| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. |
| * Copyright (C) 2019-2020 Linaro Ltd. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/device.h> |
| #include <linux/slab.h> |
| #include <linux/bitfield.h> |
| #include <linux/if_rmnet.h> |
| #include <linux/dma-direction.h> |
| |
| #include "gsi.h" |
| #include "gsi_trans.h" |
| #include "ipa.h" |
| #include "ipa_data.h" |
| #include "ipa_endpoint.h" |
| #include "ipa_cmd.h" |
| #include "ipa_mem.h" |
| #include "ipa_modem.h" |
| #include "ipa_table.h" |
| #include "ipa_gsi.h" |
| #include "ipa_clock.h" |
| |
| #define atomic_dec_not_zero(v) atomic_add_unless((v), -1, 0) |
| |
| #define IPA_REPLENISH_BATCH 16 |
| |
| /* RX buffer is 1 page (or a power-of-2 contiguous pages) */ |
| #define IPA_RX_BUFFER_SIZE 8192 /* PAGE_SIZE > 4096 wastes a LOT */ |
| |
| /* The amount of RX buffer space consumed by standard skb overhead */ |
| #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0)) |
| |
| /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */ |
| #define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */ |
| |
| #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3 |
| #define IPA_AGGR_TIME_LIMIT_DEFAULT 500 /* microseconds */ |
| |
| /** enum ipa_status_opcode - status element opcode hardware values */ |
| enum ipa_status_opcode { |
| IPA_STATUS_OPCODE_PACKET = 0x01, |
| IPA_STATUS_OPCODE_DROPPED_PACKET = 0x04, |
| IPA_STATUS_OPCODE_SUSPENDED_PACKET = 0x08, |
| IPA_STATUS_OPCODE_PACKET_2ND_PASS = 0x40, |
| }; |
| |
| /** enum ipa_status_exception - status element exception type */ |
| enum ipa_status_exception { |
| /* 0 means no exception */ |
| IPA_STATUS_EXCEPTION_DEAGGR = 0x01, |
| }; |
| |
| /* Status element provided by hardware */ |
| struct ipa_status { |
| u8 opcode; /* enum ipa_status_opcode */ |
| u8 exception; /* enum ipa_status_exception */ |
| __le16 mask; |
| __le16 pkt_len; |
| u8 endp_src_idx; |
| u8 endp_dst_idx; |
| __le32 metadata; |
| __le32 flags1; |
| __le64 flags2; |
| __le32 flags3; |
| __le32 flags4; |
| }; |
| |
| /* Field masks for struct ipa_status structure fields */ |
| #define IPA_STATUS_DST_IDX_FMASK GENMASK(4, 0) |
| #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK GENMASK(31, 22) |
| |
| #ifdef IPA_VALIDATE |
| |
| static void ipa_endpoint_validate_build(void) |
| { |
| /* The aggregation byte limit defines the point at which an |
| * aggregation window will close. It is programmed into the |
| * IPA hardware as a number of KB. We don't use "hard byte |
| * limit" aggregation, which means that we need to supply |
| * enough space in a receive buffer to hold a complete MTU |
| * plus normal skb overhead *after* that aggregation byte |
| * limit has been crossed. |
| * |
| * This check just ensures we don't define a receive buffer |
| * size that would exceed what we can represent in the field |
| * that is used to program its size. |
| */ |
| BUILD_BUG_ON(IPA_RX_BUFFER_SIZE > |
| field_max(AGGR_BYTE_LIMIT_FMASK) * SZ_1K + |
| IPA_MTU + IPA_RX_BUFFER_OVERHEAD); |
| |
| /* I honestly don't know where this requirement comes from. But |
| * it holds, and if we someday need to loosen the constraint we |
| * can try to track it down. |
| */ |
| BUILD_BUG_ON(sizeof(struct ipa_status) % 4); |
| } |
| |
| static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count, |
| const struct ipa_gsi_endpoint_data *all_data, |
| const struct ipa_gsi_endpoint_data *data) |
| { |
| const struct ipa_gsi_endpoint_data *other_data; |
| struct device *dev = &ipa->pdev->dev; |
| enum ipa_endpoint_name other_name; |
| |
| if (ipa_gsi_endpoint_data_empty(data)) |
| return true; |
| |
| if (!data->toward_ipa) { |
| if (data->endpoint.filter_support) { |
| dev_err(dev, "filtering not supported for " |
| "RX endpoint %u\n", |
| data->endpoint_id); |
| return false; |
| } |
| |
| return true; /* Nothing more to check for RX */ |
| } |
| |
| if (data->endpoint.config.status_enable) { |
| other_name = data->endpoint.config.tx.status_endpoint; |
| if (other_name >= count) { |
| dev_err(dev, "status endpoint name %u out of range " |
| "for endpoint %u\n", |
| other_name, data->endpoint_id); |
| return false; |
| } |
| |
| /* Status endpoint must be defined... */ |
| other_data = &all_data[other_name]; |
| if (ipa_gsi_endpoint_data_empty(other_data)) { |
| dev_err(dev, "DMA endpoint name %u undefined " |
| "for endpoint %u\n", |
| other_name, data->endpoint_id); |
| return false; |
| } |
| |
| /* ...and has to be an RX endpoint... */ |
| if (other_data->toward_ipa) { |
| dev_err(dev, |
| "status endpoint for endpoint %u not RX\n", |
| data->endpoint_id); |
| return false; |
| } |
| |
| /* ...and if it's to be an AP endpoint... */ |
| if (other_data->ee_id == GSI_EE_AP) { |
| /* ...make sure it has status enabled. */ |
| if (!other_data->endpoint.config.status_enable) { |
| dev_err(dev, |
| "status not enabled for endpoint %u\n", |
| other_data->endpoint_id); |
| return false; |
| } |
| } |
| } |
| |
| if (data->endpoint.config.dma_mode) { |
| other_name = data->endpoint.config.dma_endpoint; |
| if (other_name >= count) { |
| dev_err(dev, "DMA endpoint name %u out of range " |
| "for endpoint %u\n", |
| other_name, data->endpoint_id); |
| return false; |
| } |
| |
| other_data = &all_data[other_name]; |
| if (ipa_gsi_endpoint_data_empty(other_data)) { |
