ring->priv;
struct net_device *dev = priv->dev;
struct enet_cb *cb;
struct sk_buff *skb;
u32 dma_length_status;
unsigned long dma_flag;
int len;
unsigned int rxpktprocessed = 0, rxpkttoprocess;
unsigned int bytes_processed = 0;
unsigned int p_index, mask;
unsigned int discards;
/* Clear status before servicing to reduce spurious interrupts */
if (ring->index == DESC_INDEX) {
bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
INTRL2_CPU_CLEAR);
} else {
mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
bcmgenet_intrl2_1_writel(priv,
mask,
INTRL2_CPU_CLEAR);
}
p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
DMA_P_INDEX_DISCARD_CNT_MASK;
if (discards > ring->old_discards) {
discards = discards - ring->old_discards;
ring->errors += discards;
ring->old_discards += discards;
/* Clear HW register when we reach 75% of maximum 0xFFFF */
if (ring->old_discards >= 0xC000) {
ring->old_discards = 0;
bcmgenet_rdma_ring_writel(priv, ring->index, 0,
RDMA_PROD_INDEX);
}
}
p_index &= DMA_P_INDEX_MASK;
rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
netif_dbg(priv, rx_status, dev,
"RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
while ((rxpktprocessed < rxpkttoprocess) &&
(rxpktprocessed < budget)) {
struct status_64 *status;
__be16 rx_csum;
cb = &priv->rx_cbs[ring->read_ptr];
skb = bcmgenet_rx_refill(priv, cb);
if (unlikely(!skb)) {
ring->dropped++;
goto next;
}
status = (struct status_64 *)skb->data;
dma_length_status = status->length_status;
if (dev->features & NETIF_F_RXCSUM) {
rx_csum = (__force __be16)(status->rx_csum & 0xffff);
skb->csum = (__force __wsum)ntohs(rx_csum);
skb->ip_summed = CHECKSUM_COMPLETE;
}
/* DMA flags and length are still valid no matter how
* we got the Receive Status Vector (64B RSB or register)
*/
dma_flag = dma_length_status & 0xffff;
len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
netif_dbg(priv, rx_status, dev,
"%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
__func__, p_index, ring->c_index,
ring->read_ptr, dma_length_status);
if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
netif_err(priv, rx_status, dev,
"dropping fragmented packet!\n");
ring->errors++;
dev_kfree_skb_any(skb);
goto next;
}
/* report errors */
if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
DMA_RX_OV |
DMA_RX_NO |
DMA_RX_LG |
DMA_RX_RXER))) {
netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
(unsigned int)dma_flag);
if (dma_flag & DMA_RX_CRC_ERROR)
dev->stats.rx_crc_errors++;
if (dma_flag & DMA_RX_OV)
dev->stats.rx_over_errors++;
if (dma_flag & DMA_RX_NO)
dev->stats.rx_frame_errors++;
if (dma_flag & DMA_RX_LG)
dev->stats.rx_length_errors++;
dev->stats.rx_errors++;
dev_kfree_skb_any(skb);
goto next;
} /* error packet */
skb_put(skb, len);
/* remove RSB and hardware 2bytes added for IP alignment */
skb_pull(skb, 66);
len -= 66;
if (priv->crc_fwd_en) {
skb_trim(skb, len - ETH_FCS_LEN);
len -= ETH_FCS_LEN;
}
bytes_processed += len;
/*Finish setting up the received SKB and send it to the kernel*/
skb->protocol = eth_type_trans(skb, priv->dev);
ring->packets++;
ring->bytes += len;
if (dma_flag & DMA_RX_MULT)
dev->stats.multicast++;
/* Notify kernel */
napi_gro_receive(&ring->napi, skb);
netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
next:
rxpktprocessed++;
if (likely(ring->read_ptr < ring->end_ptr))
ring->read_ptr++;
else
ring->read_ptr = ring->cb_ptr;
ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
}
ring->dim.bytes = bytes_processed;
ring->dim.packets = rxpktprocessed;
return rxpktprocessed;
}
/* Rx NAPI polling method */
static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
{
struct bcmgenet_rx_ring *ring = container_of(napi,
struct bcmgenet_rx_ring, napi);
struct dim_sample dim_sample = {};
unsigned int work_done;
work_done = bcmgenet_desc_rx(ring, budget);
if (work_done < budget) {
napi_complete_done(napi, work_done);
ring->int_enable(ring);
}
if (ring->dim.use_dim) {
dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
ring->dim.bytes, &dim_sample);
net_dim(&ring->dim.dim, dim_sample);
}
return work_done;
}
static void bcmgenet_dim_work(struct work_struct *work)
{
struct dim *dim = container_of(work, struct dim, work);
struct bcmgenet_net_dim *ndim =
container_of(dim, struct bcmgenet_net_dim, dim);
struct bcmgenet_rx_ring *ring =
container_of(ndim, struct bcmgenet_rx_ring, dim);
struct dim_cq_moder cur_profile =
net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
dim->state = DIM_START_MEASURE;
}
/* Assign skb to RX DMA descriptor. */
static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
struct bcmgenet_rx_ring *ring)
{
struct enet_cb *cb;
struct sk_buff *skb;
int i;
netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
/* loop here for each buffer needing assign */
for (i = 0; i < ring->size; i++) {
cb = ring->cbs + i;
skb = bcmgenet_rx_refill(priv, cb);
if (skb)
dev_consume_skb_any(skb);
if (!cb->skb)
return -ENOMEM;
}
return 0;
}
static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
{
struct sk_buff *skb;
struct enet_cb *cb;
int i;
for (i = 0; i < priv->num_rx_bds; i++) {
cb = &priv->rx_cbs[i];
skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
if (skb)
dev_consume_skb_any(skb);
}
}
static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
{
u32 reg;
reg = bcmgenet_umac_readl(priv, UMAC_CMD);
if (reg & CMD_SW_RESET)
return;
if (enable)
reg |= mask;
else
reg &= ~mask;
bcmgenet_umac_writel(priv, reg, UMAC_CMD);
/* UniMAC stops on a packet boundary, wait for a full-size packet
* to be processed
*/
if (enable == 0)
usleep_range(1000, 2000);
}
static void reset_umac(struct bcmgenet_priv *priv)
{
/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
bcmgenet_rbuf_ctrl_set(priv, 0);
udelay(10);
/* issue soft reset and disable MAC while updating its registers */
bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
udelay(2);
}
static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
{
/* Mask all interrupts.*/
bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
}
static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
{
u32 int0_enable = 0;
/* Monitor cable plug/unplugged event for internal PHY, external PHY
* and MoCA PHY
*/
if (priv->internal_phy) {
int0_enable |= UMAC_IRQ_LINK_EVENT;
if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
int0_enable |= UMAC_IRQ_PHY_DET_R;
} else if (priv->ext_phy) {
int0_enable |= UMAC_IRQ_LINK_EVENT;
} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
int0_enable |= UMAC_IRQ_LINK_EVENT;
}
bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
}
static void init_umac(struct bcmgenet_priv *priv)
{
