| /* |
| * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. |
| * |
| * Authors: |
| * Alexander Graf <agraf@suse.de> |
| * Kevin Wolf <mail@kevin-wolf.de> |
| * Paul Mackerras <paulus@samba.org> |
| * |
| * Description: |
| * Functions relating to running KVM on Book 3S processors where |
| * we don't have access to hypervisor mode, and we run the guest |
| * in problem state (user mode). |
| * |
| * This file is derived from arch/powerpc/kvm/44x.c, |
| * by Hollis Blanchard <hollisb@us.ibm.com>. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include <linux/export.h> |
| #include <linux/err.h> |
| #include <linux/slab.h> |
| |
| #include <asm/reg.h> |
| #include <asm/cputable.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/kvm_ppc.h> |
| #include <asm/kvm_book3s.h> |
| #include <asm/mmu_context.h> |
| #include <asm/switch_to.h> |
| #include <asm/firmware.h> |
| #include <asm/hvcall.h> |
| #include <linux/gfp.h> |
| #include <linux/sched.h> |
| #include <linux/vmalloc.h> |
| #include <linux/highmem.h> |
| |
| #include "trace.h" |
| |
| /* #define EXIT_DEBUG */ |
| /* #define DEBUG_EXT */ |
| |
| static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, |
| ulong msr); |
| |
| /* Some compatibility defines */ |
| #ifdef CONFIG_PPC_BOOK3S_32 |
| #define MSR_USER32 MSR_USER |
| #define MSR_USER64 MSR_USER |
| #define HW_PAGE_SIZE PAGE_SIZE |
| #endif |
| |
| void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); |
| memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb)); |
| svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max; |
| svcpu_put(svcpu); |
| #endif |
| vcpu->cpu = smp_processor_id(); |
| #ifdef CONFIG_PPC_BOOK3S_32 |
| current->thread.kvm_shadow_vcpu = to_book3s(vcpu)->shadow_vcpu; |
| #endif |
| } |
| |
| void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); |
| memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb)); |
| to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max; |
| svcpu_put(svcpu); |
| #endif |
| |
| kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); |
| vcpu->cpu = -1; |
| } |
| |
| /* Copy data needed by real-mode code from vcpu to shadow vcpu */ |
| void kvmppc_copy_to_svcpu(struct kvmppc_book3s_shadow_vcpu *svcpu, |
| struct kvm_vcpu *vcpu) |
| { |
| svcpu->gpr[0] = vcpu->arch.gpr[0]; |
| svcpu->gpr[1] = vcpu->arch.gpr[1]; |
| svcpu->gpr[2] = vcpu->arch.gpr[2]; |
| svcpu->gpr[3] = vcpu->arch.gpr[3]; |
| svcpu->gpr[4] = vcpu->arch.gpr[4]; |
| svcpu->gpr[5] = vcpu->arch.gpr[5]; |
| svcpu->gpr[6] = vcpu->arch.gpr[6]; |
| svcpu->gpr[7] = vcpu->arch.gpr[7]; |
| svcpu->gpr[8] = vcpu->arch.gpr[8]; |
| svcpu->gpr[9] = vcpu->arch.gpr[9]; |
| svcpu->gpr[10] = vcpu->arch.gpr[10]; |
| svcpu->gpr[11] = vcpu->arch.gpr[11]; |
| svcpu->gpr[12] = vcpu->arch.gpr[12]; |
| svcpu->gpr[13] = vcpu->arch.gpr[13]; |
| svcpu->cr = vcpu->arch.cr; |
| svcpu->xer = vcpu->arch.xer; |
| svcpu->ctr = vcpu->arch.ctr; |
| svcpu->lr = vcpu->arch.lr; |
| svcpu->pc = vcpu->arch.pc; |
| } |
| |
| /* Copy data touched by real-mode code from shadow vcpu back to vcpu */ |
| void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu, |
| struct kvmppc_book3s_shadow_vcpu *svcpu) |
| { |
| vcpu->arch.gpr[0] = svcpu->gpr[0]; |
| vcpu->arch.gpr[1] = svcpu->gpr[1]; |
| vcpu->arch.gpr[2] = svcpu->gpr[2]; |
| vcpu->arch.gpr[3] = svcpu->gpr[3]; |
| vcpu->arch.gpr[4] = svcpu->gpr[4]; |
| vcpu->arch.gpr[5] = svcpu->gpr[5]; |
| vcpu->arch.gpr[6] = svcpu->gpr[6]; |
| vcpu->arch.gpr[7] = svcpu->gpr[7]; |
| vcpu->arch.gpr[8] = svcpu->gpr[8]; |
| vcpu->arch.gpr[9] = svcpu->gpr[9]; |
| vcpu->arch.gpr[10] = svcpu->gpr[10]; |
| vcpu->arch.gpr[11] = svcpu->gpr[11]; |
| vcpu->arch.gpr[12] = svcpu->gpr[12]; |
| vcpu->arch.gpr[13] = svcpu->gpr[13]; |
| vcpu->arch.cr = svcpu->cr; |
| vcpu->arch.xer = svcpu->xer; |
| vcpu->arch.ctr = svcpu->ctr; |
| vcpu->arch.lr = svcpu->lr; |
| vcpu->arch.pc = svcpu->pc; |
| vcpu->arch.shadow_srr1 = svcpu->shadow_srr1; |
| vcpu->arch.fault_dar = svcpu->fault_dar; |
| vcpu->arch.fault_dsisr = svcpu->fault_dsisr; |
| vcpu->arch.last_inst = svcpu->last_inst; |
| } |
| |
| int kvmppc_core_check_requests(struct kvm_vcpu *vcpu) |
| { |
| int r = 1; /* Indicate we want to get back into the guest */ |
| |
| /* We misuse TLB_FLUSH to indicate that we want to clear |
| all shadow cache entries */ |
| if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) |
| kvmppc_mmu_pte_flush(vcpu, 0, 0); |
| |
| return r; |
| } |
| |
| /************* MMU Notifiers *************/ |
| |
| int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) |
| { |
| trace_kvm_unmap_hva(hva); |
| |
| /* |
| * Flush all shadow tlb entries everywhere. This is slow, but |
| * we are 100% sure that we catch the to be unmapped page |
| */ |
| kvm_flush_remote_tlbs(kvm); |
| |
| return 0; |
| } |
| |
| int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) |
| { |
| /* kvm_unmap_hva flushes everything anyways */ |
| kvm_unmap_hva(kvm, start); |
| |
| return 0; |
| } |
| |
| int kvm_age_hva(struct kvm *kvm, unsigned long hva) |
| { |
| /* XXX could be more clever ;) */ |
| return 0; |
| } |
| |
| int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) |
| { |