| dev_err(dev, "DMA endpoint name %u undefined " |
| "for endpoint %u\n", |
| other_name, data->endpoint_id); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count, |
| const struct ipa_gsi_endpoint_data *data) |
| { |
| const struct ipa_gsi_endpoint_data *dp = data; |
| struct device *dev = &ipa->pdev->dev; |
| enum ipa_endpoint_name name; |
| |
| ipa_endpoint_validate_build(); |
| |
| if (count > IPA_ENDPOINT_COUNT) { |
| dev_err(dev, "too many endpoints specified (%u > %u)\n", |
| count, IPA_ENDPOINT_COUNT); |
| return false; |
| } |
| |
| /* Make sure needed endpoints have defined data */ |
| if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) { |
| dev_err(dev, "command TX endpoint not defined\n"); |
| return false; |
| } |
| if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) { |
| dev_err(dev, "LAN RX endpoint not defined\n"); |
| return false; |
| } |
| if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) { |
| dev_err(dev, "AP->modem TX endpoint not defined\n"); |
| return false; |
| } |
| if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) { |
| dev_err(dev, "AP<-modem RX endpoint not defined\n"); |
| return false; |
| } |
| |
| for (name = 0; name < count; name++, dp++) |
| if (!ipa_endpoint_data_valid_one(ipa, count, data, dp)) |
| return false; |
| |
| return true; |
| } |
| |
| #else /* !IPA_VALIDATE */ |
| |
| static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count, |
| const struct ipa_gsi_endpoint_data *data) |
| { |
| return true; |
| } |
| |
| #endif /* !IPA_VALIDATE */ |
| |
| /* Allocate a transaction to use on a non-command endpoint */ |
| static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint, |
| u32 tre_count) |
| { |
| struct gsi *gsi = &endpoint->ipa->gsi; |
| u32 channel_id = endpoint->channel_id; |
| enum dma_data_direction direction; |
| |
| direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE; |
| |
| return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction); |
| } |
| |
| /* suspend_delay represents suspend for RX, delay for TX endpoints. |
| * Note that suspend is not supported starting with IPA v4.0. |
| */ |
| static bool |
| ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay) |
| { |
| u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id); |
| struct ipa *ipa = endpoint->ipa; |
| bool state; |
| u32 mask; |
| u32 val; |
| |
| /* Suspend is not supported for IPA v4.0+. Delay doesn't work |
| * correctly on IPA v4.2. |
| * |
| * if (endpoint->toward_ipa) |
| * assert(ipa->version != IPA_VERSION_4.2); |
| * else |
| * assert(ipa->version == IPA_VERSION_3_5_1); |
| */ |
| mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK; |
| |
| val = ioread32(ipa->reg_virt + offset); |
| /* Don't bother if it's already in the requested state */ |
| state = !!(val & mask); |
| if (suspend_delay != state) { |
| val ^= mask; |
| iowrite32(val, ipa->reg_virt + offset); |
| } |
| |
| return state; |
| } |
| |
| /* We currently don't care what the previous state was for delay mode */ |
| static void |
| ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable) |
| { |
| /* assert(endpoint->toward_ipa); */ |
| |
| /* Delay mode doesn't work properly for IPA v4.2 */ |
| if (endpoint->ipa->version != IPA_VERSION_4_2) |
| (void)ipa_endpoint_init_ctrl(endpoint, enable); |
| } |
| |
| static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint) |
| { |
| u32 mask = BIT(endpoint->endpoint_id); |
| struct ipa *ipa = endpoint->ipa; |
| u32 offset; |
| u32 val; |
| |
| /* assert(mask & ipa->available); */ |
| offset = ipa_reg_state_aggr_active_offset(ipa->version); |
| val = ioread32(ipa->reg_virt + offset); |
| |
| return !!(val & mask); |
| } |
| |
| static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint) |
| { |
| u32 mask = BIT(endpoint->endpoint_id); |
| struct ipa *ipa = endpoint->ipa; |
| |
| /* assert(mask & ipa->available); */ |
| iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET); |
| } |
| |
| /** |
| * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt |
| * @endpoint: Endpoint on which to emulate a suspend |
| * |
| * Emulate suspend IPA interrupt to unsuspend an endpoint suspended |
| * with an open aggregation frame. This is to work around a hardware |
| * issue in IPA version 3.5.1 where the suspend interrupt will not be |
| * generated when it should be. |
| */ |
| static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint) |
| { |
| struct ipa *ipa = endpoint->ipa; |
| |
| if (!endpoint->data->aggregation) |
| return; |
| |
| /* Nothing to do if the endpoint doesn't have aggregation open */ |
| if (!ipa_endpoint_aggr_active(endpoint)) |
| return; |
| |
| /* Force close aggregation */ |
| ipa_endpoint_force_close(endpoint); |
| |
| ipa_interrupt_simulate_suspend(ipa->interrupt); |
| } |
| |
| /* Returns previous suspend state (true means suspend was enabled) */ |
| static bool |
| ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable) |
| { |
| bool suspended; |
| |
| if (endpoint->ipa->version != IPA_VERSION_3_5_1) |
| return enable; /* For IPA v4.0+, no change made */ |
| |
| /* assert(!endpoint->toward_ipa); */ |
| |
| suspended = ipa_endpoint_init_ctrl(endpoint, enable); |
| |
| /* A client suspended with an open aggregation frame will not |
| * generate a SUSPEND IPA interrupt. If enabling suspend, have |