struct device *kdev = &priv->pdev->dev;
u32 reg;
u32 int0_enable = 0;
dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
reset_umac(priv);
/* clear tx/rx counter */
bcmgenet_umac_writel(priv,
MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
UMAC_MIB_CTRL);
bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
/* init tx registers, enable TSB */
reg = bcmgenet_tbuf_ctrl_get(priv);
reg |= TBUF_64B_EN;
bcmgenet_tbuf_ctrl_set(priv, reg);
/* init rx registers, enable ip header optimization and RSB */
reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
/* enable rx checksumming */
reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
/* If UniMAC forwards CRC, we need to skip over it to get
* a valid CHK bit to be set in the per-packet status word
*/
if (priv->crc_fwd_en)
reg |= RBUF_SKIP_FCS;
else
reg &= ~RBUF_SKIP_FCS;
bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
bcmgenet_intr_disable(priv);
/* Configure backpressure vectors for MoCA */
if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
reg = bcmgenet_bp_mc_get(priv);
reg |= BIT(priv->hw_params->bp_in_en_shift);
/* bp_mask: back pressure mask */
if (netif_is_multiqueue(priv->dev))
reg |= priv->hw_params->bp_in_mask;
else
reg &= ~priv->hw_params->bp_in_mask;
bcmgenet_bp_mc_set(priv, reg);
}
/* Enable MDIO interrupts on GENET v3+ */
if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
dev_dbg(kdev, "done init umac\n");
}
static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
void (*cb)(struct work_struct *work))
{
struct bcmgenet_net_dim *dim = &ring->dim;
INIT_WORK(&dim->dim.work, cb);
dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
dim->event_ctr = 0;
dim->packets = 0;
dim->bytes = 0;
}
static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
{
struct bcmgenet_net_dim *dim = &ring->dim;
struct dim_cq_moder moder;
u32 usecs, pkts;
usecs = ring->rx_coalesce_usecs;
pkts = ring->rx_max_coalesced_frames;
/* If DIM was enabled, re-apply default parameters */
if (dim->use_dim) {
moder = net_dim_get_def_rx_moderation(dim->dim.mode);
usecs = moder.usec;
pkts = moder.pkts;
}
bcmgenet_set_rx_coalesce(ring, usecs, pkts);
}
/* Initialize a Tx ring along with corresponding hardware registers */
static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
unsigned int index, unsigned int size,
unsigned int start_ptr, unsigned int end_ptr)
{
struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
u32 words_per_bd = WORDS_PER_BD(priv);
u32 flow_period_val = 0;
spin_lock_init(&ring->lock);
ring->priv = priv;
ring->index = index;
if (index == DESC_INDEX) {
ring->queue = 0;
ring->int_enable = bcmgenet_tx_ring16_int_enable;
ring->int_disable = bcmgenet_tx_ring16_int_disable;
} else {
ring->queue = index + 1;
ring->int_enable = bcmgenet_tx_ring_int_enable;
ring->int_disable = bcmgenet_tx_ring_int_disable;
}
ring->cbs = priv->tx_cbs + start_ptr;
ring->size = size;
ring->clean_ptr = start_ptr;
ring->c_index = 0;
ring->free_bds = size;
ring->write_ptr = start_ptr;
ring->cb_ptr = start_ptr;
ring->end_ptr = end_ptr - 1;
ring->prod_index = 0;
/* Set flow period for ring != 16 */
if (index != DESC_INDEX)
flow_period_val = ENET_MAX_MTU_SIZE << 16;
bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
/* Disable rate control for now */
bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
TDMA_FLOW_PERIOD);
bcmgenet_tdma_ring_writel(priv, index,
((size << DMA_RING_SIZE_SHIFT) |
RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
/* Set start and end address, read and write pointers */
bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
DMA_START_ADDR);
bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
TDMA_READ_PTR);
bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
TDMA_WRITE_PTR);
bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
DMA_END_ADDR);
/* Initialize Tx NAPI */
netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
NAPI_POLL_WEIGHT);
}
/* Initialize a RDMA ring */
static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
unsigned int index, unsigned int size,
unsigned int start_ptr, unsigned int end_ptr)
{
struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
u32 words_per_bd = WORDS_PER_BD(priv);
int ret;
ring->priv = priv;
ring->index = index;
if (index == DESC_INDEX) {
ring->int_enable = bcmgenet_rx_ring16_int_enable;
ring->int_disable = bcmgenet_rx_ring16_int_disable;
} else {
ring->int_enable = bcmgenet_rx_ring_int_enable;
ring->int_disable = bcmgenet_rx_ring_int_disable;
}
ring->cbs = priv->rx_cbs + start_ptr;
ring->size = size;
ring->c_index = 0;
ring->read_ptr = start_ptr;
ring->cb_ptr = start_ptr;
ring->end_ptr = end_ptr - 1;
ret = bcmgenet_alloc_rx_buffers(priv, ring);
if (ret)
return ret;
bcmgenet_init_dim(ring, bcmgenet_dim_work);
bcmgenet_init_rx_coalesce(ring);
/* Initialize Rx NAPI */
netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
NAPI_POLL_WEIGHT);
bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
bcmgenet_rdma_ring_writel(priv, index,
((size << DMA_RING_SIZE_SHIFT) |
RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
bcmgenet_rdma_ring_writel(priv, index,
(DMA_FC_THRESH_LO <<
DMA_XOFF_THRESHOLD_SHIFT) |
DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
/* Set start and end address, read and write pointers */
bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
DMA_START_ADDR);
bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
RDMA_READ_PTR);
bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
RDMA_WRITE_PTR);
bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
DMA_END_ADDR);
return ret;
}
static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
{
unsigned int i;
struct bcmgenet_tx_ring *ring;
for (i = 0; i < priv->hw_params->tx_queues; ++i) {
ring = &priv->tx_rings[i];
napi_enable(&ring->napi);
ring->int_enable(ring);
}
ring = &priv->tx_rings[DESC_INDEX];
napi_enable(&ring->napi);
ring->int_enable(ring);
}
static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
{
unsigned int i;
struct bcmgenet_tx_ring *ring;
for (i = 0; i < priv->hw_params->tx_queues; ++i) {
ring = &priv->tx_rings[i];
napi_disable(&ring->napi);
}
ring = &priv->tx_rings[DESC_INDEX];
napi_disable(&ring->napi);
}
static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
{
unsigned int i;
struct bcmgenet_tx_ring *ring;
for (i = 0; i < priv->hw_params->tx_queues; ++i) {
ring = &priv->tx_rings[i];
netif_napi_del(&ring->napi);
}
ring = &priv->tx_rings[DESC_INDEX];
netif_napi_del(&ring->napi);
}
/* Initialize Tx queues
*
* Queues 0-3 are priority-based, each one has 32 descriptors,
* with queue 0 being the highest priority queue.
