| /* |
| * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> |
| * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. |
| * |
| * Authors: |
| * Paul Mackerras <paulus@au1.ibm.com> |
| * Alexander Graf <agraf@suse.de> |
| * Kevin Wolf <mail@kevin-wolf.de> |
| * |
| * Description: KVM functions specific to running on Book 3S |
| * processors in hypervisor mode (specifically POWER7 and later). |
| * |
| * This file is derived from arch/powerpc/kvm/book3s.c, |
| * by Alexander Graf <agraf@suse.de>. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include <linux/err.h> |
| #include <linux/slab.h> |
| #include <linux/preempt.h> |
| #include <linux/sched.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <linux/fs.h> |
| #include <linux/anon_inodes.h> |
| #include <linux/cpumask.h> |
| #include <linux/spinlock.h> |
| #include <linux/page-flags.h> |
| #include <linux/srcu.h> |
| |
| #include <asm/reg.h> |
| #include <asm/cputable.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/kvm_ppc.h> |
| #include <asm/kvm_book3s.h> |
| #include <asm/mmu_context.h> |
| #include <asm/lppaca.h> |
| #include <asm/processor.h> |
| #include <asm/cputhreads.h> |
| #include <asm/page.h> |
| #include <asm/hvcall.h> |
| #include <asm/switch_to.h> |
| #include <asm/smp.h> |
| #include <linux/gfp.h> |
| #include <linux/vmalloc.h> |
| #include <linux/highmem.h> |
| #include <linux/hugetlb.h> |
| |
| /* #define EXIT_DEBUG */ |
| /* #define EXIT_DEBUG_SIMPLE */ |
| /* #define EXIT_DEBUG_INT */ |
| |
| /* Used to indicate that a guest page fault needs to be handled */ |
| #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) |
| |
| /* Used as a "null" value for timebase values */ |
| #define TB_NIL (~(u64)0) |
| |
| static void kvmppc_end_cede(struct kvm_vcpu *vcpu); |
| static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); |
| |
| /* |
| * We use the vcpu_load/put functions to measure stolen time. |
| * Stolen time is counted as time when either the vcpu is able to |
| * run as part of a virtual core, but the task running the vcore |
| * is preempted or sleeping, or when the vcpu needs something done |
| * in the kernel by the task running the vcpu, but that task is |
| * preempted or sleeping. Those two things have to be counted |
| * separately, since one of the vcpu tasks will take on the job |
| * of running the core, and the other vcpu tasks in the vcore will |
| * sleep waiting for it to do that, but that sleep shouldn't count |
| * as stolen time. |
| * |
| * Hence we accumulate stolen time when the vcpu can run as part of |
| * a vcore using vc->stolen_tb, and the stolen time when the vcpu |
| * needs its task to do other things in the kernel (for example, |
| * service a page fault) in busy_stolen. We don't accumulate |
| * stolen time for a vcore when it is inactive, or for a vcpu |
| * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of |
| * a misnomer; it means that the vcpu task is not executing in |
| * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in |
| * the kernel. We don't have any way of dividing up that time |
| * between time that the vcpu is genuinely stopped, time that |
| * the task is actively working on behalf of the vcpu, and time |
| * that the task is preempted, so we don't count any of it as |
| * stolen. |
| * |
| * Updates to busy_stolen are protected by arch.tbacct_lock; |
| * updates to vc->stolen_tb are protected by the arch.tbacct_lock |
| * of the vcpu that has taken responsibility for running the vcore |
| * (i.e. vc->runner). The stolen times are measured in units of |
| * timebase ticks. (Note that the != TB_NIL checks below are |
| * purely defensive; they should never fail.) |
| */ |
| |
| void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| struct kvmppc_vcore *vc = vcpu->arch.vcore; |
| |
| spin_lock(&vcpu->arch.tbacct_lock); |
| if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE && |
| vc->preempt_tb != TB_NIL) { |
| vc->stolen_tb += mftb() - vc->preempt_tb; |
| vc->preempt_tb = TB_NIL; |
| } |
| if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && |
| vcpu->arch.busy_preempt != TB_NIL) { |
| vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; |
| vcpu->arch.busy_preempt = TB_NIL; |
| } |
| spin_unlock(&vcpu->arch.tbacct_lock); |
| } |
| |
| void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_vcore *vc = vcpu->arch.vcore; |
| |
| spin_lock(&vcpu->arch.tbacct_lock); |
| if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) |
| vc->preempt_tb = mftb(); |
| if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) |
| vcpu->arch.busy_preempt = mftb(); |
| spin_unlock(&vcpu->arch.tbacct_lock); |
| } |
| |
| void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr) |
| { |
| vcpu->arch.shregs.msr = msr; |
| kvmppc_end_cede(vcpu); |
| } |
| |
| void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr) |
| { |
| vcpu->arch.pvr = pvr; |
| } |
| |
| void kvmppc_dump_regs(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| |
| pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); |
| pr_err("pc = %.16lx msr = %.16llx trap = %x\n", |
| vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); |
| for (r = 0; r < 16; ++r) |
| pr_err("r%2d = %.16lx r%d = %.16lx\n", |
| r, kvmppc_get_gpr(vcpu, r), |
| r+16, kvmppc_get_gpr(vcpu, r+16)); |
| pr_err("ctr = %.16lx lr = %.16lx\n", |
| vcpu->arch.ctr, vcpu->arch.lr); |
| pr_err("srr0 = %.16llx srr1 = %.16llx\n", |
| vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); |
| pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", |
| vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); |
| pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", |
| vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); |
| pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", |
| vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); |
| pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); |
| pr_err("fault dar = %.16lx dsisr = %.8x\n", |
| vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); |
| pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); |
| for (r = 0; r < vcpu->arch.slb_max; ++r) |
| pr_err(" ESID = %.16llx VSID = %.16llx\n", |
| vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); |
| pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", |
| vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1, |
| vcpu->arch.last_inst); |
| } |
| |
| struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) |
| { |
| int r; |
| struct kvm_vcpu *v, *ret = NULL; |
| |
| mutex_lock(&kvm->lock); |
| kvm_for_each_vcpu(r, v, kvm) { |
| if (v->vcpu_id == id) { |
| ret = v; |
| break; |
| } |
| } |
| mutex_unlock(&kvm->lock); |
| return ret; |
| } |
| |
| static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) |
| { |
| vpa->shared_proc = 1; |
| vpa->yield_count = 1; |