| /* XXX could be more clever ;) */ |
| return 0; |
| } |
| |
| void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) |
| { |
| /* The page will get remapped properly on its next fault */ |
| kvm_unmap_hva(kvm, hva); |
| } |
| |
| /*****************************************/ |
| |
| static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu) |
| { |
| ulong smsr = vcpu->arch.shared->msr; |
| |
| /* Guest MSR values */ |
| smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE; |
| /* Process MSR values */ |
| smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE; |
| /* External providers the guest reserved */ |
| smsr |= (vcpu->arch.shared->msr & vcpu->arch.guest_owned_ext); |
| /* 64-bit Process MSR values */ |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| smsr |= MSR_ISF | MSR_HV; |
| #endif |
| vcpu->arch.shadow_msr = smsr; |
| } |
| |
| void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr) |
| { |
| ulong old_msr = vcpu->arch.shared->msr; |
| |
| #ifdef EXIT_DEBUG |
| printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr); |
| #endif |
| |
| msr &= to_book3s(vcpu)->msr_mask; |
| vcpu->arch.shared->msr = msr; |
| kvmppc_recalc_shadow_msr(vcpu); |
| |
| if (msr & MSR_POW) { |
| if (!vcpu->arch.pending_exceptions) { |
| kvm_vcpu_block(vcpu); |
| clear_bit(KVM_REQ_UNHALT, &vcpu->requests); |
| vcpu->stat.halt_wakeup++; |
| |
| /* Unset POW bit after we woke up */ |
| msr &= ~MSR_POW; |
| vcpu->arch.shared->msr = msr; |
| } |
| } |
| |
| if ((vcpu->arch.shared->msr & (MSR_PR|MSR_IR|MSR_DR)) != |
| (old_msr & (MSR_PR|MSR_IR|MSR_DR))) { |
| kvmppc_mmu_flush_segments(vcpu); |
| kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); |
| |
| /* Preload magic page segment when in kernel mode */ |
| if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) { |
| struct kvm_vcpu_arch *a = &vcpu->arch; |
| |
| if (msr & MSR_DR) |
| kvmppc_mmu_map_segment(vcpu, a->magic_page_ea); |
| else |
| kvmppc_mmu_map_segment(vcpu, a->magic_page_pa); |
| } |
| } |
| |
| /* |
| * When switching from 32 to 64-bit, we may have a stale 32-bit |
| * magic page around, we need to flush it. Typically 32-bit magic |
| * page will be instanciated when calling into RTAS. Note: We |
| * assume that such transition only happens while in kernel mode, |
| * ie, we never transition from user 32-bit to kernel 64-bit with |
| * a 32-bit magic page around. |
| */ |
| if (vcpu->arch.magic_page_pa && |
| !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) { |
| /* going from RTAS to normal kernel code */ |
| kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa, |
| ~0xFFFUL); |
| } |
| |
| /* Preload FPU if it's enabled */ |
| if (vcpu->arch.shared->msr & MSR_FP) |
| kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); |
| } |
| |
| void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr) |
| { |
| u32 host_pvr; |
| |
| vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB; |
| vcpu->arch.pvr = pvr; |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| if ((pvr >= 0x330000) && (pvr < 0x70330000)) { |
| kvmppc_mmu_book3s_64_init(vcpu); |
| if (!to_book3s(vcpu)->hior_explicit) |
| to_book3s(vcpu)->hior = 0xfff00000; |
| to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL; |
| vcpu->arch.cpu_type = KVM_CPU_3S_64; |
| } else |
| #endif |
| { |
| kvmppc_mmu_book3s_32_init(vcpu); |
| if (!to_book3s(vcpu)->hior_explicit) |
| to_book3s(vcpu)->hior = 0; |
| to_book3s(vcpu)->msr_mask = 0xffffffffULL; |
| vcpu->arch.cpu_type = KVM_CPU_3S_32; |
| } |
| |
| kvmppc_sanity_check(vcpu); |
| |
| /* If we are in hypervisor level on 970, we can tell the CPU to |
| * treat DCBZ as 32 bytes store */ |
| vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32; |
| if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) && |
| !strcmp(cur_cpu_spec->platform, "ppc970")) |
| vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; |
| |
| /* Cell performs badly if MSR_FEx are set. So let's hope nobody |
| really needs them in a VM on Cell and force disable them. */ |
| if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be")) |
| to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1); |
| |
| /* |
| * If they're asking for POWER6 or later, set the flag |
| * indicating that we can do multiple large page sizes |
| * and 1TB segments. |
| * Also set the flag that indicates that tlbie has the large |
| * page bit in the RB operand instead of the instruction. |
| */ |
| switch (PVR_VER(pvr)) { |
| case PVR_POWER6: |
| case PVR_POWER7: |
| case PVR_POWER7p: |
| case PVR_POWER8: |
| vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE | |
| BOOK3S_HFLAG_NEW_TLBIE; |
| break; |
| } |
| |
| #ifdef CONFIG_PPC_BOOK3S_32 |
| /* 32 bit Book3S always has 32 byte dcbz */ |
| vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; |
| #endif |
| |
| /* On some CPUs we can execute paired single operations natively */ |
| asm ( "mfpvr %0" : "=r"(host_pvr)); |
| switch (host_pvr) { |
| case 0x00080200: /* lonestar 2.0 */ |
| case 0x00088202: /* lonestar 2.2 */ |
| case 0x70000100: /* gekko 1.0 */ |
| case 0x00080100: /* gekko 2.0 */ |
| case 0x00083203: /* gekko 2.3a */ |
| case 0x00083213: /* gekko 2.3b */ |