*
* Queue 16 is the default Tx queue with
* GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
*
* The transmit control block pool is then partitioned as follows:
* - Tx queue 0 uses tx_cbs[0..31]
* - Tx queue 1 uses tx_cbs[32..63]
* - Tx queue 2 uses tx_cbs[64..95]
* - Tx queue 3 uses tx_cbs[96..127]
* - Tx queue 16 uses tx_cbs[128..255]
*/
static void bcmgenet_init_tx_queues(struct net_device *dev)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
u32 i, dma_enable;
u32 dma_ctrl, ring_cfg;
u32 dma_priority[3] = {0, 0, 0};
dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
dma_enable = dma_ctrl & DMA_EN;
dma_ctrl &= ~DMA_EN;
bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
dma_ctrl = 0;
ring_cfg = 0;
/* Enable strict priority arbiter mode */
bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
/* Initialize Tx priority queues */
for (i = 0; i < priv->hw_params->tx_queues; i++) {
bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
i * priv->hw_params->tx_bds_per_q,
(i + 1) * priv->hw_params->tx_bds_per_q);
ring_cfg |= (1 << i);
dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
dma_priority[DMA_PRIO_REG_INDEX(i)] |=
((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
}
/* Initialize Tx default queue 16 */
bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
priv->hw_params->tx_queues *
priv->hw_params->tx_bds_per_q,
TOTAL_DESC);
ring_cfg |= (1 << DESC_INDEX);
dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
DMA_PRIO_REG_SHIFT(DESC_INDEX));
/* Set Tx queue priorities */
bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
/* Enable Tx queues */
bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
/* Enable Tx DMA */
if (dma_enable)
dma_ctrl |= DMA_EN;
bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
}
static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
{
unsigned int i;
struct bcmgenet_rx_ring *ring;
for (i = 0; i < priv->hw_params->rx_queues; ++i) {
ring = &priv->rx_rings[i];
napi_enable(&ring->napi);
ring->int_enable(ring);
}
ring = &priv->rx_rings[DESC_INDEX];
napi_enable(&ring->napi);
ring->int_enable(ring);
}
static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
{
unsigned int i;
struct bcmgenet_rx_ring *ring;
for (i = 0; i < priv->hw_params->rx_queues; ++i) {
ring = &priv->rx_rings[i];
napi_disable(&ring->napi);
cancel_work_sync(&ring->dim.dim.work);
}
ring = &priv->rx_rings[DESC_INDEX];
napi_disable(&ring->napi);
cancel_work_sync(&ring->dim.dim.work);
}
static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
{
unsigned int i;
struct bcmgenet_rx_ring *ring;
for (i = 0; i < priv->hw_params->rx_queues; ++i) {
ring = &priv->rx_rings[i];
netif_napi_del(&ring->napi);
}
ring = &priv->rx_rings[DESC_INDEX];
netif_napi_del(&ring->napi);
}
/* Initialize Rx queues
*
* Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
* used to direct traffic to these queues.
*
* Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
*/
static int bcmgenet_init_rx_queues(struct net_device *dev)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
u32 i;
u32 dma_enable;
u32 dma_ctrl;
u32 ring_cfg;
int ret;
dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
dma_enable = dma_ctrl & DMA_EN;
dma_ctrl &= ~DMA_EN;
bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
dma_ctrl = 0;
ring_cfg = 0;
/* Initialize Rx priority queues */
for (i = 0; i < priv->hw_params->rx_queues; i++) {
ret = bcmgenet_init_rx_ring(priv, i,
priv->hw_params->rx_bds_per_q,
i * priv->hw_params->rx_bds_per_q,
(i + 1) *
priv->hw_params->rx_bds_per_q);
if (ret)
return ret;
ring_cfg |= (1 << i);
dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
}
/* Initialize Rx default queue 16 */
ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
priv->hw_params->rx_queues *
priv->hw_params->rx_bds_per_q,
TOTAL_DESC);
if (ret)
return ret;
ring_cfg |= (1 << DESC_INDEX);
dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
/* Enable rings */
bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
/* Configure ring as descriptor ring and re-enable DMA if enabled */
if (dma_enable)
dma_ctrl |= DMA_EN;
bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
return 0;
}
static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
{
int ret = 0;
int timeout = 0;
u32 reg;
u32 dma_ctrl;
int i;
/* Disable TDMA to stop add more frames in TX DMA */
reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
reg &= ~DMA_EN;
bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
/* Check TDMA status register to confirm TDMA is disabled */
while (timeout++ < DMA_TIMEOUT_VAL) {
reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
if (reg & DMA_DISABLED)
break;
udelay(1);
}
if (timeout == DMA_TIMEOUT_VAL) {
netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
ret = -ETIMEDOUT;
}
/* Wait 10ms for packet drain in both tx and rx dma */
usleep_range(10000, 20000);
/* Disable RDMA */
reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
reg &= ~DMA_EN;
bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
timeout = 0;
/* Check RDMA status register to confirm RDMA is disabled */
while (timeout++ < DMA_TIMEOUT_VAL) {
reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
if (reg & DMA_DISABLED)
break;
udelay(1);
}
if (timeout == DMA_TIMEOUT_VAL) {
netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
ret = -ETIMEDOUT;
}
dma_ctrl = 0;
for (i = 0; i < priv->hw_params->rx_queues; i++)
dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
reg &= ~dma_ctrl;
bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
dma_ctrl = 0;
for (i = 0; i < priv->hw_params->tx_queues; i++)
dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
reg &= ~dma_ctrl;
bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
return ret;
}
static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
{
struct netdev_queue *txq;
int i;
bcmgenet_fini_rx_napi(priv);
bcmgenet_fini_tx_napi(priv);
for (i = 0; i < priv->num_tx_bds; i++)
dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
priv->tx_cbs + i));
for (i = 0; i < priv->hw_params->tx_queues; i++) {
txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
netdev_tx_reset_queue(txq);
}
txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
netdev_tx_reset_queue(txq);
bcmgenet_free_rx_buffers(priv);
kfree(priv->rx_cbs);
kfree(priv->tx_cbs);
}
/* init_edma: Initialize DMA control register */
static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
{
int ret;
unsigned int i;
struct enet_cb *cb;
netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
/* Initialize common Rx ring structures */
priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
priv->num_rx_bds = TOTAL_DESC;
priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