| } |
| |
| static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, |
| unsigned long addr, unsigned long len) |
| { |
| /* check address is cacheline aligned */ |
| if (addr & (L1_CACHE_BYTES - 1)) |
| return -EINVAL; |
| spin_lock(&vcpu->arch.vpa_update_lock); |
| if (v->next_gpa != addr || v->len != len) { |
| v->next_gpa = addr; |
| v->len = addr ? len : 0; |
| v->update_pending = 1; |
| } |
| spin_unlock(&vcpu->arch.vpa_update_lock); |
| return 0; |
| } |
| |
| /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ |
| struct reg_vpa { |
| u32 dummy; |
| union { |
| u16 hword; |
| u32 word; |
| } length; |
| }; |
| |
| static int vpa_is_registered(struct kvmppc_vpa *vpap) |
| { |
| if (vpap->update_pending) |
| return vpap->next_gpa != 0; |
| return vpap->pinned_addr != NULL; |
| } |
| |
| static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, |
| unsigned long flags, |
| unsigned long vcpuid, unsigned long vpa) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| unsigned long len, nb; |
| void *va; |
| struct kvm_vcpu *tvcpu; |
| int err; |
| int subfunc; |
| struct kvmppc_vpa *vpap; |
| |
| tvcpu = kvmppc_find_vcpu(kvm, vcpuid); |
| if (!tvcpu) |
| return H_PARAMETER; |
| |
| subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; |
| if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || |
| subfunc == H_VPA_REG_SLB) { |
| /* Registering new area - address must be cache-line aligned */ |
| if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) |
| return H_PARAMETER; |
| |
| /* convert logical addr to kernel addr and read length */ |
| va = kvmppc_pin_guest_page(kvm, vpa, &nb); |
| if (va == NULL) |
| return H_PARAMETER; |
| if (subfunc == H_VPA_REG_VPA) |
| len = ((struct reg_vpa *)va)->length.hword; |
| else |
| len = ((struct reg_vpa *)va)->length.word; |
| kvmppc_unpin_guest_page(kvm, va, vpa, false); |
| |
| /* Check length */ |
| if (len > nb || len < sizeof(struct reg_vpa)) |
| return H_PARAMETER; |
| } else { |
| vpa = 0; |
| len = 0; |
| } |
| |
| err = H_PARAMETER; |
| vpap = NULL; |
| spin_lock(&tvcpu->arch.vpa_update_lock); |
| |
| switch (subfunc) { |
| case H_VPA_REG_VPA: /* register VPA */ |
| if (len < sizeof(struct lppaca)) |
| break; |
| vpap = &tvcpu->arch.vpa; |
| err = 0; |
| break; |
| |
| case H_VPA_REG_DTL: /* register DTL */ |
| if (len < sizeof(struct dtl_entry)) |
| break; |
| len -= len % sizeof(struct dtl_entry); |
| |
| /* Check that they have previously registered a VPA */ |
| err = H_RESOURCE; |
| if (!vpa_is_registered(&tvcpu->arch.vpa)) |
| break; |
| |
| vpap = &tvcpu->arch.dtl; |
| err = 0; |
| break; |
| |
| case H_VPA_REG_SLB: /* register SLB shadow buffer */ |
| /* Check that they have previously registered a VPA */ |
| err = H_RESOURCE; |
| if (!vpa_is_registered(&tvcpu->arch.vpa)) |
| break; |
| |
| vpap = &tvcpu->arch.slb_shadow; |
| err = 0; |
| break; |
| |
| case H_VPA_DEREG_VPA: /* deregister VPA */ |
| /* Check they don't still have a DTL or SLB buf registered */ |
| err = H_RESOURCE; |
| if (vpa_is_registered(&tvcpu->arch.dtl) || |
| vpa_is_registered(&tvcpu->arch.slb_shadow)) |
| break; |
| |
| vpap = &tvcpu->arch.vpa; |
| err = 0; |
| break; |
| |
| case H_VPA_DEREG_DTL: /* deregister DTL */ |
| vpap = &tvcpu->arch.dtl; |
| err = 0; |
| break; |
| |
| case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ |
| vpap = &tvcpu->arch.slb_shadow; |
| err = 0; |
| break; |
| } |
| |
| if (vpap) { |
| vpap->next_gpa = vpa; |
| vpap->len = len; |
| vpap->update_pending = 1; |
| } |
| |
| spin_unlock(&tvcpu->arch.vpa_update_lock); |
| |
| return err; |
| } |
| |
| static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| void *va; |
| unsigned long nb; |
| unsigned long gpa; |
| |
| /* |
| * We need to pin the page pointed to by vpap->next_gpa, |
| * but we can't call kvmppc_pin_guest_page under the lock |
| * as it does get_user_pages() and down_read(). So we |
| * have to drop the lock, pin the page, then get the lock |
| * again and check that a new area didn't get registered |
| * in the meantime. |
| */ |
| for (;;) { |
| gpa = vpap->next_gpa; |
| spin_unlock(&vcpu->arch.vpa_update_lock); |
| va = NULL; |
| nb = 0; |
| if (gpa) |
| va = kvmppc_pin_guest_page(kvm, gpa, &nb); |
| spin_lock(&vcpu->arch.vpa_update_lock); |
| if (gpa == vpap->next_gpa) |
| break; |
| /* sigh... unpin that one and try again */ |
| if (va) |
| kvmppc_unpin_guest_page(kvm, va, gpa, false); |
| } |
| |
| vpap->update_pending = 0; |
| if (va && nb < vpap->len) { |
| /* |
| * If it's now too short, it must be that userspace |
| * has changed the mappings underlying guest memory, |
| * so unregister the region. |
| */ |
| kvmppc_unpin_guest_page(kvm, va, gpa, false); |
| va = NULL; |
| } |
| if (vpap->pinned_addr) |
| kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, |
| vpap->dirty); |
| vpap->gpa = gpa; |
| vpap->pinned_addr = va; |
| vpap->dirty = false; |
| if (va) |
| vpap->pinned_end = va + vpap->len; |
| } |
| |
| static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) |
| { |
| if (!(vcpu->arch.vpa.update_pending || |
| vcpu->arch.slb_shadow.update_pending || |
| vcpu->arch.dtl.update_pending)) |
| return; |
| |
| spin_lock(&vcpu->arch.vpa_update_lock); |
| if (vcpu->arch.vpa.update_pending) { |
| kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); |
| if (vcpu->arch.vpa.pinned_addr) |
| init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); |
| } |
| if (vcpu->arch.dtl.update_pending) { |
| kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); |
| vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; |
| vcpu->arch.dtl_index = 0; |
| } |
| if (vcpu->arch.slb_shadow.update_pending) |
| kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); |
| spin_unlock(&vcpu->arch.vpa_update_lock); |
| } |
| |
| /* |
| * Return the accumulated stolen time for the vcore up until `now'. |
| * The caller should hold the vcore lock. |
| */ |
| static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) |
| { |
| u64 p; |
| |
| /* |
| * If we are the task running the vcore, then since we hold |
| * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb |
| * can't be updated, so we don't need the tbacct_lock. |
| * If the vcore is inactive, it can't become active (since we |
| * hold the vcore lock), so the vcpu load/put functions won't |
| * update stolen_tb/preempt_tb, and we don't need tbacct_lock. |
| */ |
| if (vc->vcore_state != VCORE_INACTIVE && |
| vc->runner->arch.run_task != current) { |
| spin_lock(&vc->runner->arch.tbacct_lock); |
| p = vc->stolen_tb; |
| if (vc->preempt_tb != TB_NIL) |
| p += now - vc->preempt_tb; |
| spin_unlock(&vc->runner->arch.tbacct_lock); |
| } else { |
| p = vc->stolen_tb; |
| } |
| return p; |
| } |
| |
| static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, |