| * ipa_endpoint_suspend_aggr() handle this. |
| */ |
| if (enable && !suspended) |
| ipa_endpoint_suspend_aggr(endpoint); |
| |
| return suspended; |
| } |
| |
| /* Enable or disable delay or suspend mode on all modem endpoints */ |
| void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable) |
| { |
| u32 endpoint_id; |
| |
| /* DELAY mode doesn't work correctly on IPA v4.2 */ |
| if (ipa->version == IPA_VERSION_4_2) |
| return; |
| |
| for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) { |
| struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id]; |
| |
| if (endpoint->ee_id != GSI_EE_MODEM) |
| continue; |
| |
| /* Set TX delay mode or RX suspend mode */ |
| if (endpoint->toward_ipa) |
| ipa_endpoint_program_delay(endpoint, enable); |
| else |
| (void)ipa_endpoint_program_suspend(endpoint, enable); |
| } |
| } |
| |
| /* Reset all modem endpoints to use the default exception endpoint */ |
| int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa) |
| { |
| u32 initialized = ipa->initialized; |
| struct gsi_trans *trans; |
| u32 count; |
| |
| /* We need one command per modem TX endpoint. We can get an upper |
| * bound on that by assuming all initialized endpoints are modem->IPA. |
| * That won't happen, and we could be more precise, but this is fine |
| * for now. We need to end the transaction with a "tag process." |
| */ |
| count = hweight32(initialized) + ipa_cmd_tag_process_count(); |
| trans = ipa_cmd_trans_alloc(ipa, count); |
| if (!trans) { |
| dev_err(&ipa->pdev->dev, |
| "no transaction to reset modem exception endpoints\n"); |
| return -EBUSY; |
| } |
| |
| while (initialized) { |
| u32 endpoint_id = __ffs(initialized); |
| struct ipa_endpoint *endpoint; |
| u32 offset; |
| |
| initialized ^= BIT(endpoint_id); |
| |
| /* We only reset modem TX endpoints */ |
| endpoint = &ipa->endpoint[endpoint_id]; |
| if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa)) |
| continue; |
| |
| offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); |
| |
| /* Value written is 0, and all bits are updated. That |
| * means status is disabled on the endpoint, and as a |
| * result all other fields in the register are ignored. |
| */ |
| ipa_cmd_register_write_add(trans, offset, 0, ~0, false); |
| } |
| |
| ipa_cmd_tag_process_add(trans); |
| |
| /* XXX This should have a 1 second timeout */ |
| gsi_trans_commit_wait(trans); |
| |
| return 0; |
| } |
| |
| static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint) |
| { |
| u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id); |
| u32 val = 0; |
| |
| /* FRAG_OFFLOAD_EN is 0 */ |
| if (endpoint->data->checksum) { |
| if (endpoint->toward_ipa) { |
| u32 checksum_offset; |
| |
| val |= u32_encode_bits(IPA_CS_OFFLOAD_UL, |
| CS_OFFLOAD_EN_FMASK); |
| /* Checksum header offset is in 4-byte units */ |
| checksum_offset = sizeof(struct rmnet_map_header); |
| checksum_offset /= sizeof(u32); |
| val |= u32_encode_bits(checksum_offset, |
| CS_METADATA_HDR_OFFSET_FMASK); |
| } else { |
| val |= u32_encode_bits(IPA_CS_OFFLOAD_DL, |
| CS_OFFLOAD_EN_FMASK); |
| } |
| } else { |
| val |= u32_encode_bits(IPA_CS_OFFLOAD_NONE, |
| CS_OFFLOAD_EN_FMASK); |
| } |
| /* CS_GEN_QMB_MASTER_SEL is 0 */ |
| |
| iowrite32(val, endpoint->ipa->reg_virt + offset); |
| } |
| |
| /** |
| * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register |
| * @endpoint: Endpoint pointer |
| * |
| * We program QMAP endpoints so each packet received is preceded by a QMAP |
| * header structure. The QMAP header contains a 1-byte mux_id and 2-byte |
| * packet size field, and we have the IPA hardware populate both for each |
| * received packet. The header is configured (in the HDR_EXT register) |
| * to use big endian format. |
| * |
| * The packet size is written into the QMAP header's pkt_len field. That |
| * location is defined here using the HDR_OFST_PKT_SIZE field. |
| * |
| * The mux_id comes from a 4-byte metadata value supplied with each packet |
| * by the modem. It is *not* a QMAP header, but it does contain the mux_id |
| * value that we want, in its low-order byte. A bitmask defined in the |
| * endpoint's METADATA_MASK register defines which byte within the modem |
| * metadata contains the mux_id. And the OFST_METADATA field programmed |
| * here indicates where the extracted byte should be placed within the QMAP |
| * header. |
| */ |
| static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint) |
| { |
| u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id); |
| u32 val = 0; |
| |
| if (endpoint->data->qmap) { |
| size_t header_size = sizeof(struct rmnet_map_header); |
| |
| /* We might supply a checksum header after the QMAP header */ |
| if (endpoint->toward_ipa && endpoint->data->checksum) |
| header_size += sizeof(struct rmnet_map_ul_csum_header); |
| val |= u32_encode_bits(header_size, HDR_LEN_FMASK); |
| |
| /* Define how to fill fields in a received QMAP header */ |
| if (!endpoint->toward_ipa) { |
| u32 off; /* Field offset within header */ |
| |
| /* Where IPA will write the metadata value */ |
| off = offsetof(struct rmnet_map_header, mux_id); |
| val |= u32_encode_bits(off, HDR_OFST_METADATA_FMASK); |
| |
| /* Where IPA will write the length */ |
| off = offsetof(struct rmnet_map_header, pkt_len); |