| case 0x00083204: /* gekko 2.4 */ |
| case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */ |
| case 0x00087200: /* broadway */ |
| vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS; |
| /* Enable HID2.PSE - in case we need it later */ |
| mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29)); |
| } |
| } |
| |
| /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To |
| * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to |
| * emulate 32 bytes dcbz length. |
| * |
| * The Book3s_64 inventors also realized this case and implemented a special bit |
| * in the HID5 register, which is a hypervisor ressource. Thus we can't use it. |
| * |
| * My approach here is to patch the dcbz instruction on executing pages. |
| */ |
| static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) |
| { |
| struct page *hpage; |
| u64 hpage_offset; |
| u32 *page; |
| int i; |
| |
| hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT); |
| if (is_error_page(hpage)) |
| return; |
| |
| hpage_offset = pte->raddr & ~PAGE_MASK; |
| hpage_offset &= ~0xFFFULL; |
| hpage_offset /= 4; |
| |
| get_page(hpage); |
| page = kmap_atomic(hpage); |
| |
| /* patch dcbz into reserved instruction, so we trap */ |
| for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++) |
| if ((page[i] & 0xff0007ff) == INS_DCBZ) |
| page[i] &= 0xfffffff7; |
| |
| kunmap_atomic(page); |
| put_page(hpage); |
| } |
| |
| static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| ulong mp_pa = vcpu->arch.magic_page_pa; |
| |
| if (!(vcpu->arch.shared->msr & MSR_SF)) |
| mp_pa = (uint32_t)mp_pa; |
| |
| if (unlikely(mp_pa) && |
| unlikely((mp_pa & KVM_PAM) >> PAGE_SHIFT == gfn)) { |
| return 1; |
| } |
| |
| return kvm_is_visible_gfn(vcpu->kvm, gfn); |
| } |
| |
| int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu, |
| ulong eaddr, int vec) |
| { |
| bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE); |
| int r = RESUME_GUEST; |
| int relocated; |
| int page_found = 0; |
| struct kvmppc_pte pte; |
| bool is_mmio = false; |
| bool dr = (vcpu->arch.shared->msr & MSR_DR) ? true : false; |
| bool ir = (vcpu->arch.shared->msr & MSR_IR) ? true : false; |
| u64 vsid; |
| |
| relocated = data ? dr : ir; |
| |
| /* Resolve real address if translation turned on */ |
| if (relocated) { |
| page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data); |
| } else { |
| pte.may_execute = true; |
| pte.may_read = true; |
| pte.may_write = true; |
| pte.raddr = eaddr & KVM_PAM; |
| pte.eaddr = eaddr; |
| pte.vpage = eaddr >> 12; |
| pte.page_size = MMU_PAGE_64K; |
| } |
| |
| switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) { |
| case 0: |
| pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12)); |
| break; |
| case MSR_DR: |
| case MSR_IR: |
| vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid); |
| |
| if ((vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) == MSR_DR) |
| pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12)); |
| else |
| pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12)); |
| pte.vpage |= vsid; |
| |
| if (vsid == -1) |
| page_found = -EINVAL; |
| break; |
| } |
| |
| if (vcpu->arch.mmu.is_dcbz32(vcpu) && |
| (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { |
| /* |
| * If we do the dcbz hack, we have to NX on every execution, |
| * so we can patch the executing code. This renders our guest |
| * NX-less. |
| */ |
| pte.may_execute = !data; |
| } |
| |
| if (page_found == -ENOENT) { |
| /* Page not found in guest PTE entries */ |
| vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu); |
| vcpu->arch.shared->dsisr = vcpu->arch.fault_dsisr; |
| vcpu->arch.shared->msr |= |
| vcpu->arch.shadow_srr1 & 0x00000000f8000000ULL; |
| kvmppc_book3s_queue_irqprio(vcpu, vec); |
| } else if (page_found == -EPERM) { |
| /* Storage protection */ |
| vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu); |
| vcpu->arch.shared->dsisr = vcpu->arch.fault_dsisr & ~DSISR_NOHPTE; |
| vcpu->arch.shared->dsisr |= DSISR_PROTFAULT; |
| vcpu->arch.shared->msr |= |
| vcpu->arch.shadow_srr1 & 0x00000000f8000000ULL; |
| kvmppc_book3s_queue_irqprio(vcpu, vec); |
| } else if (page_found == -EINVAL) { |
| /* Page not found in guest SLB */ |
| vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu); |
| kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80); |
| } else if (!is_mmio && |
| kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) { |
| /* The guest's PTE is not mapped yet. Map on the host */ |
| kvmppc_mmu_map_page(vcpu, &pte); |
| if (data) |
| vcpu->stat.sp_storage++; |
| else if (vcpu->arch.mmu.is_dcbz32(vcpu) && |
| (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) |
| kvmppc_patch_dcbz(vcpu, &pte); |
| } else { |
| /* MMIO */ |
| vcpu->stat.mmio_exits++; |
| vcpu->arch.paddr_accessed = pte.raddr; |
| vcpu->arch.vaddr_accessed = pte.eaddr; |
| r = kvmppc_emulate_mmio(run, vcpu); |
| if ( r == RESUME_HOST_NV ) |
| r = RESUME_HOST; |
| } |
| |
| return r; |
| } |
| |
| static inline int get_fpr_index(int i) |
| { |
| return i * TS_FPRWIDTH; |
| } |
| |
| /* Give up external provider (FPU, Altivec, VSX) */ |
| void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr) |