| struct kvmppc_vcore *vc) |
| { |
| struct dtl_entry *dt; |
| struct lppaca *vpa; |
| unsigned long stolen; |
| unsigned long core_stolen; |
| u64 now; |
| |
| dt = vcpu->arch.dtl_ptr; |
| vpa = vcpu->arch.vpa.pinned_addr; |
| now = mftb(); |
| core_stolen = vcore_stolen_time(vc, now); |
| stolen = core_stolen - vcpu->arch.stolen_logged; |
| vcpu->arch.stolen_logged = core_stolen; |
| spin_lock(&vcpu->arch.tbacct_lock); |
| stolen += vcpu->arch.busy_stolen; |
| vcpu->arch.busy_stolen = 0; |
| spin_unlock(&vcpu->arch.tbacct_lock); |
| if (!dt || !vpa) |
| return; |
| memset(dt, 0, sizeof(struct dtl_entry)); |
| dt->dispatch_reason = 7; |
| dt->processor_id = vc->pcpu + vcpu->arch.ptid; |
| dt->timebase = now; |
| dt->enqueue_to_dispatch_time = stolen; |
| dt->srr0 = kvmppc_get_pc(vcpu); |
| dt->srr1 = vcpu->arch.shregs.msr; |
| ++dt; |
| if (dt == vcpu->arch.dtl.pinned_end) |
| dt = vcpu->arch.dtl.pinned_addr; |
| vcpu->arch.dtl_ptr = dt; |
| /* order writing *dt vs. writing vpa->dtl_idx */ |
| smp_wmb(); |
| vpa->dtl_idx = ++vcpu->arch.dtl_index; |
| vcpu->arch.dtl.dirty = true; |
| } |
| |
| int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) |
| { |
| unsigned long req = kvmppc_get_gpr(vcpu, 3); |
| unsigned long target, ret = H_SUCCESS; |
| struct kvm_vcpu *tvcpu; |
| int idx, rc; |
| |
| switch (req) { |
| case H_ENTER: |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5), |
| kvmppc_get_gpr(vcpu, 6), |
| kvmppc_get_gpr(vcpu, 7)); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| break; |
| case H_CEDE: |
| break; |
| case H_PROD: |
| target = kvmppc_get_gpr(vcpu, 4); |
| tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); |
| if (!tvcpu) { |
| ret = H_PARAMETER; |
| break; |
| } |
| tvcpu->arch.prodded = 1; |
| smp_mb(); |
| if (vcpu->arch.ceded) { |
| if (waitqueue_active(&vcpu->wq)) { |
| wake_up_interruptible(&vcpu->wq); |
| vcpu->stat.halt_wakeup++; |
| } |
| } |
| break; |
| case H_CONFER: |
| break; |
| case H_REGISTER_VPA: |
| ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5), |
| kvmppc_get_gpr(vcpu, 6)); |
| break; |
| case H_RTAS: |
| if (list_empty(&vcpu->kvm->arch.rtas_tokens)) |
| return RESUME_HOST; |
| |
| rc = kvmppc_rtas_hcall(vcpu); |
| |
| if (rc == -ENOENT) |
| return RESUME_HOST; |
| else if (rc == 0) |
| break; |
| |
| /* Send the error out to userspace via KVM_RUN */ |
| return rc; |
| default: |
| return RESUME_HOST; |
| } |
| kvmppc_set_gpr(vcpu, 3, ret); |
| vcpu->arch.hcall_needed = 0; |
| return RESUME_GUEST; |
| } |
| |
| static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, |
| struct task_struct *tsk) |
| { |
| int r = RESUME_HOST; |
| |
| vcpu->stat.sum_exits++; |
| |
| run->exit_reason = KVM_EXIT_UNKNOWN; |
| run->ready_for_interrupt_injection = 1; |
| switch (vcpu->arch.trap) { |
| /* We're good on these - the host merely wanted to get our attention */ |
| case BOOK3S_INTERRUPT_HV_DECREMENTER: |
| vcpu->stat.dec_exits++; |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_EXTERNAL: |
| vcpu->stat.ext_intr_exits++; |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_PERFMON: |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_MACHINE_CHECK: |
| /* |
| * Deliver a machine check interrupt to the guest. |
| * We have to do this, even if the host has handled the |
| * machine check, because machine checks use SRR0/1 and |
| * the interrupt might have trashed guest state in them. |
| */ |
| kvmppc_book3s_queue_irqprio(vcpu, |
| BOOK3S_INTERRUPT_MACHINE_CHECK); |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_PROGRAM: |
| { |
| ulong flags; |
| /* |
| * Normally program interrupts are delivered directly |
| * to the guest by the hardware, but we can get here |
| * as a result of a hypervisor emulation interrupt |
| * (e40) getting turned into a 700 by BML RTAS. |
| */ |
| flags = vcpu->arch.shregs.msr & 0x1f0000ull; |
| kvmppc_core_queue_program(vcpu, flags); |
| r = RESUME_GUEST; |
| break; |
| } |
| case BOOK3S_INTERRUPT_SYSCALL: |
| { |
| /* hcall - punt to userspace */ |
| int i; |
| |
| if (vcpu->arch.shregs.msr & MSR_PR) { |
| /* sc 1 from userspace - reflect to guest syscall */ |
| kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL); |
| r = RESUME_GUEST; |
| break; |
| } |
| run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); |
| for (i = 0; i < 9; ++i) |
| run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); |
| run->exit_reason = KVM_EXIT_PAPR_HCALL; |
| vcpu->arch.hcall_needed = 1; |
| r = RESUME_HOST; |
| break; |
| } |
| /* |
| * We get these next two if the guest accesses a page which it thinks |
| * it has mapped but which is not actually present, either because |
| * it is for an emulated I/O device or because the corresonding |
| * host page has been paged out. Any other HDSI/HISI interrupts |
| * have been handled already. |
| */ |
| case BOOK3S_INTERRUPT_H_DATA_STORAGE: |
| r = RESUME_PAGE_FAULT; |
| break; |
| case BOOK3S_INTERRUPT_H_INST_STORAGE: |
| vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); |
| vcpu->arch.fault_dsisr = 0; |
| r = RESUME_PAGE_FAULT; |
| break; |
| /* |
| * This occurs if the guest executes an illegal instruction. |
| * We just generate a program interrupt to the guest, since |
| * we don't emulate any guest instructions at this stage. |
| */ |
| case BOOK3S_INTERRUPT_H_EMUL_ASSIST: |
| kvmppc_core_queue_program(vcpu, 0x80000); |
| r = RESUME_GUEST; |
| break; |
| default: |
| kvmppc_dump_regs(vcpu); |
| printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", |
| vcpu->arch.trap, kvmppc_get_pc(vcpu), |
| vcpu->arch.shregs.msr); |
| r = RESUME_HOST; |
| BUG(); |
| break; |
| } |
| |
| return r; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| int i; |
| |
| sregs->pvr = vcpu->arch.pvr; |
| |
| memset(sregs, 0, sizeof(struct kvm_sregs)); |
| for (i = 0; i < vcpu->arch.slb_max; i++) { |
| sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; |
| sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; |
| } |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| int i, j; |
| |
| kvmppc_set_pvr(vcpu, sregs->pvr); |
| |
| j = 0; |
| for (i = 0; i < vcpu->arch.slb_nr; i++) { |
| if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { |
| vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; |
| vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; |
| ++j; |
| } |
| } |
| vcpu->arch.slb_max = j; |
| |
| return 0; |
| } |
| |
| int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) |
| { |
| int r = 0; |
| long int i; |
| |
| switch (id) { |
| case KVM_REG_PPC_HIOR: |
| *val = get_reg_val(id, 0); |
| break; |
| case KVM_REG_PPC_DABR: |
| *val = get_reg_val(id, vcpu->arch.dabr); |
| break; |
| case KVM_REG_PPC_DSCR: |
| *val = get_reg_val(id, vcpu->arch.dscr); |
| break; |
| case KVM_REG_PPC_PURR: |
| *val = get_reg_val(id, vcpu->arch.purr); |