| val |= HDR_OFST_PKT_SIZE_VALID_FMASK; |
| val |= u32_encode_bits(off, HDR_OFST_PKT_SIZE_FMASK); |
| } |
| /* For QMAP TX, metadata offset is 0 (modem assumes this) */ |
| val |= HDR_OFST_METADATA_VALID_FMASK; |
| |
| /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */ |
| /* HDR_A5_MUX is 0 */ |
| /* HDR_LEN_INC_DEAGG_HDR is 0 */ |
| /* HDR_METADATA_REG_VALID is 0 (TX only) */ |
| } |
| |
| iowrite32(val, endpoint->ipa->reg_virt + offset); |
| } |
| |
| static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint) |
| { |
| u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id); |
| u32 pad_align = endpoint->data->rx.pad_align; |
| u32 val = 0; |
| |
| val |= HDR_ENDIANNESS_FMASK; /* big endian */ |
| |
| /* A QMAP header contains a 6 bit pad field at offset 0. The RMNet |
| * driver assumes this field is meaningful in packets it receives, |
| * and assumes the header's payload length includes that padding. |
| * The RMNet driver does *not* pad packets it sends, however, so |
| * the pad field (although 0) should be ignored. |
| */ |
| if (endpoint->data->qmap && !endpoint->toward_ipa) { |
| val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK; |
| /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */ |
| val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK; |
| /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */ |
| } |
| |
| /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */ |
| if (!endpoint->toward_ipa) |
| val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK); |
| |
| iowrite32(val, endpoint->ipa->reg_virt + offset); |
| } |
| |
| |
| static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| u32 val = 0; |
| u32 offset; |
| |
| if (endpoint->toward_ipa) |
| return; /* Register not valid for TX endpoints */ |
| |
| offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id); |
| |
| /* Note that HDR_ENDIANNESS indicates big endian header fields */ |
| if (endpoint->data->qmap) |
| val = cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK); |
| |
| iowrite32(val, endpoint->ipa->reg_virt + offset); |
| } |
| |
| static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint) |
| { |
| u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id); |
| u32 val; |
| |
| if (!endpoint->toward_ipa) |
| return; /* Register not valid for RX endpoints */ |
| |
| if (endpoint->data->dma_mode) { |
| enum ipa_endpoint_name name = endpoint->data->dma_endpoint; |
| u32 dma_endpoint_id; |
| |
| dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id; |
| |
| val = u32_encode_bits(IPA_DMA, MODE_FMASK); |
| val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK); |
| } else { |
| val = u32_encode_bits(IPA_BASIC, MODE_FMASK); |
| } |
| /* All other bits unspecified (and 0) */ |
| |
| iowrite32(val, endpoint->ipa->reg_virt + offset); |
| } |
| |
| /* Compute the aggregation size value to use for a given buffer size */ |
| static u32 ipa_aggr_size_kb(u32 rx_buffer_size) |
| { |
| /* We don't use "hard byte limit" aggregation, so we define the |
| * aggregation limit such that our buffer has enough space *after* |
| * that limit to receive a full MTU of data, plus overhead. |
| */ |
| rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD; |
| |
| return rx_buffer_size / SZ_1K; |
| } |
| |
| static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint) |
| { |
| u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id); |
| u32 val = 0; |
| |
| if (endpoint->data->aggregation) { |
| if (!endpoint->toward_ipa) { |
| u32 limit; |
| |
| val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK); |
| val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK); |
| |
| limit = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE); |
| val |= u32_encode_bits(limit, AGGR_BYTE_LIMIT_FMASK); |
| |
| limit = IPA_AGGR_TIME_LIMIT_DEFAULT; |
| limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY); |
| val |= u32_encode_bits(limit, AGGR_TIME_LIMIT_FMASK); |
| |
| /* AGGR_PKT_LIMIT is 0 (unlimited) */ |
| |
| if (endpoint->data->rx.aggr_close_eof) |
| val |= AGGR_SW_EOF_ACTIVE_FMASK; |
| /* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */ |
| } else { |
| val |= u32_encode_bits(IPA_ENABLE_DEAGGR, |
| AGGR_EN_FMASK); |
| val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK); |
| /* other fields ignored */ |
| } |
| /* AGGR_FORCE_CLOSE is 0 */ |
| } else { |
| val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK); |
| /* other fields ignored */ |
| } |
| |
| iowrite32(val, endpoint->ipa->reg_virt + offset); |
| } |
| |
| /* The head-of-line blocking timer is defined as a tick count, where each |
| * tick represents 128 cycles of the IPA core clock. Return the value |
| * that should be written to that register that represents the timeout |
| * period provided. |
| */ |
| static u32 ipa_reg_init_hol_block_timer_val(struct ipa *ipa, u32 microseconds) |
| { |
| u32 width; |
| u32 scale; |
| u64 ticks; |
| u64 rate; |
| u32 high; |
| u32 val; |
| |
| if (!microseconds) |
| return 0; /* Nothing to compute if timer period is 0 */ |
| |
| /* Use 64 bit arithmetic to avoid overflow... */ |
| rate = ipa_clock_rate(ipa); |
| ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC); |
| /* ...but we still need to fit into a 32-bit register */ |
| WARN_ON(ticks > U32_MAX); |
| |