| { |
| struct thread_struct *t = ¤t->thread; |
| u64 *vcpu_fpr = vcpu->arch.fpr; |
| #ifdef CONFIG_VSX |
| u64 *vcpu_vsx = vcpu->arch.vsr; |
| #endif |
| u64 *thread_fpr = (u64*)t->fpr; |
| int i; |
| |
| /* |
| * VSX instructions can access FP and vector registers, so if |
| * we are giving up VSX, make sure we give up FP and VMX as well. |
| */ |
| if (msr & MSR_VSX) |
| msr |= MSR_FP | MSR_VEC; |
| |
| msr &= vcpu->arch.guest_owned_ext; |
| if (!msr) |
| return; |
| |
| #ifdef DEBUG_EXT |
| printk(KERN_INFO "Giving up ext 0x%lx\n", msr); |
| #endif |
| |
| if (msr & MSR_FP) { |
| /* |
| * Note that on CPUs with VSX, giveup_fpu stores |
| * both the traditional FP registers and the added VSX |
| * registers into thread.fpr[]. |
| */ |
| if (current->thread.regs->msr & MSR_FP) |
| giveup_fpu(current); |
| for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++) |
| vcpu_fpr[i] = thread_fpr[get_fpr_index(i)]; |
| |
| vcpu->arch.fpscr = t->fpscr.val; |
| |
| #ifdef CONFIG_VSX |
| if (cpu_has_feature(CPU_FTR_VSX)) |
| for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr) / 2; i++) |
| vcpu_vsx[i] = thread_fpr[get_fpr_index(i) + 1]; |
| #endif |
| } |
| |
| #ifdef CONFIG_ALTIVEC |
| if (msr & MSR_VEC) { |
| if (current->thread.regs->msr & MSR_VEC) |
| giveup_altivec(current); |
| memcpy(vcpu->arch.vr, t->vr, sizeof(vcpu->arch.vr)); |
| vcpu->arch.vscr = t->vscr; |
| } |
| #endif |
| |
| vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX); |
| kvmppc_recalc_shadow_msr(vcpu); |
| } |
| |
| static int kvmppc_read_inst(struct kvm_vcpu *vcpu) |
| { |
| ulong srr0 = kvmppc_get_pc(vcpu); |
| u32 last_inst = kvmppc_get_last_inst(vcpu); |
| int ret; |
| |
| ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false); |
| if (ret == -ENOENT) { |
| ulong msr = vcpu->arch.shared->msr; |
| |
| msr = kvmppc_set_field(msr, 33, 33, 1); |
| msr = kvmppc_set_field(msr, 34, 36, 0); |
| vcpu->arch.shared->msr = kvmppc_set_field(msr, 42, 47, 0); |
| kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE); |
| return EMULATE_AGAIN; |
| } |
| |
| return EMULATE_DONE; |
| } |
| |
| static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr) |
| { |
| |
| /* Need to do paired single emulation? */ |
| if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)) |
| return EMULATE_DONE; |
| |
| /* Read out the instruction */ |
| if (kvmppc_read_inst(vcpu) == EMULATE_DONE) |
| /* Need to emulate */ |
| return EMULATE_FAIL; |
| |
| return EMULATE_AGAIN; |
| } |
| |
| /* Handle external providers (FPU, Altivec, VSX) */ |
| static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, |
| ulong msr) |
| { |
| struct thread_struct *t = ¤t->thread; |
| u64 *vcpu_fpr = vcpu->arch.fpr; |
| #ifdef CONFIG_VSX |
| u64 *vcpu_vsx = vcpu->arch.vsr; |
| #endif |
| u64 *thread_fpr = (u64*)t->fpr; |
| int i; |
| |
| /* When we have paired singles, we emulate in software */ |
| if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) |
| return RESUME_GUEST; |
| |
| if (!(vcpu->arch.shared->msr & msr)) { |
| kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
| return RESUME_GUEST; |
| } |
| |
| if (msr == MSR_VSX) { |
| /* No VSX? Give an illegal instruction interrupt */ |
| #ifdef CONFIG_VSX |
| if (!cpu_has_feature(CPU_FTR_VSX)) |
| #endif |
| { |
| kvmppc_core_queue_program(vcpu, SRR1_PROGILL); |
| return RESUME_GUEST; |
| } |
| |
| /* |
| * We have to load up all the FP and VMX registers before |
| * we can let the guest use VSX instructions. |
| */ |
| msr = MSR_FP | MSR_VEC | MSR_VSX; |
| } |
| |
| /* See if we already own all the ext(s) needed */ |
| msr &= ~vcpu->arch.guest_owned_ext; |
| if (!msr) |
| return RESUME_GUEST; |
| |
| #ifdef DEBUG_EXT |
| printk(KERN_INFO "Loading up ext 0x%lx\n", msr); |
| #endif |
| |
| if (msr & MSR_FP) { |
| for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++) |
| thread_fpr[get_fpr_index(i)] = vcpu_fpr[i]; |
| #ifdef CONFIG_VSX |
| for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr) / 2; i++) |
| thread_fpr[get_fpr_index(i) + 1] = vcpu_vsx[i]; |
| #endif |
| t->fpscr.val = vcpu->arch.fpscr; |
| t->fpexc_mode = 0; |
| kvmppc_load_up_fpu(); |
| } |
| |
| if (msr & MSR_VEC) { |
| #ifdef CONFIG_ALTIVEC |
| memcpy(t->vr, vcpu->arch.vr, sizeof(vcpu->arch.vr)); |
| t->vscr = vcpu->arch.vscr; |
| t->vrsave = -1; |
| kvmppc_load_up_altivec(); |
| #endif |
| } |
| |
| current->thread.regs->msr |= msr; |
| vcpu->arch.guest_owned_ext |= msr; |
| kvmppc_recalc_shadow_msr(vcpu); |
| |
| return RESUME_GUEST; |
| } |
| |
| /* |
| * Kernel code using FP or VMX could have flushed guest state to |
| * the thread_struct; if so, get it back now. |
| */ |
| static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu) |
| { |
| unsigned long lost_ext; |
| |
| lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr; |
| if (!lost_ext) |
| return; |
| |
| if (lost_ext & MSR_FP) |
| kvmppc_load_up_fpu(); |
| #ifdef CONFIG_ALTIVEC |
| if (lost_ext & MSR_VEC) |
| kvmppc_load_up_altivec(); |
| #endif |
| current->thread.regs->msr |= lost_ext; |
| } |
| |
| int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, |
| unsigned int exit_nr) |
| { |
| int r = RESUME_HOST; |