| break; |
| case KVM_REG_PPC_SPURR: |
| *val = get_reg_val(id, vcpu->arch.spurr); |
| break; |
| case KVM_REG_PPC_AMR: |
| *val = get_reg_val(id, vcpu->arch.amr); |
| break; |
| case KVM_REG_PPC_UAMOR: |
| *val = get_reg_val(id, vcpu->arch.uamor); |
| break; |
| case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA: |
| i = id - KVM_REG_PPC_MMCR0; |
| *val = get_reg_val(id, vcpu->arch.mmcr[i]); |
| break; |
| case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: |
| i = id - KVM_REG_PPC_PMC1; |
| *val = get_reg_val(id, vcpu->arch.pmc[i]); |
| break; |
| #ifdef CONFIG_VSX |
| case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31: |
| if (cpu_has_feature(CPU_FTR_VSX)) { |
| /* VSX => FP reg i is stored in arch.vsr[2*i] */ |
| long int i = id - KVM_REG_PPC_FPR0; |
| *val = get_reg_val(id, vcpu->arch.vsr[2 * i]); |
| } else { |
| /* let generic code handle it */ |
| r = -EINVAL; |
| } |
| break; |
| case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: |
| if (cpu_has_feature(CPU_FTR_VSX)) { |
| long int i = id - KVM_REG_PPC_VSR0; |
| val->vsxval[0] = vcpu->arch.vsr[2 * i]; |
| val->vsxval[1] = vcpu->arch.vsr[2 * i + 1]; |
| } else { |
| r = -ENXIO; |
| } |
| break; |
| #endif /* CONFIG_VSX */ |
| case KVM_REG_PPC_VPA_ADDR: |
| spin_lock(&vcpu->arch.vpa_update_lock); |
| *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); |
| spin_unlock(&vcpu->arch.vpa_update_lock); |
| break; |
| case KVM_REG_PPC_VPA_SLB: |
| spin_lock(&vcpu->arch.vpa_update_lock); |
| val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; |
| val->vpaval.length = vcpu->arch.slb_shadow.len; |
| spin_unlock(&vcpu->arch.vpa_update_lock); |
| break; |
| case KVM_REG_PPC_VPA_DTL: |
| spin_lock(&vcpu->arch.vpa_update_lock); |
| val->vpaval.addr = vcpu->arch.dtl.next_gpa; |
| val->vpaval.length = vcpu->arch.dtl.len; |
| spin_unlock(&vcpu->arch.vpa_update_lock); |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| |
| return r; |
| } |
| |
| int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) |
| { |
| int r = 0; |
| long int i; |
| unsigned long addr, len; |
| |
| switch (id) { |
| case KVM_REG_PPC_HIOR: |
| /* Only allow this to be set to zero */ |
| if (set_reg_val(id, *val)) |
| r = -EINVAL; |
| break; |
| case KVM_REG_PPC_DABR: |
| vcpu->arch.dabr = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_DSCR: |
| vcpu->arch.dscr = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_PURR: |
| vcpu->arch.purr = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_SPURR: |
| vcpu->arch.spurr = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_AMR: |
| vcpu->arch.amr = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_UAMOR: |
| vcpu->arch.uamor = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA: |
| i = id - KVM_REG_PPC_MMCR0; |
| vcpu->arch.mmcr[i] = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: |
| i = id - KVM_REG_PPC_PMC1; |
| vcpu->arch.pmc[i] = set_reg_val(id, *val); |
| break; |
| #ifdef CONFIG_VSX |
| case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31: |
| if (cpu_has_feature(CPU_FTR_VSX)) { |
| /* VSX => FP reg i is stored in arch.vsr[2*i] */ |
| long int i = id - KVM_REG_PPC_FPR0; |
| vcpu->arch.vsr[2 * i] = set_reg_val(id, *val); |
| } else { |
| /* let generic code handle it */ |
| r = -EINVAL; |
| } |
| break; |
| case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: |
| if (cpu_has_feature(CPU_FTR_VSX)) { |
| long int i = id - KVM_REG_PPC_VSR0; |
| vcpu->arch.vsr[2 * i] = val->vsxval[0]; |
| vcpu->arch.vsr[2 * i + 1] = val->vsxval[1]; |
| } else { |
| r = -ENXIO; |
| } |
| break; |
| #endif /* CONFIG_VSX */ |
| case KVM_REG_PPC_VPA_ADDR: |
| addr = set_reg_val(id, *val); |
| r = -EINVAL; |
| if (!addr && (vcpu->arch.slb_shadow.next_gpa || |
| vcpu->arch.dtl.next_gpa)) |
| break; |
| r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); |
| break; |
| case KVM_REG_PPC_VPA_SLB: |
| addr = val->vpaval.addr; |
| len = val->vpaval.length; |
| r = -EINVAL; |
| if (addr && !vcpu->arch.vpa.next_gpa) |
| break; |
| r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); |
| break; |
| case KVM_REG_PPC_VPA_DTL: |
| addr = val->vpaval.addr; |
| len = val->vpaval.length; |
| r = -EINVAL; |
| if (addr && (len < sizeof(struct dtl_entry) || |
| !vcpu->arch.vpa.next_gpa)) |
| break; |
| len -= len % sizeof(struct dtl_entry); |
| r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| |
| return r; |
| } |
| |
| int kvmppc_core_check_processor_compat(void) |
| { |
| if (cpu_has_feature(CPU_FTR_HVMODE)) |
| return 0; |
| return -EIO; |
| } |
| |
| struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) |
| { |
| struct kvm_vcpu *vcpu; |
| int err = -EINVAL; |
| int core; |
| struct kvmppc_vcore *vcore; |
| |
| core = id / threads_per_core; |
| if (core >= KVM_MAX_VCORES) |
| goto out; |
| |
| err = -ENOMEM; |
| vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); |
| if (!vcpu) |
| goto out; |
| |
| err = kvm_vcpu_init(vcpu, kvm, id); |
| if (err) |
| goto free_vcpu; |
| |
| vcpu->arch.shared = &vcpu->arch.shregs; |
| vcpu->arch.mmcr[0] = MMCR0_FC; |
| vcpu->arch.ctrl = CTRL_RUNLATCH; |
| /* default to host PVR, since we can't spoof it */ |
| vcpu->arch.pvr = mfspr(SPRN_PVR); |
| kvmppc_set_pvr(vcpu, vcpu->arch.pvr); |
| spin_lock_init(&vcpu->arch.vpa_update_lock); |
| spin_lock_init(&vcpu->arch.tbacct_lock); |
| vcpu->arch.busy_preempt = TB_NIL; |
| |
| kvmppc_mmu_book3s_hv_init(vcpu); |
| |
| vcpu->arch.state = KVMPPC_VCPU_NOTREADY; |
| |
| init_waitqueue_head(&vcpu->arch.cpu_run); |
| |
| mutex_lock(&kvm->lock); |
| vcore = kvm->arch.vcores[core]; |
| if (!vcore) { |
| vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); |
| if (vcore) { |
| INIT_LIST_HEAD(&vcore->runnable_threads); |
| spin_lock_init(&vcore->lock); |
| init_waitqueue_head(&vcore->wq); |
| vcore->preempt_tb = TB_NIL; |
| } |
| kvm->arch.vcores[core] = vcore; |
| kvm->arch.online_vcores++; |
| } |
| mutex_unlock(&kvm->lock); |
| |
| if (!vcore) |
| goto free_vcpu; |
| |
| spin_lock(&vcore->lock); |
| ++vcore->num_threads; |
| spin_unlock(&vcore->lock); |
| vcpu->arch.vcore = vcore; |
| |
| vcpu->arch.cpu_type = KVM_CPU_3S_64; |
| kvmppc_sanity_check(vcpu); |
| |
| return vcpu; |
| |
| free_vcpu: |
| kmem_cache_free(kvm_vcpu_cache, vcpu); |
| out: |
| return ERR_PTR(err); |
| } |
| |
| static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) |
| { |
| if (vpa->pinned_addr) |
| kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, |
| vpa->dirty); |
| } |
| |
| void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) |
| { |
| spin_lock(&vcpu->arch.vpa_update_lock); |
| unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); |
| unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); |
| unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); |
| spin_unlock(&vcpu->arch.vpa_update_lock); |