| /* IPA v3.5.1 just records the tick count */ |
| if (ipa->version == IPA_VERSION_3_5_1) |
| return (u32)ticks; |
| |
| /* For IPA v4.2, the tick count is represented by base and |
| * scale fields within the 32-bit timer register, where: |
| * ticks = base << scale; |
| * The best precision is achieved when the base value is as |
| * large as possible. Find the highest set bit in the tick |
| * count, and extract the number of bits in the base field |
| * such that that high bit is included. |
| */ |
| high = fls(ticks); /* 1..32 */ |
| width = HWEIGHT32(BASE_VALUE_FMASK); |
| scale = high > width ? high - width : 0; |
| if (scale) { |
| /* If we're scaling, round up to get a closer result */ |
| ticks += 1 << (scale - 1); |
| /* High bit was set, so rounding might have affected it */ |
| if (fls(ticks) != high) |
| scale++; |
| } |
| |
| val = u32_encode_bits(scale, SCALE_FMASK); |
| val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK); |
| |
| return val; |
| } |
| |
| /* If microseconds is 0, timeout is immediate */ |
| static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint, |
| u32 microseconds) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| struct ipa *ipa = endpoint->ipa; |
| u32 offset; |
| u32 val; |
| |
| offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id); |
| val = ipa_reg_init_hol_block_timer_val(ipa, microseconds); |
| iowrite32(val, ipa->reg_virt + offset); |
| } |
| |
| static void |
| ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| u32 offset; |
| u32 val; |
| |
| val = enable ? HOL_BLOCK_EN_FMASK : 0; |
| offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id); |
| iowrite32(val, endpoint->ipa->reg_virt + offset); |
| } |
| |
| void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa) |
| { |
| u32 i; |
| |
| for (i = 0; i < IPA_ENDPOINT_MAX; i++) { |
| struct ipa_endpoint *endpoint = &ipa->endpoint[i]; |
| |
| if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM) |
| continue; |
| |
| ipa_endpoint_init_hol_block_timer(endpoint, 0); |
| ipa_endpoint_init_hol_block_enable(endpoint, true); |
| } |
| } |
| |
| static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint) |
| { |
| u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id); |
| u32 val = 0; |
| |
| if (!endpoint->toward_ipa) |
| return; /* Register not valid for RX endpoints */ |
| |
| /* DEAGGR_HDR_LEN is 0 */ |
| /* PACKET_OFFSET_VALID is 0 */ |
| /* PACKET_OFFSET_LOCATION is ignored (not valid) */ |
| /* MAX_PACKET_LEN is 0 (not enforced) */ |
| |
| iowrite32(val, endpoint->ipa->reg_virt + offset); |
| } |
| |
| static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint) |
| { |
| u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id); |
| u32 seq_type = endpoint->seq_type; |
| u32 val = 0; |
| |
| if (!endpoint->toward_ipa) |
| return; /* Register not valid for RX endpoints */ |
| |
| /* Sequencer type is made up of four nibbles */ |
| val |= u32_encode_bits(seq_type & 0xf, HPS_SEQ_TYPE_FMASK); |
| val |= u32_encode_bits((seq_type >> 4) & 0xf, DPS_SEQ_TYPE_FMASK); |
| /* The second two apply to replicated packets */ |
| val |= u32_encode_bits((seq_type >> 8) & 0xf, HPS_REP_SEQ_TYPE_FMASK); |
| val |= u32_encode_bits((seq_type >> 12) & 0xf, DPS_REP_SEQ_TYPE_FMASK); |
| |
| iowrite32(val, endpoint->ipa->reg_virt + offset); |
| } |
| |
| /** |
| * ipa_endpoint_skb_tx() - Transmit a socket buffer |
| * @endpoint: Endpoint pointer |
| * @skb: Socket buffer to send |
| * |
| * Returns: 0 if successful, or a negative error code |
| */ |
| int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb) |
| { |
| struct gsi_trans *trans; |
| u32 nr_frags; |
| int ret; |
| |
| /* Make sure source endpoint's TLV FIFO has enough entries to |
| * hold the linear portion of the skb and all its fragments. |
| * If not, see if we can linearize it before giving up. |
| */ |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| if (1 + nr_frags > endpoint->trans_tre_max) { |
| if (skb_linearize(skb)) |
| return -E2BIG; |
| nr_frags = 0; |
| } |
| |
| trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags); |
| if (!trans) |
| return -EBUSY; |
| |
| ret = gsi_trans_skb_add(trans, skb); |
| if (ret) |
| goto err_trans_free; |
| trans->data = skb; /* transaction owns skb now */ |
| |
| gsi_trans_commit(trans, !netdev_xmit_more()); |
| |
| return 0; |
| |
| err_trans_free: |
| gsi_trans_free(trans); |
| |
| return -ENOMEM; |
| } |
| |
| static void ipa_endpoint_status(struct ipa_endpoint *endpoint) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| struct ipa *ipa = endpoint->ipa; |
| u32 val = 0; |
| u32 offset; |
| |
| offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id); |
| |
| if (endpoint->data->status_enable) { |
| val |= STATUS_EN_FMASK; |
| if (endpoint->toward_ipa) { |
| enum ipa_endpoint_name name; |
| u32 status_endpoint_id; |
| |
| name = endpoint->data->tx.status_endpoint; |
| status_endpoint_id = ipa->name_map[name]->endpoint_id; |
| |
| val |= u32_encode_bits(status_endpoint_id, |
| STATUS_ENDP_FMASK); |
| } |
| /* STATUS_LOCATION is 0 (status element precedes packet) */ |
| /* The next field is present for IPA v4.0 and above */ |
| /* STATUS_PKT_SUPPRESS_FMASK is 0 */ |
| } |
| |
| iowrite32(val, ipa->reg_virt + offset); |
| } |
| |
| static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint) |