GFP_KERNEL);
if (!priv->rx_cbs)
return -ENOMEM;
for (i = 0; i < priv->num_rx_bds; i++) {
cb = priv->rx_cbs + i;
cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
}
/* Initialize common TX ring structures */
priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
priv->num_tx_bds = TOTAL_DESC;
priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
GFP_KERNEL);
if (!priv->tx_cbs) {
kfree(priv->rx_cbs);
return -ENOMEM;
}
for (i = 0; i < priv->num_tx_bds; i++) {
cb = priv->tx_cbs + i;
cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
}
/* Init rDma */
bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
DMA_SCB_BURST_SIZE);
/* Initialize Rx queues */
ret = bcmgenet_init_rx_queues(priv->dev);
if (ret) {
netdev_err(priv->dev, "failed to initialize Rx queues\n");
bcmgenet_free_rx_buffers(priv);
kfree(priv->rx_cbs);
kfree(priv->tx_cbs);
return ret;
}
/* Init tDma */
bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
DMA_SCB_BURST_SIZE);
/* Initialize Tx queues */
bcmgenet_init_tx_queues(priv->dev);
return 0;
}
/* Interrupt bottom half */
static void bcmgenet_irq_task(struct work_struct *work)
{
unsigned int status;
struct bcmgenet_priv *priv = container_of(
work, struct bcmgenet_priv, bcmgenet_irq_work);
netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
spin_lock_irq(&priv->lock);
status = priv->irq0_stat;
priv->irq0_stat = 0;
spin_unlock_irq(&priv->lock);
if (status & UMAC_IRQ_PHY_DET_R &&
priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
phy_init_hw(priv->dev->phydev);
genphy_config_aneg(priv->dev->phydev);
}
/* Link UP/DOWN event */
if (status & UMAC_IRQ_LINK_EVENT)
phy_mac_interrupt(priv->dev->phydev);
}
/* bcmgenet_isr1: handle Rx and Tx priority queues */
static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
{
struct bcmgenet_priv *priv = dev_id;
struct bcmgenet_rx_ring *rx_ring;
struct bcmgenet_tx_ring *tx_ring;
unsigned int index, status;
/* Read irq status */
status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
/* clear interrupts */
bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
netif_dbg(priv, intr, priv->dev,
"%s: IRQ=0x%x\n", __func__, status);
/* Check Rx priority queue interrupts */
for (index = 0; index < priv->hw_params->rx_queues; index++) {
if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
continue;
rx_ring = &priv->rx_rings[index];
rx_ring->dim.event_ctr++;
if (likely(napi_schedule_prep(&rx_ring->napi))) {
rx_ring->int_disable(rx_ring);
__napi_schedule_irqoff(&rx_ring->napi);
}
}
/* Check Tx priority queue interrupts */
for (index = 0; index < priv->hw_params->tx_queues; index++) {
if (!(status & BIT(index)))
continue;
tx_ring = &priv->tx_rings[index];
if (likely(napi_schedule_prep(&tx_ring->napi))) {
tx_ring->int_disable(tx_ring);
__napi_schedule_irqoff(&tx_ring->napi);
}
}
return IRQ_HANDLED;
}
/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
{
struct bcmgenet_priv *priv = dev_id;
struct bcmgenet_rx_ring *rx_ring;
struct bcmgenet_tx_ring *tx_ring;
unsigned int status;
unsigned long flags;
/* Read irq status */
status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
/* clear interrupts */
bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
netif_dbg(priv, intr, priv->dev,
"IRQ=0x%x\n", status);
if (status & UMAC_IRQ_RXDMA_DONE) {
rx_ring = &priv->rx_rings[DESC_INDEX];
rx_ring->dim.event_ctr++;
if (likely(napi_schedule_prep(&rx_ring->napi))) {
rx_ring->int_disable(rx_ring);
__napi_schedule_irqoff(&rx_ring->napi);
}
}
if (status & UMAC_IRQ_TXDMA_DONE) {
tx_ring = &priv->tx_rings[DESC_INDEX];
if (likely(napi_schedule_prep(&tx_ring->napi))) {
tx_ring->int_disable(tx_ring);
__napi_schedule_irqoff(&tx_ring->napi);
}
}
if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
wake_up(&priv->wq);
}
/* all other interested interrupts handled in bottom half */
status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
if (status) {
/* Save irq status for bottom-half processing. */
spin_lock_irqsave(&priv->lock, flags);
priv->irq0_stat |= status;
spin_unlock_irqrestore(&priv->lock, flags);
schedule_work(&priv->bcmgenet_irq_work);
}
return IRQ_HANDLED;
}
static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
{
/* Acknowledge the interrupt */
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void bcmgenet_poll_controller(struct net_device *dev)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
/* Invoke the main RX/TX interrupt handler */
disable_irq(priv->irq0);
bcmgenet_isr0(priv->irq0, priv);
enable_irq(priv->irq0);
/* And the interrupt handler for RX/TX priority queues */
disable_irq(priv->irq1);
bcmgenet_isr1(priv->irq1, priv);
enable_irq(priv->irq1);
}
#endif
static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
{
u32 reg;
reg = bcmgenet_rbuf_ctrl_get(priv);
reg |= BIT(1);
bcmgenet_rbuf_ctrl_set(priv, reg);
udelay(10);
reg &= ~BIT(1);
bcmgenet_rbuf_ctrl_set(priv, reg);
udelay(10);
}
static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
unsigned char *addr)
{
bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
}
static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
unsigned char *addr)
{
u32 addr_tmp;
addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
put_unaligned_be32(addr_tmp, &addr[0]);
addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
put_unaligned_be16(addr_tmp, &addr[4]);
}
/* Returns a reusable dma control register value */
static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
{
u32 reg;
u32 dma_ctrl;
/* disable DMA */
dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
reg &= ~dma_ctrl;
bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
reg &= ~dma_ctrl;
bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
udelay(10);
bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
return dma_ctrl;
}
static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
{
u32 reg;
reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
reg |= dma_ctrl;
bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
reg |= dma_ctrl;
bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
}
static void bcmgenet_netif_start(struct net_device *dev)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
/* Start the network engine */
bcmgenet_set_rx_mode(dev);
bcmgenet_enable_rx_napi(priv);
umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
bcmgenet_enable_tx_napi(priv);
/* Monitor link interrupts now */
bcmgenet_link_intr_enable(priv);
phy_start(dev->phydev);
}
static int bcmgenet_open(struct net_device *dev)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
unsigned long dma_ctrl;
u32 reg;
int ret;
netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
/* Turn on the clock */
clk_prepare_enable(priv->clk);