| kvm_vcpu_uninit(vcpu); |
| kmem_cache_free(kvm_vcpu_cache, vcpu); |
| } |
| |
| static void kvmppc_set_timer(struct kvm_vcpu *vcpu) |
| { |
| unsigned long dec_nsec, now; |
| |
| now = get_tb(); |
| if (now > vcpu->arch.dec_expires) { |
| /* decrementer has already gone negative */ |
| kvmppc_core_queue_dec(vcpu); |
| kvmppc_core_prepare_to_enter(vcpu); |
| return; |
| } |
| dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC |
| / tb_ticks_per_sec; |
| hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), |
| HRTIMER_MODE_REL); |
| vcpu->arch.timer_running = 1; |
| } |
| |
| static void kvmppc_end_cede(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.ceded = 0; |
| if (vcpu->arch.timer_running) { |
| hrtimer_try_to_cancel(&vcpu->arch.dec_timer); |
| vcpu->arch.timer_running = 0; |
| } |
| } |
| |
| extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu); |
| extern void xics_wake_cpu(int cpu); |
| |
| static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, |
| struct kvm_vcpu *vcpu) |
| { |
| u64 now; |
| |
| if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) |
| return; |
| spin_lock(&vcpu->arch.tbacct_lock); |
| now = mftb(); |
| vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - |
| vcpu->arch.stolen_logged; |
| vcpu->arch.busy_preempt = now; |
| vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; |
| spin_unlock(&vcpu->arch.tbacct_lock); |
| --vc->n_runnable; |
| list_del(&vcpu->arch.run_list); |
| } |
| |
| static int kvmppc_grab_hwthread(int cpu) |
| { |
| struct paca_struct *tpaca; |
| long timeout = 1000; |
| |
| tpaca = &paca[cpu]; |
| |
| /* Ensure the thread won't go into the kernel if it wakes */ |
| tpaca->kvm_hstate.hwthread_req = 1; |
| tpaca->kvm_hstate.kvm_vcpu = NULL; |
| |
| /* |
| * If the thread is already executing in the kernel (e.g. handling |
| * a stray interrupt), wait for it to get back to nap mode. |
| * The smp_mb() is to ensure that our setting of hwthread_req |
| * is visible before we look at hwthread_state, so if this |
| * races with the code at system_reset_pSeries and the thread |
| * misses our setting of hwthread_req, we are sure to see its |
| * setting of hwthread_state, and vice versa. |
| */ |
| smp_mb(); |
| while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { |
| if (--timeout <= 0) { |
| pr_err("KVM: couldn't grab cpu %d\n", cpu); |
| return -EBUSY; |
| } |
| udelay(1); |
| } |
| return 0; |
| } |
| |
| static void kvmppc_release_hwthread(int cpu) |
| { |
| struct paca_struct *tpaca; |
| |
| tpaca = &paca[cpu]; |
| tpaca->kvm_hstate.hwthread_req = 0; |
| tpaca->kvm_hstate.kvm_vcpu = NULL; |
| } |
| |
| static void kvmppc_start_thread(struct kvm_vcpu *vcpu) |
| { |
| int cpu; |
| struct paca_struct *tpaca; |
| struct kvmppc_vcore *vc = vcpu->arch.vcore; |
| |
| if (vcpu->arch.timer_running) { |
| hrtimer_try_to_cancel(&vcpu->arch.dec_timer); |
| vcpu->arch.timer_running = 0; |
| } |
| cpu = vc->pcpu + vcpu->arch.ptid; |
| tpaca = &paca[cpu]; |
| tpaca->kvm_hstate.kvm_vcpu = vcpu; |
| tpaca->kvm_hstate.kvm_vcore = vc; |
| tpaca->kvm_hstate.napping = 0; |
| vcpu->cpu = vc->pcpu; |
| smp_wmb(); |
| #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) |
| if (vcpu->arch.ptid) { |
| xics_wake_cpu(cpu); |
| ++vc->n_woken; |
| } |
| #endif |
| } |
| |
| static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc) |
| { |
| int i; |
| |
| HMT_low(); |
| i = 0; |
| while (vc->nap_count < vc->n_woken) { |
| if (++i >= 1000000) { |
| pr_err("kvmppc_wait_for_nap timeout %d %d\n", |
| vc->nap_count, vc->n_woken); |
| break; |
| } |
| cpu_relax(); |
| } |
| HMT_medium(); |
| } |
| |
| /* |
| * Check that we are on thread 0 and that any other threads in |
| * this core are off-line. Then grab the threads so they can't |
| * enter the kernel. |
| */ |
| static int on_primary_thread(void) |
| { |
| int cpu = smp_processor_id(); |
| int thr = cpu_thread_in_core(cpu); |
| |
| if (thr) |
| return 0; |
| while (++thr < threads_per_core) |
| if (cpu_online(cpu + thr)) |
| return 0; |
| |
| /* Grab all hw threads so they can't go into the kernel */ |
| for (thr = 1; thr < threads_per_core; ++thr) { |
| if (kvmppc_grab_hwthread(cpu + thr)) { |
| /* Couldn't grab one; let the others go */ |
| do { |
| kvmppc_release_hwthread(cpu + thr); |
| } while (--thr > 0); |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| /* |
| * Run a set of guest threads on a physical core. |
| * Called with vc->lock held. |
| */ |
| static void kvmppc_run_core(struct kvmppc_vcore *vc) |
| { |
| struct kvm_vcpu *vcpu, *vcpu0, *vnext; |
| long ret; |
| u64 now; |
| int ptid, i, need_vpa_update; |
| int srcu_idx; |
| struct kvm_vcpu *vcpus_to_update[threads_per_core]; |
| |
| /* don't start if any threads have a signal pending */ |
| need_vpa_update = 0; |
| list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { |
| if (signal_pending(vcpu->arch.run_task)) |
| return; |
| if (vcpu->arch.vpa.update_pending || |
| vcpu->arch.slb_shadow.update_pending || |
| vcpu->arch.dtl.update_pending) |
| vcpus_to_update[need_vpa_update++] = vcpu; |
| } |
| |
| /* |
| * Initialize *vc, in particular vc->vcore_state, so we can |
| * drop the vcore lock if necessary. |
| */ |
| vc->n_woken = 0; |
| vc->nap_count = 0; |
| vc->entry_exit_count = 0; |
| vc->vcore_state = VCORE_STARTING; |
| vc->in_guest = 0; |
| vc->napping_threads = 0; |
| |
| /* |
| * Updating any of the vpas requires calling kvmppc_pin_guest_page, |
| * which can't be called with any spinlocks held. |
| */ |
| if (need_vpa_update) { |
| spin_unlock(&vc->lock); |
| for (i = 0; i < need_vpa_update; ++i) |
| kvmppc_update_vpas(vcpus_to_update[i]); |
| spin_lock(&vc->lock); |
| } |
| |
| /* |
| * Assign physical thread IDs, first to non-ceded vcpus |
| * and then to ceded ones. |
| */ |
| ptid = 0; |
| vcpu0 = NULL; |
| list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { |
| if (!vcpu->arch.ceded) { |
| if (!ptid) |
| vcpu0 = vcpu; |
| vcpu->arch.ptid = ptid++; |
| } |
| } |
| if (!vcpu0) |
| goto out; /* nothing to run; should never happen */ |
| list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) |
| if (vcpu->arch.ceded) |
| vcpu->arch.ptid = ptid++; |
| |
| /* |
| * Make sure we are running on thread 0, and that |
| * secondary threads are offline. |
| */ |
| if (threads_per_core > 1 && !on_primary_thread()) { |
| list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) |
| vcpu->arch.ret = -EBUSY; |
| goto out; |
| } |
| |
| vc->pcpu = smp_processor_id(); |
| list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { |
| kvmppc_start_thread(vcpu); |
| kvmppc_create_dtl_entry(vcpu, vc); |
| } |
| |
| vc->vcore_state = VCORE_RUNNING; |
| preempt_disable(); |
| spin_unlock(&vc->lock); |
| |
| kvm_guest_enter(); |
| |
| srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu); |