| int s; |
| |
| vcpu->stat.sum_exits++; |
| |
| run->exit_reason = KVM_EXIT_UNKNOWN; |
| run->ready_for_interrupt_injection = 1; |
| |
| /* We get here with MSR.EE=1 */ |
| |
| trace_kvm_exit(exit_nr, vcpu); |
| kvm_guest_exit(); |
| |
| switch (exit_nr) { |
| case BOOK3S_INTERRUPT_INST_STORAGE: |
| { |
| ulong shadow_srr1 = vcpu->arch.shadow_srr1; |
| vcpu->stat.pf_instruc++; |
| |
| #ifdef CONFIG_PPC_BOOK3S_32 |
| /* We set segments as unused segments when invalidating them. So |
| * treat the respective fault as segment fault. */ |
| { |
| struct kvmppc_book3s_shadow_vcpu *svcpu; |
| u32 sr; |
| |
| svcpu = svcpu_get(vcpu); |
| sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT]; |
| svcpu_put(svcpu); |
| if (sr == SR_INVALID) { |
| kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); |
| r = RESUME_GUEST; |
| break; |
| } |
| } |
| #endif |
| |
| /* only care about PTEG not found errors, but leave NX alone */ |
| if (shadow_srr1 & 0x40000000) { |
| r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr); |
| vcpu->stat.sp_instruc++; |
| } else if (vcpu->arch.mmu.is_dcbz32(vcpu) && |
| (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { |
| /* |
| * XXX If we do the dcbz hack we use the NX bit to flush&patch the page, |
| * so we can't use the NX bit inside the guest. Let's cross our fingers, |
| * that no guest that needs the dcbz hack does NX. |
| */ |
| kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL); |
| r = RESUME_GUEST; |
| } else { |
| vcpu->arch.shared->msr |= shadow_srr1 & 0x58000000; |
| kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
| r = RESUME_GUEST; |
| } |
| break; |
| } |
| case BOOK3S_INTERRUPT_DATA_STORAGE: |
| { |
| ulong dar = kvmppc_get_fault_dar(vcpu); |
| u32 fault_dsisr = vcpu->arch.fault_dsisr; |
| vcpu->stat.pf_storage++; |
| |
| #ifdef CONFIG_PPC_BOOK3S_32 |
| /* We set segments as unused segments when invalidating them. So |
| * treat the respective fault as segment fault. */ |
| { |
| struct kvmppc_book3s_shadow_vcpu *svcpu; |
| u32 sr; |
| |
| svcpu = svcpu_get(vcpu); |
| sr = svcpu->sr[dar >> SID_SHIFT]; |
| svcpu_put(svcpu); |
| if (sr == SR_INVALID) { |
| kvmppc_mmu_map_segment(vcpu, dar); |
| r = RESUME_GUEST; |
| break; |
| } |
| } |
| #endif |
| |
| /* The only case we need to handle is missing shadow PTEs */ |
| if (fault_dsisr & DSISR_NOHPTE) { |
| r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr); |
| } else { |
| vcpu->arch.shared->dar = dar; |
| vcpu->arch.shared->dsisr = fault_dsisr; |
| kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
| r = RESUME_GUEST; |
| } |
| break; |
| } |
| case BOOK3S_INTERRUPT_DATA_SEGMENT: |
| if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) { |
| vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu); |
| kvmppc_book3s_queue_irqprio(vcpu, |
| BOOK3S_INTERRUPT_DATA_SEGMENT); |
| } |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_INST_SEGMENT: |
| if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) { |
| kvmppc_book3s_queue_irqprio(vcpu, |
| BOOK3S_INTERRUPT_INST_SEGMENT); |
| } |
| r = RESUME_GUEST; |
| break; |
| /* We're good on these - the host merely wanted to get our attention */ |
| case BOOK3S_INTERRUPT_DECREMENTER: |
| case BOOK3S_INTERRUPT_HV_DECREMENTER: |
| vcpu->stat.dec_exits++; |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_EXTERNAL: |
| case BOOK3S_INTERRUPT_EXTERNAL_LEVEL: |
| case BOOK3S_INTERRUPT_EXTERNAL_HV: |
| vcpu->stat.ext_intr_exits++; |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_PERFMON: |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_PROGRAM: |
| case BOOK3S_INTERRUPT_H_EMUL_ASSIST: |
| { |
| enum emulation_result er; |
| ulong flags; |
| |
| program_interrupt: |
| flags = vcpu->arch.shadow_srr1 & 0x1f0000ull; |
| |
| if (vcpu->arch.shared->msr & MSR_PR) { |
| #ifdef EXIT_DEBUG |
| printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu)); |
| #endif |
| if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) != |
| (INS_DCBZ & 0xfffffff7)) { |
| kvmppc_core_queue_program(vcpu, flags); |
| r = RESUME_GUEST; |
| break; |
| } |
| } |
| |
| vcpu->stat.emulated_inst_exits++; |
| er = kvmppc_emulate_instruction(run, vcpu); |
| switch (er) { |
| case EMULATE_DONE: |
| r = RESUME_GUEST_NV; |
| break; |
| case EMULATE_AGAIN: |
| r = RESUME_GUEST; |
| break; |
| case EMULATE_FAIL: |
| printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n", |
| __func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu)); |
| kvmppc_core_queue_program(vcpu, flags); |
| r = RESUME_GUEST; |
| break; |
| case EMULATE_DO_MMIO: |
| run->exit_reason = KVM_EXIT_MMIO; |
| r = RESUME_HOST_NV; |
| break; |
| case EMULATE_EXIT_USER: |
| r = RESUME_HOST_NV; |
| break; |
| default: |
| BUG(); |
| } |
| break; |
| } |
| case BOOK3S_INTERRUPT_SYSCALL: |
| if (vcpu->arch.papr_enabled && |
| (kvmppc_get_last_sc(vcpu) == 0x44000022) && |
| !(vcpu->arch.shared->msr & MSR_PR)) { |
| /* SC 1 papr hypercalls */ |
| ulong cmd = kvmppc_get_gpr(vcpu, 3); |
| int i; |
| |
| #ifdef CONFIG_KVM_BOOK3S_64_PR |
| if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) { |
| r = RESUME_GUEST; |
| break; |
| } |
| #endif |
| |