| { |
| struct gsi_trans *trans; |
| bool doorbell = false; |
| struct page *page; |
| u32 offset; |
| u32 len; |
| int ret; |
| |
| page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE)); |
| if (!page) |
| return -ENOMEM; |
| |
| trans = ipa_endpoint_trans_alloc(endpoint, 1); |
| if (!trans) |
| goto err_free_pages; |
| |
| /* Offset the buffer to make space for skb headroom */ |
| offset = NET_SKB_PAD; |
| len = IPA_RX_BUFFER_SIZE - offset; |
| |
| ret = gsi_trans_page_add(trans, page, len, offset); |
| if (ret) |
| goto err_trans_free; |
| trans->data = page; /* transaction owns page now */ |
| |
| if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) { |
| doorbell = true; |
| endpoint->replenish_ready = 0; |
| } |
| |
| gsi_trans_commit(trans, doorbell); |
| |
| return 0; |
| |
| err_trans_free: |
| gsi_trans_free(trans); |
| err_free_pages: |
| __free_pages(page, get_order(IPA_RX_BUFFER_SIZE)); |
| |
| return -ENOMEM; |
| } |
| |
| /** |
| * ipa_endpoint_replenish() - Replenish the Rx packets cache. |
| * @endpoint: Endpoint to be replenished |
| * @count: Number of buffers to send to hardware |
| * |
| * Allocate RX packet wrapper structures with maximal socket buffers |
| * for an endpoint. These are supplied to the hardware, which fills |
| * them with incoming data. |
| */ |
| static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, u32 count) |
| { |
| struct gsi *gsi; |
| u32 backlog; |
| |
| if (!endpoint->replenish_enabled) { |
| if (count) |
| atomic_add(count, &endpoint->replenish_saved); |
| return; |
| } |
| |
| |
| while (atomic_dec_not_zero(&endpoint->replenish_backlog)) |
| if (ipa_endpoint_replenish_one(endpoint)) |
| goto try_again_later; |
| if (count) |
| atomic_add(count, &endpoint->replenish_backlog); |
| |
| return; |
| |
| try_again_later: |
| /* The last one didn't succeed, so fix the backlog */ |
| backlog = atomic_inc_return(&endpoint->replenish_backlog); |
| |
| if (count) |
| atomic_add(count, &endpoint->replenish_backlog); |
| |
| /* Whenever a receive buffer transaction completes we'll try to |
| * replenish again. It's unlikely, but if we fail to supply even |
| * one buffer, nothing will trigger another replenish attempt. |
| * Receive buffer transactions use one TRE, so schedule work to |
| * try replenishing again if our backlog is *all* available TREs. |
| */ |
| gsi = &endpoint->ipa->gsi; |
| if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id)) |
| schedule_delayed_work(&endpoint->replenish_work, |
| msecs_to_jiffies(1)); |
| } |
| |
| static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint) |
| { |
| struct gsi *gsi = &endpoint->ipa->gsi; |
| u32 max_backlog; |
| u32 saved; |
| |
| endpoint->replenish_enabled = true; |
| while ((saved = atomic_xchg(&endpoint->replenish_saved, 0))) |
| atomic_add(saved, &endpoint->replenish_backlog); |
| |
| /* Start replenishing if hardware currently has no buffers */ |
| max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id); |
| if (atomic_read(&endpoint->replenish_backlog) == max_backlog) |
| ipa_endpoint_replenish(endpoint, 0); |
| } |
| |
| static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint) |
| { |
| u32 backlog; |
| |
| endpoint->replenish_enabled = false; |
| while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0))) |
| atomic_add(backlog, &endpoint->replenish_saved); |
| } |
| |
| static void ipa_endpoint_replenish_work(struct work_struct *work) |
| { |
| struct delayed_work *dwork = to_delayed_work(work); |
| struct ipa_endpoint *endpoint; |
| |
| endpoint = container_of(dwork, struct ipa_endpoint, replenish_work); |
| |
| ipa_endpoint_replenish(endpoint, 0); |
| } |
| |
| static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint, |
| void *data, u32 len, u32 extra) |
| { |
| struct sk_buff *skb; |
| |
| skb = __dev_alloc_skb(len, GFP_ATOMIC); |
| if (skb) { |
| skb_put(skb, len); |
| memcpy(skb->data, data, len); |
| skb->truesize += extra; |
| } |
| |
| /* Now receive it, or drop it if there's no netdev */ |
| if (endpoint->netdev) |
| ipa_modem_skb_rx(endpoint->netdev, skb); |
| else if (skb) |
| dev_kfree_skb_any(skb); |
| } |
| |
| static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint, |
| struct page *page, u32 len) |
| { |
| struct sk_buff *skb; |
| |
| /* Nothing to do if there's no netdev */ |
| if (!endpoint->netdev) |
| return false; |
| |
| /* assert(len <= SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE-NET_SKB_PAD)); */ |
| skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE); |
| if (skb) { |
| /* Reserve the headroom and account for the data */ |
| skb_reserve(skb, NET_SKB_PAD); |
| skb_put(skb, len); |
| } |
| |
| /* Receive the buffer (or record drop if unable to build it) */ |
| ipa_modem_skb_rx(endpoint->netdev, skb); |
| |
| return skb != NULL; |
| } |
| |
| /* The format of a packet status element is the same for several status |
| * types (opcodes). Other types aren't currently supported. |
| */ |
| static bool ipa_status_format_packet(enum ipa_status_opcode opcode) |
| { |
| switch (opcode) { |
| case IPA_STATUS_OPCODE_PACKET: |
| case IPA_STATUS_OPCODE_DROPPED_PACKET: |
| case IPA_STATUS_OPCODE_SUSPENDED_PACKET: |
| case IPA_STATUS_OPCODE_PACKET_2ND_PASS: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, |
| const struct ipa_status *status) |