| |
| __kvmppc_vcore_entry(NULL, vcpu0); |
| |
| spin_lock(&vc->lock); |
| /* disable sending of IPIs on virtual external irqs */ |
| list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) |
| vcpu->cpu = -1; |
| /* wait for secondary threads to finish writing their state to memory */ |
| if (vc->nap_count < vc->n_woken) |
| kvmppc_wait_for_nap(vc); |
| for (i = 0; i < threads_per_core; ++i) |
| kvmppc_release_hwthread(vc->pcpu + i); |
| /* prevent other vcpu threads from doing kvmppc_start_thread() now */ |
| vc->vcore_state = VCORE_EXITING; |
| spin_unlock(&vc->lock); |
| |
| srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx); |
| |
| /* make sure updates to secondary vcpu structs are visible now */ |
| smp_mb(); |
| kvm_guest_exit(); |
| |
| preempt_enable(); |
| kvm_resched(vcpu); |
| |
| spin_lock(&vc->lock); |
| now = get_tb(); |
| list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { |
| /* cancel pending dec exception if dec is positive */ |
| if (now < vcpu->arch.dec_expires && |
| kvmppc_core_pending_dec(vcpu)) |
| kvmppc_core_dequeue_dec(vcpu); |
| |
| ret = RESUME_GUEST; |
| if (vcpu->arch.trap) |
| ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu, |
| vcpu->arch.run_task); |
| |
| vcpu->arch.ret = ret; |
| vcpu->arch.trap = 0; |
| |
| if (vcpu->arch.ceded) { |
| if (ret != RESUME_GUEST) |
| kvmppc_end_cede(vcpu); |
| else |
| kvmppc_set_timer(vcpu); |
| } |
| } |
| |
| out: |
| vc->vcore_state = VCORE_INACTIVE; |
| list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, |
| arch.run_list) { |
| if (vcpu->arch.ret != RESUME_GUEST) { |
| kvmppc_remove_runnable(vc, vcpu); |
| wake_up(&vcpu->arch.cpu_run); |
| } |
| } |
| } |
| |
| /* |
| * Wait for some other vcpu thread to execute us, and |
| * wake us up when we need to handle something in the host. |
| */ |
| static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) |
| { |
| DEFINE_WAIT(wait); |
| |
| prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); |
| if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) |
| schedule(); |
| finish_wait(&vcpu->arch.cpu_run, &wait); |
| } |
| |
| /* |
| * All the vcpus in this vcore are idle, so wait for a decrementer |
| * or external interrupt to one of the vcpus. vc->lock is held. |
| */ |
| static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) |
| { |
| DEFINE_WAIT(wait); |
| |
| prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); |
| vc->vcore_state = VCORE_SLEEPING; |
| spin_unlock(&vc->lock); |
| schedule(); |
| finish_wait(&vc->wq, &wait); |
| spin_lock(&vc->lock); |
| vc->vcore_state = VCORE_INACTIVE; |
| } |
| |
| static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) |
| { |
| int n_ceded; |
| struct kvmppc_vcore *vc; |
| struct kvm_vcpu *v, *vn; |
| |
| kvm_run->exit_reason = 0; |
| vcpu->arch.ret = RESUME_GUEST; |
| vcpu->arch.trap = 0; |
| kvmppc_update_vpas(vcpu); |
| |
| /* |
| * Synchronize with other threads in this virtual core |
| */ |
| vc = vcpu->arch.vcore; |
| spin_lock(&vc->lock); |
| vcpu->arch.ceded = 0; |
| vcpu->arch.run_task = current; |
| vcpu->arch.kvm_run = kvm_run; |
| vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); |
| vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; |
| vcpu->arch.busy_preempt = TB_NIL; |
| list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); |
| ++vc->n_runnable; |
| |
| /* |
| * This happens the first time this is called for a vcpu. |
| * If the vcore is already running, we may be able to start |
| * this thread straight away and have it join in. |
| */ |
| if (!signal_pending(current)) { |
| if (vc->vcore_state == VCORE_RUNNING && |
| VCORE_EXIT_COUNT(vc) == 0) { |
| vcpu->arch.ptid = vc->n_runnable - 1; |
| kvmppc_create_dtl_entry(vcpu, vc); |
| kvmppc_start_thread(vcpu); |
| } else if (vc->vcore_state == VCORE_SLEEPING) { |
| wake_up(&vc->wq); |
| } |
| |
| } |
| |
| while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && |
| !signal_pending(current)) { |
| if (vc->vcore_state != VCORE_INACTIVE) { |
| spin_unlock(&vc->lock); |
| kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); |
| spin_lock(&vc->lock); |
| continue; |
| } |
| list_for_each_entry_safe(v, vn, &vc->runnable_threads, |
| arch.run_list) { |
| kvmppc_core_prepare_to_enter(v); |
| if (signal_pending(v->arch.run_task)) { |
| kvmppc_remove_runnable(vc, v); |
| v->stat.signal_exits++; |
| v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; |
| v->arch.ret = -EINTR; |
| wake_up(&v->arch.cpu_run); |
| } |
| } |
| if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) |
| break; |
| vc->runner = vcpu; |
| n_ceded = 0; |
| list_for_each_entry(v, &vc->runnable_threads, arch.run_list) |
| if (!v->arch.pending_exceptions) |
| n_ceded += v->arch.ceded; |
| if (n_ceded == vc->n_runnable) |
| kvmppc_vcore_blocked(vc); |
| else |
| kvmppc_run_core(vc); |
| vc->runner = NULL; |
| } |
| |
| while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && |
| (vc->vcore_state == VCORE_RUNNING || |
| vc->vcore_state == VCORE_EXITING)) { |
| spin_unlock(&vc->lock); |
| kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); |
| spin_lock(&vc->lock); |
| } |
| |
| if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { |
| kvmppc_remove_runnable(vc, vcpu); |
| vcpu->stat.signal_exits++; |
| kvm_run->exit_reason = KVM_EXIT_INTR; |
| vcpu->arch.ret = -EINTR; |
| } |
| |
| if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { |
| /* Wake up some vcpu to run the core */ |
| v = list_first_entry(&vc->runnable_threads, |
| struct kvm_vcpu, arch.run_list); |
| wake_up(&v->arch.cpu_run); |
| } |
| |
| spin_unlock(&vc->lock); |
| return vcpu->arch.ret; |
| } |
| |
| int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) |
| { |
| int r; |
| int srcu_idx; |
| |
| if (!vcpu->arch.sane) { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| return -EINVAL; |
| } |
| |
| kvmppc_core_prepare_to_enter(vcpu); |
| |
| /* No need to go into the guest when all we'll do is come back out */ |
| if (signal_pending(current)) { |
| run->exit_reason = KVM_EXIT_INTR; |
| return -EINTR; |
| } |
| |
| atomic_inc(&vcpu->kvm->arch.vcpus_running); |
| /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */ |
| smp_mb(); |
| |
| /* On the first time here, set up HTAB and VRMA or RMA */ |
| if (!vcpu->kvm->arch.rma_setup_done) { |
| r = kvmppc_hv_setup_htab_rma(vcpu); |
| if (r) |
| goto out; |
| } |
| |
| flush_fp_to_thread(current); |
| flush_altivec_to_thread(current); |
| flush_vsx_to_thread(current); |
| vcpu->arch.wqp = &vcpu->arch.vcore->wq; |
| vcpu->arch.pgdir = current->mm->pgd; |
| vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; |
| |
| do { |
| r = kvmppc_run_vcpu(run, vcpu); |
| |
| if (run->exit_reason == KVM_EXIT_PAPR_HCALL && |
| !(vcpu->arch.shregs.msr & MSR_PR)) { |