| run->papr_hcall.nr = cmd; |
| for (i = 0; i < 9; ++i) { |
| ulong gpr = kvmppc_get_gpr(vcpu, 4 + i); |
| run->papr_hcall.args[i] = gpr; |
| } |
| run->exit_reason = KVM_EXIT_PAPR_HCALL; |
| vcpu->arch.hcall_needed = 1; |
| r = RESUME_HOST; |
| } else if (vcpu->arch.osi_enabled && |
| (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) && |
| (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) { |
| /* MOL hypercalls */ |
| u64 *gprs = run->osi.gprs; |
| int i; |
| |
| run->exit_reason = KVM_EXIT_OSI; |
| for (i = 0; i < 32; i++) |
| gprs[i] = kvmppc_get_gpr(vcpu, i); |
| vcpu->arch.osi_needed = 1; |
| r = RESUME_HOST_NV; |
| } else if (!(vcpu->arch.shared->msr & MSR_PR) && |
| (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) { |
| /* KVM PV hypercalls */ |
| kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu)); |
| r = RESUME_GUEST; |
| } else { |
| /* Guest syscalls */ |
| vcpu->stat.syscall_exits++; |
| kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
| r = RESUME_GUEST; |
| } |
| break; |
| case BOOK3S_INTERRUPT_FP_UNAVAIL: |
| case BOOK3S_INTERRUPT_ALTIVEC: |
| case BOOK3S_INTERRUPT_VSX: |
| { |
| int ext_msr = 0; |
| |
| switch (exit_nr) { |
| case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP; break; |
| case BOOK3S_INTERRUPT_ALTIVEC: ext_msr = MSR_VEC; break; |
| case BOOK3S_INTERRUPT_VSX: ext_msr = MSR_VSX; break; |
| } |
| |
| switch (kvmppc_check_ext(vcpu, exit_nr)) { |
| case EMULATE_DONE: |
| /* everything ok - let's enable the ext */ |
| r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr); |
| break; |
| case EMULATE_FAIL: |
| /* we need to emulate this instruction */ |
| goto program_interrupt; |
| break; |
| default: |
| /* nothing to worry about - go again */ |
| break; |
| } |
| break; |
| } |
| case BOOK3S_INTERRUPT_ALIGNMENT: |
| if (kvmppc_read_inst(vcpu) == EMULATE_DONE) { |
| vcpu->arch.shared->dsisr = kvmppc_alignment_dsisr(vcpu, |
| kvmppc_get_last_inst(vcpu)); |
| vcpu->arch.shared->dar = kvmppc_alignment_dar(vcpu, |
| kvmppc_get_last_inst(vcpu)); |
| kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
| } |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_MACHINE_CHECK: |
| case BOOK3S_INTERRUPT_TRACE: |
| kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
| r = RESUME_GUEST; |
| break; |
| default: |
| { |
| ulong shadow_srr1 = vcpu->arch.shadow_srr1; |
| /* Ugh - bork here! What did we get? */ |
| printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n", |
| exit_nr, kvmppc_get_pc(vcpu), shadow_srr1); |
| r = RESUME_HOST; |
| BUG(); |
| break; |
| } |
| } |
| |
| if (!(r & RESUME_HOST)) { |
| /* To avoid clobbering exit_reason, only check for signals if |
| * we aren't already exiting to userspace for some other |
| * reason. */ |
| |
| /* |
| * Interrupts could be timers for the guest which we have to |
| * inject again, so let's postpone them until we're in the guest |
| * and if we really did time things so badly, then we just exit |
| * again due to a host external interrupt. |
| */ |
| local_irq_disable(); |
| s = kvmppc_prepare_to_enter(vcpu); |
| if (s <= 0) { |
| local_irq_enable(); |
| r = s; |
| } else { |
| kvmppc_fix_ee_before_entry(); |
| } |
| kvmppc_handle_lost_ext(vcpu); |
| } |
| |
| trace_kvm_book3s_reenter(r, vcpu); |
| |
| return r; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); |
| int i; |
| |
| sregs->pvr = vcpu->arch.pvr; |
| |
| sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1; |
| if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { |
| for (i = 0; i < 64; i++) { |
| sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i; |
| sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; |
| } |
| } else { |
| for (i = 0; i < 16; i++) |
| sregs->u.s.ppc32.sr[i] = vcpu->arch.shared->sr[i]; |
| |
| for (i = 0; i < 8; i++) { |
| sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw; |
| sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); |
| int i; |
| |
| kvmppc_set_pvr(vcpu, sregs->pvr); |
| |
| vcpu3s->sdr1 = sregs->u.s.sdr1; |
| if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { |
| for (i = 0; i < 64; i++) { |
| vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv, |
| sregs->u.s.ppc64.slb[i].slbe); |
| } |
| } else { |
| for (i = 0; i < 16; i++) { |
| vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]); |
| } |
| for (i = 0; i < 8; i++) { |
| kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false, |
| (u32)sregs->u.s.ppc32.ibat[i]); |
| kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true, |
| (u32)(sregs->u.s.ppc32.ibat[i] >> 32)); |
| kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false, |
| (u32)sregs->u.s.ppc32.dbat[i]); |
| kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true, |
| (u32)(sregs->u.s.ppc32.dbat[i] >> 32)); |
| } |
| } |
| |
| /* Flush the MMU after messing with the segments */ |
| kvmppc_mmu_pte_flush(vcpu, 0, 0); |
| |
| return 0; |
| } |
| |
| int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) |
| { |
| int r = 0; |
| |
| switch (id) { |
| case KVM_REG_PPC_HIOR: |
| *val = get_reg_val(id, to_book3s(vcpu)->hior); |
| break; |
| #ifdef CONFIG_VSX |
| case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: { |