| { |
| u32 endpoint_id; |
| |
| if (!ipa_status_format_packet(status->opcode)) |
| return true; |
| if (!status->pkt_len) |
| return true; |
| endpoint_id = u32_get_bits(status->endp_dst_idx, |
| IPA_STATUS_DST_IDX_FMASK); |
| if (endpoint_id != endpoint->endpoint_id) |
| return true; |
| |
| return false; /* Don't skip this packet, process it */ |
| } |
| |
| /* Return whether the status indicates the packet should be dropped */ |
| static bool ipa_status_drop_packet(const struct ipa_status *status) |
| { |
| u32 val; |
| |
| /* Deaggregation exceptions we drop; all other types we consume */ |
| if (status->exception) |
| return status->exception == IPA_STATUS_EXCEPTION_DEAGGR; |
| |
| /* Drop the packet if it fails to match a routing rule; otherwise no */ |
| val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); |
| |
| return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK); |
| } |
| |
| static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint, |
| struct page *page, u32 total_len) |
| { |
| void *data = page_address(page) + NET_SKB_PAD; |
| u32 unused = IPA_RX_BUFFER_SIZE - total_len; |
| u32 resid = total_len; |
| |
| while (resid) { |
| const struct ipa_status *status = data; |
| u32 align; |
| u32 len; |
| |
| if (resid < sizeof(*status)) { |
| dev_err(&endpoint->ipa->pdev->dev, |
| "short message (%u bytes < %zu byte status)\n", |
| resid, sizeof(*status)); |
| break; |
| } |
| |
| /* Skip over status packets that lack packet data */ |
| if (ipa_endpoint_status_skip(endpoint, status)) { |
| data += sizeof(*status); |
| resid -= sizeof(*status); |
| continue; |
| } |
| |
| /* Compute the amount of buffer space consumed by the |
| * packet, including the status element. If the hardware |
| * is configured to pad packet data to an aligned boundary, |
| * account for that. And if checksum offload is is enabled |
| * a trailer containing computed checksum information will |
| * be appended. |
| */ |
| align = endpoint->data->rx.pad_align ? : 1; |
| len = le16_to_cpu(status->pkt_len); |
| len = sizeof(*status) + ALIGN(len, align); |
| if (endpoint->data->checksum) |
| len += sizeof(struct rmnet_map_dl_csum_trailer); |
| |
| /* Charge the new packet with a proportional fraction of |
| * the unused space in the original receive buffer. |
| * XXX Charge a proportion of the *whole* receive buffer? |
| */ |
| if (!ipa_status_drop_packet(status)) { |
| u32 extra = unused * len / total_len; |
| void *data2 = data + sizeof(*status); |
| u32 len2 = le16_to_cpu(status->pkt_len); |
| |
| /* Client receives only packet data (no status) */ |
| ipa_endpoint_skb_copy(endpoint, data2, len2, extra); |
| } |
| |
| /* Consume status and the full packet it describes */ |
| data += len; |
| resid -= len; |
| } |
| } |
| |
| /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */ |
| static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint, |
| struct gsi_trans *trans) |
| { |
| } |
| |
| /* Complete transaction initiated in ipa_endpoint_replenish_one() */ |
| static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint, |
| struct gsi_trans *trans) |
| { |
| struct page *page; |
| |
| ipa_endpoint_replenish(endpoint, 1); |
| |
| if (trans->cancelled) |
| return; |
| |
| /* Parse or build a socket buffer using the actual received length */ |
| page = trans->data; |
| if (endpoint->data->status_enable) |
| ipa_endpoint_status_parse(endpoint, page, trans->len); |
| else if (ipa_endpoint_skb_build(endpoint, page, trans->len)) |
| trans->data = NULL; /* Pages have been consumed */ |
| } |
| |
| void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint, |
| struct gsi_trans *trans) |
| { |
| if (endpoint->toward_ipa) |
| ipa_endpoint_tx_complete(endpoint, trans); |
| else |
| ipa_endpoint_rx_complete(endpoint, trans); |
| } |
| |
| void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint, |
| struct gsi_trans *trans) |
| { |
| if (endpoint->toward_ipa) { |
| struct ipa *ipa = endpoint->ipa; |
| |
| /* Nothing to do for command transactions */ |
| if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) { |
| struct sk_buff *skb = trans->data; |
| |
| if (skb) |
| dev_kfree_skb_any(skb); |
| } |
| } else { |
| struct page *page = trans->data; |
| |
| if (page) |
| __free_pages(page, get_order(IPA_RX_BUFFER_SIZE)); |
| } |
| } |
| |
| void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id) |
| { |
| u32 val; |
| |
| /* ROUTE_DIS is 0 */ |
| val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK); |
| val |= ROUTE_DEF_HDR_TABLE_FMASK; |
| val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK); |
| val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK); |
| val |= ROUTE_DEF_RETAIN_HDR_FMASK; |
| |
| iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET); |
| } |
| |
| void ipa_endpoint_default_route_clear(struct ipa *ipa) |
| { |
| ipa_endpoint_default_route_set(ipa, 0); |
| } |
| |
| /** |
| * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active |
| * @endpoint: Endpoint to be reset |
| * |
| * If aggregation is active on an RX endpoint when a reset is performed |
| * on its underlying GSI channel, a special sequence of actions must be |
| * taken to ensure the IPA pipeline is properly cleared. |
| * |
| * Return: 0 if successful, or a negative error code |
| */ |