| r = kvmppc_pseries_do_hcall(vcpu); |
| kvmppc_core_prepare_to_enter(vcpu); |
| } else if (r == RESUME_PAGE_FAULT) { |
| srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
| r = kvmppc_book3s_hv_page_fault(run, vcpu, |
| vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); |
| srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); |
| } |
| } while (r == RESUME_GUEST); |
| |
| out: |
| vcpu->arch.state = KVMPPC_VCPU_NOTREADY; |
| atomic_dec(&vcpu->kvm->arch.vcpus_running); |
| return r; |
| } |
| |
| |
| /* Work out RMLS (real mode limit selector) field value for a given RMA size. |
| Assumes POWER7 or PPC970. */ |
| static inline int lpcr_rmls(unsigned long rma_size) |
| { |
| switch (rma_size) { |
| case 32ul << 20: /* 32 MB */ |
| if (cpu_has_feature(CPU_FTR_ARCH_206)) |
| return 8; /* only supported on POWER7 */ |
| return -1; |
| case 64ul << 20: /* 64 MB */ |
| return 3; |
| case 128ul << 20: /* 128 MB */ |
| return 7; |
| case 256ul << 20: /* 256 MB */ |
| return 4; |
| case 1ul << 30: /* 1 GB */ |
| return 2; |
| case 16ul << 30: /* 16 GB */ |
| return 1; |
| case 256ul << 30: /* 256 GB */ |
| return 0; |
| default: |
| return -1; |
| } |
| } |
| |
| static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
| { |
| struct kvmppc_linear_info *ri = vma->vm_file->private_data; |
| struct page *page; |
| |
| if (vmf->pgoff >= ri->npages) |
| return VM_FAULT_SIGBUS; |
| |
| page = pfn_to_page(ri->base_pfn + vmf->pgoff); |
| get_page(page); |
| vmf->page = page; |
| return 0; |
| } |
| |
| static const struct vm_operations_struct kvm_rma_vm_ops = { |
| .fault = kvm_rma_fault, |
| }; |
| |
| static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; |
| vma->vm_ops = &kvm_rma_vm_ops; |
| return 0; |
| } |
| |
| static int kvm_rma_release(struct inode *inode, struct file *filp) |
| { |
| struct kvmppc_linear_info *ri = filp->private_data; |
| |
| kvm_release_rma(ri); |
| return 0; |
| } |
| |
| static struct file_operations kvm_rma_fops = { |
| .mmap = kvm_rma_mmap, |
| .release = kvm_rma_release, |
| }; |
| |
| long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret) |
| { |
| struct kvmppc_linear_info *ri; |
| long fd; |
| |
| ri = kvm_alloc_rma(); |
| if (!ri) |
| return -ENOMEM; |
| |
| fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR); |
| if (fd < 0) |
| kvm_release_rma(ri); |
| |
| ret->rma_size = ri->npages << PAGE_SHIFT; |
| return fd; |
| } |
| |
| static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, |
| int linux_psize) |
| { |
| struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; |
| |
| if (!def->shift) |
| return; |
| (*sps)->page_shift = def->shift; |
| (*sps)->slb_enc = def->sllp; |
| (*sps)->enc[0].page_shift = def->shift; |
| (*sps)->enc[0].pte_enc = def->penc; |
| (*sps)++; |
| } |
| |
| int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info) |
| { |
| struct kvm_ppc_one_seg_page_size *sps; |
| |
| info->flags = KVM_PPC_PAGE_SIZES_REAL; |
| if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) |
| info->flags |= KVM_PPC_1T_SEGMENTS; |
| info->slb_size = mmu_slb_size; |
| |
| /* We only support these sizes for now, and no muti-size segments */ |
| sps = &info->sps[0]; |
| kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); |
| kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); |
| kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); |
| |
| return 0; |
| } |
| |
| /* |
| * Get (and clear) the dirty memory log for a memory slot. |
| */ |
| int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) |
| { |
| struct kvm_memory_slot *memslot; |
| int r; |
| unsigned long n; |
| |
| mutex_lock(&kvm->slots_lock); |
| |
| r = -EINVAL; |
| if (log->slot >= KVM_USER_MEM_SLOTS) |
| goto out; |
| |
| memslot = id_to_memslot(kvm->memslots, log->slot); |
| r = -ENOENT; |
| if (!memslot->dirty_bitmap) |
| goto out; |
| |
| n = kvm_dirty_bitmap_bytes(memslot); |
| memset(memslot->dirty_bitmap, 0, n); |
| |
| r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap); |
| if (r) |
| goto out; |
| |
| r = -EFAULT; |
| if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) |
| goto out; |
| |
| r = 0; |
| out: |
| mutex_unlock(&kvm->slots_lock); |
| return r; |
| } |
| |
| static void unpin_slot(struct kvm_memory_slot *memslot) |
| { |
| unsigned long *physp; |
| unsigned long j, npages, pfn; |
| struct page *page; |
| |
| physp = memslot->arch.slot_phys; |
| npages = memslot->npages; |
| if (!physp) |
| return; |
| for (j = 0; j < npages; j++) { |
| if (!(physp[j] & KVMPPC_GOT_PAGE)) |
| continue; |
| pfn = physp[j] >> PAGE_SHIFT; |
| page = pfn_to_page(pfn); |
| SetPageDirty(page); |
| put_page(page); |
| } |
| } |
| |
| void kvmppc_core_free_memslot(struct kvm_memory_slot *free, |
| struct kvm_memory_slot *dont) |
| { |
| if (!dont || free->arch.rmap != dont->arch.rmap) { |
| vfree(free->arch.rmap); |
| free->arch.rmap = NULL; |
| } |
| if (!dont || free->arch.slot_phys != dont->arch.slot_phys) { |
| unpin_slot(free); |
| vfree(free->arch.slot_phys); |
| free->arch.slot_phys = NULL; |
| } |
| } |
| |
| int kvmppc_core_create_memslot(struct kvm_memory_slot *slot, |
| unsigned long npages) |
| { |
| slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); |
| if (!slot->arch.rmap) |
| return -ENOMEM; |
| slot->arch.slot_phys = NULL; |
| |
| return 0; |
| } |
| |
| int kvmppc_core_prepare_memory_region(struct kvm *kvm, |
| struct kvm_memory_slot *memslot, |
| struct kvm_userspace_memory_region *mem) |
| { |
| unsigned long *phys; |
| |
| /* Allocate a slot_phys array if needed */ |
| phys = memslot->arch.slot_phys; |
| if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) { |
| phys = vzalloc(memslot->npages * sizeof(unsigned long)); |
| if (!phys) |
| return -ENOMEM; |
| memslot->arch.slot_phys = phys; |
| } |
| |
| return 0; |
| } |
| |
| void kvmppc_core_commit_memory_region(struct kvm *kvm, |
| struct kvm_userspace_memory_region *mem, |
| const struct kvm_memory_slot *old) |
| { |
| unsigned long npages = mem->memory_size >> PAGE_SHIFT; |
| struct kvm_memory_slot *memslot; |
| |
| if (npages && old->npages) { |
| /* |
| * If modifying a memslot, reset all the rmap dirty bits. |
| * If this is a new memslot, we don't need to do anything |
| * since the rmap array starts out as all zeroes, |
| * i.e. no pages are dirty. |
| */ |
| memslot = id_to_memslot(kvm->memslots, mem->slot); |
| kvmppc_hv_get_dirty_log(kvm, memslot, NULL); |
| } |
| } |
| |
| static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) |
| { |
| int err = 0; |
| struct kvm *kvm = vcpu->kvm; |
| struct kvmppc_linear_info *ri = NULL; |
| unsigned long hva; |
| struct kvm_memory_slot *memslot; |
| struct vm_area_struct *vma; |
| unsigned long lpcr, senc; |
| unsigned long psize, porder; |
| unsigned long rma_size; |
| unsigned long rmls; |
| unsigned long *physp; |