| long int i = id - KVM_REG_PPC_VSR0; |
| |
| if (!cpu_has_feature(CPU_FTR_VSX)) { |
| r = -ENXIO; |
| break; |
| } |
| val->vsxval[0] = vcpu->arch.fpr[i]; |
| val->vsxval[1] = vcpu->arch.vsr[i]; |
| break; |
| } |
| #endif /* CONFIG_VSX */ |
| default: |
| r = -EINVAL; |
| break; |
| } |
| |
| return r; |
| } |
| |
| int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) |
| { |
| int r = 0; |
| |
| switch (id) { |
| case KVM_REG_PPC_HIOR: |
| to_book3s(vcpu)->hior = set_reg_val(id, *val); |
| to_book3s(vcpu)->hior_explicit = true; |
| break; |
| #ifdef CONFIG_VSX |
| case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: { |
| long int i = id - KVM_REG_PPC_VSR0; |
| |
| if (!cpu_has_feature(CPU_FTR_VSX)) { |
| r = -ENXIO; |
| break; |
| } |
| vcpu->arch.fpr[i] = val->vsxval[0]; |
| vcpu->arch.vsr[i] = val->vsxval[1]; |
| break; |
| } |
| #endif /* CONFIG_VSX */ |
| default: |
| r = -EINVAL; |
| break; |
| } |
| |
| return r; |
| } |
| |
| int kvmppc_core_check_processor_compat(void) |
| { |
| return 0; |
| } |
| |
| struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) |
| { |
| struct kvmppc_vcpu_book3s *vcpu_book3s; |
| struct kvm_vcpu *vcpu; |
| int err = -ENOMEM; |
| unsigned long p; |
| |
| vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s)); |
| if (!vcpu_book3s) |
| goto out; |
| |
| #ifdef CONFIG_KVM_BOOK3S_32 |
| vcpu_book3s->shadow_vcpu = |
| kzalloc(sizeof(*vcpu_book3s->shadow_vcpu), GFP_KERNEL); |
| if (!vcpu_book3s->shadow_vcpu) |
| goto free_vcpu; |
| #endif |
| vcpu = &vcpu_book3s->vcpu; |
| err = kvm_vcpu_init(vcpu, kvm, id); |
| if (err) |
| goto free_shadow_vcpu; |
| |
| err = -ENOMEM; |
| p = __get_free_page(GFP_KERNEL|__GFP_ZERO); |
| if (!p) |
| goto uninit_vcpu; |
| /* the real shared page fills the last 4k of our page */ |
| vcpu->arch.shared = (void *)(p + PAGE_SIZE - 4096); |
| |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| /* |
| * Default to the same as the host if we're on sufficiently |
| * recent machine that we have 1TB segments; |
| * otherwise default to PPC970FX. |
| */ |
| vcpu->arch.pvr = 0x3C0301; |
| if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) |
| vcpu->arch.pvr = mfspr(SPRN_PVR); |
| #else |
| /* default to book3s_32 (750) */ |
| vcpu->arch.pvr = 0x84202; |
| #endif |
| kvmppc_set_pvr(vcpu, vcpu->arch.pvr); |
| vcpu->arch.slb_nr = 64; |
| |
| vcpu->arch.shadow_msr = MSR_USER64; |
| |
| err = kvmppc_mmu_init(vcpu); |
| if (err < 0) |
| goto uninit_vcpu; |
| |
| return vcpu; |
| |
| uninit_vcpu: |
| kvm_vcpu_uninit(vcpu); |
| free_shadow_vcpu: |
| #ifdef CONFIG_KVM_BOOK3S_32 |
| kfree(vcpu_book3s->shadow_vcpu); |
| free_vcpu: |
| #endif |
| vfree(vcpu_book3s); |
| out: |
| return ERR_PTR(err); |
| } |
| |
| void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); |
| |
| free_page((unsigned long)vcpu->arch.shared & PAGE_MASK); |
| kvm_vcpu_uninit(vcpu); |
| kfree(vcpu_book3s->shadow_vcpu); |
| vfree(vcpu_book3s); |
| } |
| |
| int kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) |
| { |
| int ret; |
| double fpr[32][TS_FPRWIDTH]; |
| unsigned int fpscr; |
| int fpexc_mode; |
| #ifdef CONFIG_ALTIVEC |
| vector128 vr[32]; |
| vector128 vscr; |
| unsigned long uninitialized_var(vrsave); |
| int used_vr; |
| #endif |
| #ifdef CONFIG_VSX |
| int used_vsr; |
| #endif |
| ulong ext_msr; |
| |
| /* Check if we can run the vcpu at all */ |
| if (!vcpu->arch.sane) { |
| kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * Interrupts could be timers for the guest which we have to inject |
| * again, so let's postpone them until we're in the guest and if we |
| * really did time things so badly, then we just exit again due to |
| * a host external interrupt. |
| */ |
| local_irq_disable(); |
| ret = kvmppc_prepare_to_enter(vcpu); |
| if (ret <= 0) { |
| local_irq_enable(); |
| goto out; |
| } |
| |
| /* Save FPU state in stack */ |
| if (current->thread.regs->msr & MSR_FP) |
| giveup_fpu(current); |
| memcpy(fpr, current->thread.fpr, sizeof(current->thread.fpr)); |
| fpscr = current->thread.fpscr.val; |
| fpexc_mode = current->thread.fpexc_mode; |
| |
| #ifdef CONFIG_ALTIVEC |
| /* Save Altivec state in stack */ |
| used_vr = current->thread.used_vr; |
| if (used_vr) { |
| if (current->thread.regs->msr & MSR_VEC) |
| giveup_altivec(current); |
| memcpy(vr, current->thread.vr, sizeof(current->thread.vr)); |
| vscr = current->thread.vscr; |
| vrsave = current->thread.vrsave; |
| } |
| #endif |
| |
| #ifdef CONFIG_VSX |
| /* Save VSX state in stack */ |
| used_vsr = current->thread.used_vsr; |
| if (used_vsr && (current->thread.regs->msr & MSR_VSX)) |
| __giveup_vsx(current); |
| #endif |
| |
| /* Remember the MSR with disabled extensions */ |
| ext_msr = current->thread.regs->msr; |
| |
| /* Preload FPU if it's enabled */ |
| if (vcpu->arch.shared->msr & MSR_FP) |
| kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); |
| |
| kvmppc_fix_ee_before_entry(); |
| |
| ret = __kvmppc_vcpu_run(kvm_run, vcpu); |
| |
| /* No need for kvm_guest_exit. It's done in handle_exit. |
| We also get here with interrupts enabled. */ |
| |
| /* Make sure we save the guest FPU/Altivec/VSX state */ |
| kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); |
| |
| current->thread.regs->msr = ext_msr; |
| |
| /* Restore FPU/VSX state from stack */ |
| memcpy(current->thread.fpr, fpr, sizeof(current->thread.fpr)); |
| current->thread.fpscr.val = fpscr; |
| current->thread.fpexc_mode = fpexc_mode; |
| |
| #ifdef CONFIG_ALTIVEC |
| /* Restore Altivec state from stack */ |
| if (used_vr && current->thread.used_vr) { |
| memcpy(current->thread.vr, vr, sizeof(current->thread.vr)); |
| current->thread.vscr = vscr; |
| current->thread.vrsave = vrsave; |
| } |
| current->thread.used_vr = used_vr; |
| #endif |
| |
| #ifdef CONFIG_VSX |
| current->thread.used_vsr = used_vsr; |
| #endif |
| |
| out: |
| vcpu->mode = OUTSIDE_GUEST_MODE; |
| return ret; |
| } |
| |
| /* |
| * Get (and clear) the dirty memory log for a memory slot. |
| */ |
| int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, |
| struct kvm_dirty_log *log) |
| { |
| struct kvm_memory_slot *memslot; |
| struct kvm_vcpu *vcpu; |
| ulong ga, ga_end; |
| int is_dirty = 0; |
| int r; |
| unsigned long n; |
| |
| mutex_lock(&kvm->slots_lock); |
| |
| r = kvm_get_dirty_log(kvm, log, &is_dirty); |
| if (r) |
| goto out; |
| |
| /* If nothing is dirty, don't bother messing with page tables. */ |
| if (is_dirty) { |
| memslot = id_to_memslot(kvm->memslots, log->slot); |
| |
| ga = memslot->base_gfn << PAGE_SHIFT; |
| ga_end = ga + (memslot->npages << PAGE_SHIFT); |
| |
| kvm_for_each_vcpu(n, vcpu, kvm) |
| kvmppc_mmu_pte_pflush(vcpu, ga, ga_end); |
| |
| n = kvm_dirty_bitmap_bytes(memslot); |
| memset(memslot->dirty_bitmap, 0, n); |
| } |
| |
| r = 0; |
| out: |
| mutex_unlock(&kvm->slots_lock); |
| return r; |
| } |
| |
| #ifdef CONFIG_PPC64 |
| int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info) |
| { |
| long int i; |
| struct kvm_vcpu *vcpu; |
| |
| info->flags = 0; |
| |
| /* SLB is always 64 entries */ |
| info->slb_size = 64; |
| |
| /* Standard 4k base page size segment */ |
| info->sps[0].page_shift = 12; |
| info->sps[0].slb_enc = 0; |
| info->sps[0].enc[0].page_shift = 12; |
| info->sps[0].enc[0].pte_enc = 0; |
| |
| /* |
| * 64k large page size. |
| * We only want to put this in if the CPUs we're emulating |
| * support it, but unfortunately we don't have a vcpu easily |
| * to hand here to test. Just pick the first vcpu, and if |
| * that doesn't exist yet, report the minimum capability, |
| * i.e., no 64k pages. |
| * 1T segment support goes along with 64k pages. |
| */ |
| i = 1; |
| vcpu = kvm_get_vcpu(kvm, 0); |
| if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) { |
| info->flags = KVM_PPC_1T_SEGMENTS; |
| info->sps[i].page_shift = 16; |
| info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01; |
| info->sps[i].enc[0].page_shift = 16; |
| info->sps[i].enc[0].pte_enc = 1; |
| ++i; |
| } |
| |
| /* Standard 16M large page size segment */ |
| info->sps[i].page_shift = 24; |
| info->sps[i].slb_enc = SLB_VSID_L; |
| info->sps[i].enc[0].page_shift = 24; |
| info->sps[i].enc[0].pte_enc = 0; |
| |
| return 0; |
| } |
| #endif /* CONFIG_PPC64 */ |
| |
| void kvmppc_core_free_memslot(struct kvm_memory_slot *free, |
| struct kvm_memory_slot *dont) |
| { |
| } |
| |
| int kvmppc_core_create_memslot(struct kvm_memory_slot *slot, |
| unsigned long npages) |
| { |
| return 0; |
| } |
| |
| int kvmppc_core_prepare_memory_region(struct kvm *kvm, |
| struct kvm_memory_slot *memslot, |
| struct kvm_userspace_memory_region *mem) |
| { |
| return 0; |
| } |
| |
| void kvmppc_core_commit_memory_region(struct kvm *kvm, |
| struct kvm_userspace_memory_region *mem, |
| const struct kvm_memory_slot *old) |
| { |
| } |
| |
| void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot) |
| { |
| } |
| |
| static unsigned int kvm_global_user_count = 0; |
| static DEFINE_SPINLOCK(kvm_global_user_count_lock); |
| |
| int kvmppc_core_init_vm(struct kvm *kvm) |
| { |
| #ifdef CONFIG_PPC64 |
| INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables); |
| INIT_LIST_HEAD(&kvm->arch.rtas_tokens); |
| #endif |
| mutex_init(&kvm->arch.hpt_mutex); |
| |
| if (firmware_has_feature(FW_FEATURE_SET_MODE)) { |
| spin_lock(&kvm_global_user_count_lock); |
| if (++kvm_global_user_count == 1) |
| pSeries_disable_reloc_on_exc(); |
| spin_unlock(&kvm_global_user_count_lock); |
| } |
| return 0; |
| } |
| |
| void kvmppc_core_destroy_vm(struct kvm *kvm) |
| { |
| #ifdef CONFIG_PPC64 |
| WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); |
| #endif |
| |
| if (firmware_has_feature(FW_FEATURE_SET_MODE)) { |
| spin_lock(&kvm_global_user_count_lock); |
| BUG_ON(kvm_global_user_count == 0); |
| if (--kvm_global_user_count == 0) |
| pSeries_enable_reloc_on_exc(); |
| spin_unlock(&kvm_global_user_count_lock); |
| } |
| } |
| |
| static int kvmppc_book3s_init(void) |
| { |
| int r; |
| |
| r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_book3s), 0, |
| THIS_MODULE); |
| |
| if (r) |
| return r; |
| |
| r = kvmppc_mmu_hpte_sysinit(); |
| |
| return r; |
| } |
| |
| static void kvmppc_book3s_exit(void) |
| { |
| kvmppc_mmu_hpte_sysexit(); |
| kvm_exit(); |
| } |
| |
| module_init(kvmppc_book3s_init); |
| module_exit(kvmppc_book3s_exit); |