/* If this is an internal GPHY, power it back on now, before UniMAC is
* brought out of reset as absolutely no UniMAC activity is allowed
*/
if (priv->internal_phy)
bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
/* take MAC out of reset */
bcmgenet_umac_reset(priv);
init_umac(priv);
/* Apply features again in case we changed them while interface was
* down
*/
bcmgenet_set_features(dev, dev->features);
bcmgenet_set_hw_addr(priv, dev->dev_addr);
if (priv->internal_phy) {
reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
reg |= EXT_ENERGY_DET_MASK;
bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
}
/* Disable RX/TX DMA and flush TX queues */
dma_ctrl = bcmgenet_dma_disable(priv);
/* Reinitialize TDMA and RDMA and SW housekeeping */
ret = bcmgenet_init_dma(priv);
if (ret) {
netdev_err(dev, "failed to initialize DMA\n");
goto err_clk_disable;
}
/* Always enable ring 16 - descriptor ring */
bcmgenet_enable_dma(priv, dma_ctrl);
/* HFB init */
bcmgenet_hfb_init(priv);
ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
dev->name, priv);
if (ret < 0) {
netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
goto err_fini_dma;
}
ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
dev->name, priv);
if (ret < 0) {
netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
goto err_irq0;
}
ret = bcmgenet_mii_probe(dev);
if (ret) {
netdev_err(dev, "failed to connect to PHY\n");
goto err_irq1;
}
bcmgenet_netif_start(dev);
netif_tx_start_all_queues(dev);
return 0;
err_irq1:
free_irq(priv->irq1, priv);
err_irq0:
free_irq(priv->irq0, priv);
err_fini_dma:
bcmgenet_dma_teardown(priv);
bcmgenet_fini_dma(priv);
err_clk_disable:
if (priv->internal_phy)
bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
clk_disable_unprepare(priv->clk);
return ret;
}
static void bcmgenet_netif_stop(struct net_device *dev)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
bcmgenet_disable_tx_napi(priv);
netif_tx_disable(dev);
/* Disable MAC receive */
umac_enable_set(priv, CMD_RX_EN, false);
bcmgenet_dma_teardown(priv);
/* Disable MAC transmit. TX DMA disabled must be done before this */
umac_enable_set(priv, CMD_TX_EN, false);
phy_stop(dev->phydev);
bcmgenet_disable_rx_napi(priv);
bcmgenet_intr_disable(priv);
/* Wait for pending work items to complete. Since interrupts are
* disabled no new work will be scheduled.
*/
cancel_work_sync(&priv->bcmgenet_irq_work);
priv->old_link = -1;
priv->old_speed = -1;
priv->old_duplex = -1;
priv->old_pause = -1;
/* tx reclaim */
bcmgenet_tx_reclaim_all(dev);
bcmgenet_fini_dma(priv);
}
static int bcmgenet_close(struct net_device *dev)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
int ret = 0;
netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
bcmgenet_netif_stop(dev);
/* Really kill the PHY state machine and disconnect from it */
phy_disconnect(dev->phydev);
free_irq(priv->irq0, priv);
free_irq(priv->irq1, priv);
if (priv->internal_phy)
ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
clk_disable_unprepare(priv->clk);
return ret;
}
static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
{
struct bcmgenet_priv *priv = ring->priv;
u32 p_index, c_index, intsts, intmsk;
struct netdev_queue *txq;
unsigned int free_bds;
bool txq_stopped;
if (!netif_msg_tx_err(priv))
return;
txq = netdev_get_tx_queue(priv->dev, ring->queue);
spin_lock(&ring->lock);
if (ring->index == DESC_INDEX) {
intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
} else {
intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
intmsk = 1 << ring->index;
}
c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
txq_stopped = netif_tx_queue_stopped(txq);
free_bds = ring->free_bds;
spin_unlock(&ring->lock);
netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
"TX queue status: %s, interrupts: %s\n"
"(sw)free_bds: %d (sw)size: %d\n"
"(sw)p_index: %d (hw)p_index: %d\n"
"(sw)c_index: %d (hw)c_index: %d\n"
"(sw)clean_p: %d (sw)write_p: %d\n"
"(sw)cb_ptr: %d (sw)end_ptr: %d\n",
ring->index, ring->queue,
txq_stopped ? "stopped" : "active",
intsts & intmsk ? "enabled" : "disabled",
free_bds, ring->size,
ring->prod_index, p_index & DMA_P_INDEX_MASK,
ring->c_index, c_index & DMA_C_INDEX_MASK,
ring->clean_ptr, ring->write_ptr,
ring->cb_ptr, ring->end_ptr);
}
static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
u32 int0_enable = 0;
u32 int1_enable = 0;
unsigned int q;
netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
for (q = 0; q < priv->hw_params->tx_queues; q++)
bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
bcmgenet_tx_reclaim_all(dev);
for (q = 0; q < priv->hw_params->tx_queues; q++)
int1_enable |= (1 << q);
int0_enable = UMAC_IRQ_TXDMA_DONE;
/* Re-enable TX interrupts if disabled */
bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
netif_trans_update(dev);
dev->stats.tx_errors++;
netif_tx_wake_all_queues(dev);
}
#define MAX_MDF_FILTER 17
static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
unsigned char *addr,
int *i)
{
bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
UMAC_MDF_ADDR + (*i * 4));
bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
addr[4] << 8 | addr[5],
UMAC_MDF_ADDR + ((*i + 1) * 4));
*i += 2;
}
static void bcmgenet_set_rx_mode(struct net_device *dev)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
struct netdev_hw_addr *ha;
int i, nfilter;
u32 reg;
netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
/* Number of filters needed */
nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
/*
* Turn on promicuous mode for three scenarios
* 1. IFF_PROMISC flag is set
* 2. IFF_ALLMULTI flag is set
* 3. The number of filters needed exceeds the number filters
* supported by the hardware.
*/
reg = bcmgenet_umac_readl(priv, UMAC_CMD);
if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
(nfilter > MAX_MDF_FILTER)) {
reg |= CMD_PROMISC;
bcmgenet_umac_writel(priv, reg, UMAC_CMD);
bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
return;
} else {
reg &= ~CMD_PROMISC;
bcmgenet_umac_writel(priv, reg, UMAC_CMD);
}
/* update MDF filter */
i = 0;
/* Broadcast */
bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
/* my own address.*/
bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
/* Unicast */
netdev_for_each_uc_addr(ha, dev)
bcmgenet_set_mdf_addr(priv, ha->addr, &i);
/* Multicast */
netdev_for_each_mc_addr(ha, dev)
bcmgenet_set_mdf_addr(priv, ha->addr, &i);
/* Enable filters */
reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
}
/* Set the hardware MAC address. */
static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
/* Setting the MAC address at the hardware level is not possible
* without disabling the UniMAC RX/TX enable bits.