| unsigned long i, npages; |
| int srcu_idx; |
| |
| mutex_lock(&kvm->lock); |
| if (kvm->arch.rma_setup_done) |
| goto out; /* another vcpu beat us to it */ |
| |
| /* Allocate hashed page table (if not done already) and reset it */ |
| if (!kvm->arch.hpt_virt) { |
| err = kvmppc_alloc_hpt(kvm, NULL); |
| if (err) { |
| pr_err("KVM: Couldn't alloc HPT\n"); |
| goto out; |
| } |
| } |
| |
| /* Look up the memslot for guest physical address 0 */ |
| srcu_idx = srcu_read_lock(&kvm->srcu); |
| memslot = gfn_to_memslot(kvm, 0); |
| |
| /* We must have some memory at 0 by now */ |
| err = -EINVAL; |
| if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) |
| goto out_srcu; |
| |
| /* Look up the VMA for the start of this memory slot */ |
| hva = memslot->userspace_addr; |
| down_read(¤t->mm->mmap_sem); |
| vma = find_vma(current->mm, hva); |
| if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) |
| goto up_out; |
| |
| psize = vma_kernel_pagesize(vma); |
| porder = __ilog2(psize); |
| |
| /* Is this one of our preallocated RMAs? */ |
| if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops && |
| hva == vma->vm_start) |
| ri = vma->vm_file->private_data; |
| |
| up_read(¤t->mm->mmap_sem); |
| |
| if (!ri) { |
| /* On POWER7, use VRMA; on PPC970, give up */ |
| err = -EPERM; |
| if (cpu_has_feature(CPU_FTR_ARCH_201)) { |
| pr_err("KVM: CPU requires an RMO\n"); |
| goto out_srcu; |
| } |
| |
| /* We can handle 4k, 64k or 16M pages in the VRMA */ |
| err = -EINVAL; |
| if (!(psize == 0x1000 || psize == 0x10000 || |
| psize == 0x1000000)) |
| goto out_srcu; |
| |
| /* Update VRMASD field in the LPCR */ |
| senc = slb_pgsize_encoding(psize); |
| kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | |
| (VRMA_VSID << SLB_VSID_SHIFT_1T); |
| lpcr = kvm->arch.lpcr & ~LPCR_VRMASD; |
| lpcr |= senc << (LPCR_VRMASD_SH - 4); |
| kvm->arch.lpcr = lpcr; |
| |
| /* Create HPTEs in the hash page table for the VRMA */ |
| kvmppc_map_vrma(vcpu, memslot, porder); |
| |
| } else { |
| /* Set up to use an RMO region */ |
| rma_size = ri->npages; |
| if (rma_size > memslot->npages) |
| rma_size = memslot->npages; |
| rma_size <<= PAGE_SHIFT; |
| rmls = lpcr_rmls(rma_size); |
| err = -EINVAL; |
| if (rmls < 0) { |
| pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size); |
| goto out_srcu; |
| } |
| atomic_inc(&ri->use_count); |
| kvm->arch.rma = ri; |
| |
| /* Update LPCR and RMOR */ |
| lpcr = kvm->arch.lpcr; |
| if (cpu_has_feature(CPU_FTR_ARCH_201)) { |
| /* PPC970; insert RMLS value (split field) in HID4 */ |
| lpcr &= ~((1ul << HID4_RMLS0_SH) | |
| (3ul << HID4_RMLS2_SH)); |
| lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) | |
| ((rmls & 3) << HID4_RMLS2_SH); |
| /* RMOR is also in HID4 */ |
| lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff) |
| << HID4_RMOR_SH; |
| } else { |
| /* POWER7 */ |
| lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L); |
| lpcr |= rmls << LPCR_RMLS_SH; |
| kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT; |
| } |
| kvm->arch.lpcr = lpcr; |
| pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n", |
| ri->base_pfn << PAGE_SHIFT, rma_size, lpcr); |
| |
| /* Initialize phys addrs of pages in RMO */ |
| npages = ri->npages; |
| porder = __ilog2(npages); |
| physp = memslot->arch.slot_phys; |
| if (physp) { |
| if (npages > memslot->npages) |
| npages = memslot->npages; |
| spin_lock(&kvm->arch.slot_phys_lock); |
| for (i = 0; i < npages; ++i) |
| physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + |
| porder; |
| spin_unlock(&kvm->arch.slot_phys_lock); |
| } |
| } |
| |
| /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */ |
| smp_wmb(); |
| kvm->arch.rma_setup_done = 1; |
| err = 0; |
| out_srcu: |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| out: |
| mutex_unlock(&kvm->lock); |
| return err; |
| |
| up_out: |
| up_read(¤t->mm->mmap_sem); |
| goto out; |
| } |
| |
| int kvmppc_core_init_vm(struct kvm *kvm) |
| { |
| unsigned long lpcr, lpid; |
| |
| /* Allocate the guest's logical partition ID */ |
| |
| lpid = kvmppc_alloc_lpid(); |
| if (lpid < 0) |
| return -ENOMEM; |
| kvm->arch.lpid = lpid; |
| |
| /* |
| * Since we don't flush the TLB when tearing down a VM, |
| * and this lpid might have previously been used, |
| * make sure we flush on each core before running the new VM. |
| */ |
| cpumask_setall(&kvm->arch.need_tlb_flush); |
| |
| INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables); |
| INIT_LIST_HEAD(&kvm->arch.rtas_tokens); |
| |
| kvm->arch.rma = NULL; |
| |
| kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_201)) { |
| /* PPC970; HID4 is effectively the LPCR */ |
| kvm->arch.host_lpid = 0; |
| kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4); |
| lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH)); |
| lpcr |= ((lpid >> 4) << HID4_LPID1_SH) | |
| ((lpid & 0xf) << HID4_LPID5_SH); |
| } else { |
| /* POWER7; init LPCR for virtual RMA mode */ |
| kvm->arch.host_lpid = mfspr(SPRN_LPID); |
| kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); |
| lpcr &= LPCR_PECE | LPCR_LPES; |
| lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | |
| LPCR_VPM0 | LPCR_VPM1; |
| kvm->arch.vrma_slb_v = SLB_VSID_B_1T | |
| (VRMA_VSID << SLB_VSID_SHIFT_1T); |
| } |
| kvm->arch.lpcr = lpcr; |
| |
| kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206); |
| spin_lock_init(&kvm->arch.slot_phys_lock); |
| |
| /* |
| * Don't allow secondary CPU threads to come online |
| * while any KVM VMs exist. |
| */ |
| inhibit_secondary_onlining(); |
| |
| return 0; |
| } |
| |
| void kvmppc_core_destroy_vm(struct kvm *kvm) |
| { |
| uninhibit_secondary_onlining(); |
| |
| if (kvm->arch.rma) { |
| kvm_release_rma(kvm->arch.rma); |
| kvm->arch.rma = NULL; |
| } |
| |
| kvmppc_rtas_tokens_free(kvm); |
| |
| kvmppc_free_hpt(kvm); |
| WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); |
| } |
| |
| /* These are stubs for now */ |
| void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end) |
| { |
| } |
| |
| /* We don't need to emulate any privileged instructions or dcbz */ |
| int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, |
| unsigned int inst, int *advance) |
| { |
| return EMULATE_FAIL; |
| } |
| |
| int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val) |
| { |
| return EMULATE_FAIL; |
| } |
| |
| int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val) |
| { |
| return EMULATE_FAIL; |
| } |
| |
| static int kvmppc_book3s_hv_init(void) |
| { |
| int r; |
| |
| r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); |
| |
| if (r) |
| return r; |
| |
| r = kvmppc_mmu_hv_init(); |
| |
| return r; |
| } |
| |
| static void kvmppc_book3s_hv_exit(void) |
| { |
| kvm_exit(); |
| } |
| |
| module_init(kvmppc_book3s_hv_init); |
| module_exit(kvmppc_book3s_hv_exit); |