*/
if (netif_running(dev))
return -EBUSY;
ether_addr_copy(dev->dev_addr, addr->sa_data);
return 0;
}
static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
{
struct bcmgenet_priv *priv = netdev_priv(dev);
unsigned long tx_bytes = 0, tx_packets = 0;
unsigned long rx_bytes = 0, rx_packets = 0;
unsigned long rx_errors = 0, rx_dropped = 0;
struct bcmgenet_tx_ring *tx_ring;
struct bcmgenet_rx_ring *rx_ring;
unsigned int q;
for (q = 0; q < priv->hw_params->tx_queues; q++) {
tx_ring = &priv->tx_rings[q];
tx_bytes += tx_ring->bytes;
tx_packets += tx_ring->packets;
}
tx_ring = &priv->tx_rings[DESC_INDEX];
tx_bytes += tx_ring->bytes;
tx_packets += tx_ring->packets;
for (q = 0; q < priv->hw_params->rx_queues; q++) {
rx_ring = &priv->rx_rings[q];
rx_bytes += rx_ring->bytes;
rx_packets += rx_ring->packets;
rx_errors += rx_ring->errors;
rx_dropped += rx_ring->dropped;
}
rx_ring = &priv->rx_rings[DESC_INDEX];
rx_bytes += rx_ring->bytes;
rx_packets += rx_ring->packets;
rx_errors += rx_ring->errors;
rx_dropped += rx_ring->dropped;
dev->stats.tx_bytes = tx_bytes;
dev->stats.tx_packets = tx_packets;
dev->stats.rx_bytes = rx_bytes;
dev->stats.rx_packets = rx_packets;
dev->stats.rx_errors = rx_errors;
dev->stats.rx_missed_errors = rx_errors;
dev->stats.rx_dropped = rx_dropped;
return &dev->stats;
}
static const struct net_device_ops bcmgenet_netdev_ops = {
.ndo_open = bcmgenet_open,
.ndo_stop = bcmgenet_close,
.ndo_start_xmit = bcmgenet_xmit,
.ndo_tx_timeout = bcmgenet_timeout,
.ndo_set_rx_mode = bcmgenet_set_rx_mode,
.ndo_set_mac_address = bcmgenet_set_mac_addr,
.ndo_do_ioctl = phy_do_ioctl_running,
.ndo_set_features = bcmgenet_set_features,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = bcmgenet_poll_controller,
#endif
.ndo_get_stats = bcmgenet_get_stats,
};
/* Array of GENET hardware parameters/characteristics */
static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
[GENET_V1] = {
.tx_queues = 0,
.tx_bds_per_q = 0,
.rx_queues = 0,
.rx_bds_per_q = 0,
.bp_in_en_shift = 16,
.bp_in_mask = 0xffff,
.hfb_filter_cnt = 16,
.qtag_mask = 0x1F,
.hfb_offset = 0x1000,
.rdma_offset = 0x2000,
.tdma_offset = 0x3000,
.words_per_bd = 2,
},
[GENET_V2] = {
.tx_queues = 4,
.tx_bds_per_q = 32,
.rx_queues = 0,
.rx_bds_per_q = 0,
.bp_in_en_shift = 16,
.bp_in_mask = 0xffff,
.hfb_filter_cnt = 16,
.qtag_mask = 0x1F,
.tbuf_offset = 0x0600,
.hfb_offset = 0x1000,
.hfb_reg_offset = 0x2000,
.rdma_offset = 0x3000,
.tdma_offset = 0x4000,
.words_per_bd = 2,
.flags = GENET_HAS_EXT,
},
[GENET_V3] = {
.tx_queues = 4,
.tx_bds_per_q = 32,
.rx_queues = 0,
.rx_bds_per_q = 0,
.bp_in_en_shift = 17,
.bp_in_mask = 0x1ffff,
.hfb_filter_cnt = 48,
.hfb_filter_size = 128,
.qtag_mask = 0x3F,
.tbuf_offset = 0x0600,
.hfb_offset = 0x8000,
.hfb_reg_offset = 0xfc00,
.rdma_offset = 0x10000,
.tdma_offset = 0x11000,
.words_per_bd = 2,
.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
GENET_HAS_MOCA_LINK_DET,
},
[GENET_V4] = {
.tx_queues = 4,
.tx_bds_per_q = 32,
.rx_queues = 0,
.rx_bds_per_q = 0,
.bp_in_en_shift = 17,
.bp_in_mask = 0x1ffff,
.hfb_filter_cnt = 48,
.hfb_filter_size = 128,
.qtag_mask = 0x3F,
.tbuf_offset = 0x0600,
.hfb_offset = 0x8000,
.hfb_reg_offset = 0xfc00,
.rdma_offset = 0x2000,
.tdma_offset = 0x4000,
.words_per_bd = 3,
.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
},
[GENET_V5] = {
.tx_queues = 4,
.tx_bds_per_q = 32,
.rx_queues = 0,
.rx_bds_per_q = 0,
.bp_in_en_shift = 17,
.bp_in_mask = 0x1ffff,
.hfb_filter_cnt = 48,
.hfb_filter_size = 128,
.qtag_mask = 0x3F,
.tbuf_offset = 0x0600,
.hfb_offset = 0x8000,
.hfb_reg_offset = 0xfc00,
.rdma_offset = 0x2000,
.tdma_offset = 0x4000,
.words_per_bd = 3,
.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
},
};
/* Infer hardware parameters from the detected GENET version */
static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
{
struct bcmgenet_hw_params *params;
u32 reg;
u8 major;
u16 gphy_rev;
if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
genet_dma_ring_regs = genet_dma_ring_regs_v4;
} else if (GENET_IS_V3(priv)) {
bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
genet_dma_ring_regs = genet_dma_ring_regs_v123;
} else if (GENET_IS_V2(priv)) {
bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
genet_dma_ring_regs = genet_dma_ring_regs_v123;
} else if (GENET_IS_V1(priv)) {
bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
genet_dma_ring_regs = genet_dma_ring_regs_v123;
}
/* enum genet_version starts at 1 */
priv->hw_params = &bcmgenet_hw_params[priv->version];
params = priv->hw_params;
/* Read GENET HW version */
reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
major = (reg >> 24 & 0x0f);
if (major == 6)
major = 5;
else if (major == 5)
major = 4;
else if (major == 0)
major = 1;
if (major != priv->version) {
dev_err(&priv->pdev->dev,
"GENET version mismatch, got: %d, configured for: %d\n",
major, priv->version);
}
/* Print the GENET core version */
dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
major, (reg >> 16) & 0x0f, reg & 0xffff);
/* Store the integrated PHY revision for the MDIO probing function
* to pass this information to the PHY driver. The PHY driver expects
* to find the PHY major revision in bits 15:8 while the GENET register
* stores that information in bits 7:0, account for that.
*
* On newer chips, starting with PHY revision G0, a new scheme is
* deployed similar to the Starfighter 2 switch with GPHY major
* revision in bits 15:8 and patch level in bits 7:0. Major revision 0
* is reserved as well as special value 0x01ff, we have a small
* heuristic to check for the new GPHY revision and re-arrange things
* so the GPHY driver is happy.
*/
gphy_rev = reg & 0xffff;
if (GENET_IS_V5(priv)) {
/* The EPHY revision should come from the MDIO registers of
* the PHY not from GENET.
*/
if (gphy_rev != 0) {
pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
gphy_rev);
}
/* This is reserved so should require special treatment */
} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
return;
/* This is the good old scheme, just GPHY major, no minor nor patch */
} else if ((gphy_rev & 0xf0) != 0) {
priv->gphy_rev = gphy_rev << 8;
/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
} else if ((gphy_rev & 0xff00) != 0) {
priv->gphy_rev = gphy_rev;
}
#ifdef CONFIG_PHYS_ADDR_T_64BIT
if (!(params->flags & GENET_HAS_40BITS))
pr_warn("GENET does not support 40-bits PA\n");
#endif
pr_debug("Configuration for version: %d\n"
"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
"BP << en: %2d, BP msk: 0x%05x\n"
"HFB count: %2d, QTAQ msk: 0x%05x\n"
"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
"RDMA: 0x%05x, TDMA: 0x%05x\n"
"Words/BD: %d\n",
priv->version,
params->tx_queues, params->tx_bds_per_q,
params->rx_queues, params->rx_bds_per_q,
params->bp_in_en_shift, params->bp_in_mask,
params->hfb_filter_cnt, params->qtag_mask,
params->tbuf_offset, params->hfb_offset,
params->hfb_reg_offset,
params->rdma_offset, params->tdma_offset,
params->words_per_bd);
}
struct bcmgenet_plat_data {
enum bcmgenet_version version;
u32 dma_max_burst_length;
};
static const struct bcmgenet_plat_data v1_plat_data = {
.version = GENET_V1,
.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
};
static const struct bcmgenet_plat_data v2_plat_data = {
.version = GENET_V2,
.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
};
static const struct bcmgenet_plat_data v3_plat_data = {
.version = GENET_V3,
.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
};
static const struct bcmgenet_plat_data v4_plat_data = {
.version = GENET_V4,
.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
};
static const struct bcmgenet_plat_data v5_plat_data = {
.version = GENET_V5,
.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
};
static const struct bcmgenet_plat_data bcm2711_plat_data = {
.version = GENET_V5,
.dma_max_burst_length = 0x08,
};
static const struct of_device_id bcmgenet_match[] = {
{ .compatible = "brcm,genet-v1", .data = &v1_plat_data },
{ .compatible = "brcm,genet-v2", .data = &v2_plat_data },
{ .compatible = "brcm,genet-v3", .data = &v3_plat_data },
{ .compatible = "brcm,genet-v4", .data = &v4_plat_data },
{ .compatible = "brcm,genet-v5", .data = &v5_plat_data },
{ .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
{ },
};
MODULE_DEVICE_TABLE(of, bcmgenet_match);
static int bcmgenet_probe(struct platform_device *pdev)
{
struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
const struct bcmgenet_plat_data *pdata;
struct bcmgenet_priv *priv;
struct net_device *dev;
unsigned int i;
int err = -EIO;
/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
GENET_MAX_MQ_CNT + 1);
if (!dev) {
dev_err(&pdev->dev, "can't allocate net device\n");
return -ENOMEM;
}
priv = netdev_priv(dev);
priv->irq0 = platform_get_irq(pdev, 0);
if (priv->irq0 < 0) {
err = priv->irq0;
goto err;
}
priv->irq1 = platform_get_irq(pdev, 1);
if (priv->irq1 < 0) {
err = priv->irq1;
goto err;
}
priv->wol_irq = platform_get_irq_optional(pdev, 2);
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base)) {
err = PTR_ERR(priv->base);
goto err;
}
spin_lock_init(&priv->lock);
SET_NETDEV_DEV(dev, &pdev->dev);
dev_set_drvdata(&pdev->dev, dev);
dev->watchdog_timeo = 2 * HZ;
dev->ethtool_ops = &bcmgenet_ethtool_ops;
dev->netdev_ops = &bcmgenet_netdev_ops;
priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
/* Set default features */
dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
NETIF_F_RXCSUM;
dev->hw_features |= dev->features;
dev->vlan_features |= dev->features;
/* Request the WOL interrupt and advertise suspend if available */
priv->wol_irq_disabled = true;
err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
dev->name, priv);
if (!err)
device_set_wakeup_capable(&pdev->dev, 1);
/* Set the needed headroom to account for any possible
* features enabling/disabling at runtime
*/
dev->needed_headroom += 64;
netdev_boot_setup_check(dev);
priv->dev = dev;
priv->pdev = pdev;
pdata = device_get_match_data(&pdev->dev);
if (pdata) {
priv->version = pdata->version;
priv->dma_max_burst_length = pdata->dma_max_burst_length;
} else {
priv->version = pd->genet_version;
priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
}
priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
if (IS_ERR(priv->clk)) {
dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
err = PTR_ERR(priv->clk);
goto err;
}
err = clk_prepare_enable(priv->clk);
if (err)
goto err;
bcmgenet_set_hw_params(priv);
err = -EIO;
if (priv->hw_params->flags & GENET_HAS_40BITS)
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
if (err)
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err)
goto err;
/* Mii wait queue */
init_waitqueue_head(&priv->wq);
/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
priv->rx_buf_len = RX_BUF_LENGTH;
INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
if (IS_ERR(priv->clk_wol)) {
dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
err = PTR_ERR(priv->clk_wol);
goto err;
}
priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
if (IS_ERR(priv->clk_eee)) {
dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
err = PTR_ERR(priv->clk_eee);
goto err;
}
/* If this is an internal GPHY, power it on now, before UniMAC is
* brought out of reset as absolutely no UniMAC activity is allowed
*/
if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
if (pd && !IS_ERR_OR_NULL(pd->mac_address))
ether_addr_copy(dev->dev_addr, pd->mac_address);
else
if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
if (has_acpi_companion(&pdev->dev))
bcmgenet_get_hw_addr(priv, dev->dev_addr);
if (!is_valid_ether_addr(dev->dev_addr)) {
dev_warn(&pdev->dev, "using random Ethernet MAC\n");
eth_hw_addr_random(dev);
}
reset_umac(priv);
err = bcmgenet_mii_init(dev);
if (err)
goto err_clk_disable;
/* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
* just the ring 16 descriptor based TX
*/
netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
/* Set default coalescing parameters */
for (i = 0; i < priv->hw_params->rx_queues; i++)
priv->rx_rings[i].rx_max_coalesced_frames = 1;
priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
/* libphy will determine the link state */
netif_carrier_off(dev);
/* Turn off the main clock, WOL clock is handled separately */
clk_disable_unprepare(priv->clk);
err = register_netdev(dev);
if (err)
goto err;
return err;
err_clk_disable:
clk_disable_unprepare(priv->clk);
err:
free_netdev(dev);
return err;
}
static int bcmgenet_remove(struct platform_device *pdev)
{
struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
dev_set_drvdata(&pdev->dev, NULL);
unregister_netdev(priv->dev);
bcmgenet_mii_exit(priv->dev);
free_netdev(priv->dev);
return 0;
}
static void bcmgenet_shutdown(struct platform_device *pdev)
{
bcmgenet_remove(pdev);
}
#ifdef CONFIG_PM_SLEEP
static int bcmgenet_resume_noirq(struct device *d)
{
struct net_device *dev = dev_get_drvdata(d);
struct bcmgenet_priv *priv = netdev_priv(dev);
int ret;
u32 reg;
if (!netif_running(dev))
return 0;
/* Turn on the clock */
ret = clk_prepare_enable(priv->clk);
if (ret)
return ret;
if (device_may_wakeup(d) && priv->wolopts) {
/* Account for Wake-on-LAN events and clear those events
* (Some devices need more time between enabling the clocks
* and the interrupt register reflecting the wake event so
* read the register twice)
*/
reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
if (reg & UMAC_IRQ_WAKE_EVENT)
pm_wakeup_event(&priv->pdev->dev, 0);
}
bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
return 0;
}
static int bcmgenet_resume(struct device *d)
{
struct net_device *dev = dev_get_drvdata(d);
struct bcmgenet_priv *priv = netdev_priv(dev);
unsigned long dma_ctrl;
u32 offset, reg;
int ret;
if (!netif_running(dev))
return 0;
/* From WOL-enabled suspend, switch to regular clock */
if (device_may_wakeup(d) && priv->wolopts)
bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
/* If this is an internal GPHY, power it back on now, before UniMAC is
* brought out of reset as absolutely no UniMAC activity is allowed
*/
if (priv->internal_phy)
bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
bcmgenet_umac_reset(priv);
init_umac(priv);
phy_init_hw(dev->phydev);
/* Speed settings must be restored */
genphy_config_aneg(dev->phydev);
bcmgenet_mii_config(priv->dev, false);
/* Restore enabled features */
bcmgenet_set_features(dev, dev->features);
bcmgenet_set_hw_addr(priv, dev->dev_addr);
offset = HFB_FLT_ENABLE_V3PLUS;
bcmgenet_hfb_reg_writel(priv, priv->hfb_en[1], offset);
bcmgenet_hfb_reg_writel(priv, priv->hfb_en[2], offset + sizeof(u32));
bcmgenet_hfb_reg_writel(priv, priv->hfb_en[0], HFB_CTRL);
if (priv->internal_phy) {
reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
reg |= EXT_ENERGY_DET_MASK;
bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
}
/* Disable RX/TX DMA and flush TX queues */
dma_ctrl = bcmgenet_dma_disable(priv);
/* Reinitialize TDMA and RDMA and SW housekeeping */
ret = bcmgenet_init_dma(priv);
if (ret) {
netdev_err(dev, "failed to initialize DMA\n");
goto out_clk_disable;
}
/* Always enable ring 16 - descriptor ring */
bcmgenet_enable_dma(priv, dma_ctrl);
if (!device_may_wakeup(d))
phy_resume(dev->phydev);
if (priv->eee.eee_enabled)
bcmgenet_eee_enable_set(dev, true);
bcmgenet_netif_start(dev);
netif_device_attach(dev);
return 0;
out_clk_disable:
if (priv->internal_phy)
bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
clk_disable_unprepare(priv->clk);
return ret;
}
static int bcmgenet_suspend(struct device *d)
{
struct net_device *dev = dev_get_drvdata(d);
struct bcmgenet_priv *priv = netdev_priv(dev);
u32 offset;
if (!netif_running(dev))
return 0;
netif_device_detach(dev);
bcmgenet_netif_stop(dev);
if (!device_may_wakeup(d))
phy_suspend(dev->phydev);
/* Preserve filter state and disable filtering */
priv->hfb_en[0] = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
offset = HFB_FLT_ENABLE_V3PLUS;
priv->hfb_en[1] = bcmgenet_hfb_reg_readl(priv, offset);
priv->hfb_en[2] = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
return 0;
}
static int bcmgenet_suspend_noirq(struct device *d)
{
struct net_device *dev = dev_get_drvdata(d);
struct bcmgenet_priv *priv = netdev_priv(dev);
int ret = 0;
if (!netif_running(dev))
return 0;
/* Prepare the device for Wake-on-LAN and switch to the slow clock */
if (device_may_wakeup(d) && priv->wolopts)
ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
else if (priv->internal_phy)
ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
/* Let the framework handle resumption and leave the clocks on */
if (ret)
return ret;
/* Turn off the clocks */
clk_disable_unprepare(priv->clk);
return 0;
}
#else
#define bcmgenet_suspend NULL
#define bcmgenet_suspend_noirq NULL
#define bcmgenet_resume NULL
#define bcmgenet_resume_noirq NULL
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops bcmgenet_pm_ops = {
.suspend = bcmgenet_suspend,
.suspend_noirq = bcmgenet_suspend_noirq,
.resume = bcmgenet_resume,
.resume_noirq = bcmgenet_resume_noirq,
};
static const struct acpi_device_id genet_acpi_match[] = {
{ "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
{ },
};
MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
static struct platform_driver bcmgenet_driver = {
.probe = bcmgenet_probe,
.remove = bcmgenet_remove,
.shutdown = bcmgenet_shutdown,
.driver = {
.name = "bcmgenet",
.of_match_table = bcmgenet_match,
.pm = &bcmgenet_pm_ops,
.acpi_match_table = genet_acpi_match,
},
};
module_platform_driver(bcmgenet_driver);
MODULE_AUTHOR("Broadcom Corporation");
MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
MODULE_ALIAS("platform:bcmgenet");
MODULE_LICENSE("GPL");