| static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint) |
| { |
| struct device *dev = &endpoint->ipa->pdev->dev; |
| struct ipa *ipa = endpoint->ipa; |
| struct gsi *gsi = &ipa->gsi; |
| bool suspended = false; |
| dma_addr_t addr; |
| bool legacy; |
| u32 retries; |
| u32 len = 1; |
| void *virt; |
| int ret; |
| |
| virt = kzalloc(len, GFP_KERNEL); |
| if (!virt) |
| return -ENOMEM; |
| |
| addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE); |
| if (dma_mapping_error(dev, addr)) { |
| ret = -ENOMEM; |
| goto out_kfree; |
| } |
| |
| /* Force close aggregation before issuing the reset */ |
| ipa_endpoint_force_close(endpoint); |
| |
| /* Reset and reconfigure the channel with the doorbell engine |
| * disabled. Then poll until we know aggregation is no longer |
| * active. We'll re-enable the doorbell (if appropriate) when |
| * we reset again below. |
| */ |
| gsi_channel_reset(gsi, endpoint->channel_id, false); |
| |
| /* Make sure the channel isn't suspended */ |
| suspended = ipa_endpoint_program_suspend(endpoint, false); |
| |
| /* Start channel and do a 1 byte read */ |
| ret = gsi_channel_start(gsi, endpoint->channel_id); |
| if (ret) |
| goto out_suspend_again; |
| |
| ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr); |
| if (ret) |
| goto err_endpoint_stop; |
| |
| /* Wait for aggregation to be closed on the channel */ |
| retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX; |
| do { |
| if (!ipa_endpoint_aggr_active(endpoint)) |
| break; |
| msleep(1); |
| } while (retries--); |
| |
| /* Check one last time */ |
| if (ipa_endpoint_aggr_active(endpoint)) |
| dev_err(dev, "endpoint %u still active during reset\n", |
| endpoint->endpoint_id); |
| |
| gsi_trans_read_byte_done(gsi, endpoint->channel_id); |
| |
| ret = gsi_channel_stop(gsi, endpoint->channel_id); |
| if (ret) |
| goto out_suspend_again; |
| |
| /* Finally, reset and reconfigure the channel again (re-enabling the |
| * the doorbell engine if appropriate). Sleep for 1 millisecond to |
| * complete the channel reset sequence. Finish by suspending the |
| * channel again (if necessary). |
| */ |
| legacy = ipa->version == IPA_VERSION_3_5_1; |
| gsi_channel_reset(gsi, endpoint->channel_id, legacy); |
| |
| msleep(1); |
| |
| goto out_suspend_again; |
| |
| err_endpoint_stop: |
| (void)gsi_channel_stop(gsi, endpoint->channel_id); |
| out_suspend_again: |
| if (suspended) |
| (void)ipa_endpoint_program_suspend(endpoint, true); |
| dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE); |
| out_kfree: |
| kfree(virt); |
| |
| return ret; |
| } |
| |
| static void ipa_endpoint_reset(struct ipa_endpoint *endpoint) |
| { |
| u32 channel_id = endpoint->channel_id; |
| struct ipa *ipa = endpoint->ipa; |
| bool special; |
| bool legacy; |
| int ret = 0; |
| |
| /* On IPA v3.5.1, if an RX endpoint is reset while aggregation |
| * is active, we need to handle things specially to recover. |
| * All other cases just need to reset the underlying GSI channel. |
| * |
| * IPA v3.5.1 enables the doorbell engine. Newer versions do not. |
| */ |
| legacy = ipa->version == IPA_VERSION_3_5_1; |
| special = !endpoint->toward_ipa && endpoint->data->aggregation; |
| if (special && ipa_endpoint_aggr_active(endpoint)) |
| ret = ipa_endpoint_reset_rx_aggr(endpoint); |
| else |
| gsi_channel_reset(&ipa->gsi, channel_id, legacy); |
| |
| if (ret) |
| dev_err(&ipa->pdev->dev, |
| "error %d resetting channel %u for endpoint %u\n", |
| ret, endpoint->channel_id, endpoint->endpoint_id); |
| } |
| |
| static void ipa_endpoint_program(struct ipa_endpoint *endpoint) |
| { |
| if (endpoint->toward_ipa) |
| ipa_endpoint_program_delay(endpoint, false); |
| else |
| (void)ipa_endpoint_program_suspend(endpoint, false); |
| ipa_endpoint_init_cfg(endpoint); |
| ipa_endpoint_init_hdr(endpoint); |
| ipa_endpoint_init_hdr_ext(endpoint); |
| ipa_endpoint_init_hdr_metadata_mask(endpoint); |
| ipa_endpoint_init_mode(endpoint); |
| ipa_endpoint_init_aggr(endpoint); |
| ipa_endpoint_init_deaggr(endpoint); |
| ipa_endpoint_init_seq(endpoint); |
| ipa_endpoint_status(endpoint); |
| } |
| |
| int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint) |
| { |
| struct ipa *ipa = endpoint->ipa; |
| struct gsi *gsi = &ipa->gsi; |
| int ret; |
| |
| ret = gsi_channel_start(gsi, endpoint->channel_id); |
| if (ret) { |
| dev_err(&ipa->pdev->dev, |
| "error %d starting %cX channel %u for endpoint %u\n", |
| ret, endpoint->toward_ipa ? 'T' : 'R', |
| endpoint->channel_id, endpoint->endpoint_id); |
| return ret; |
| } |
| |
| if (!endpoint->toward_ipa) { |
| ipa_interrupt_suspend_enable(ipa->interrupt, |
| endpoint->endpoint_id); |
| ipa_endpoint_replenish_enable(endpoint); |
| } |
| |
| ipa->enabled |= BIT(endpoint->endpoint_id); |
| |
| return 0; |
| } |
| |
| void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint) |
| { |
| u32 mask = BIT(endpoint->endpoint_id); |
| struct ipa *ipa = endpoint->ipa; |
| struct gsi *gsi = &ipa->gsi; |
| int ret; |
| |
| if (!(ipa->enabled & mask)) |
| return; |
| |
| ipa->enabled ^= mask; |
| |
| if (!endpoint->toward_ipa) { |
| ipa_endpoint_replenish_disable(endpoint); |
| ipa_interrupt_suspend_disable(ipa->interrupt, |
| endpoint->endpoint_id); |
| } |
| |
| /* Note that if stop fails, the channel's state is not well-defined */ |
| ret = gsi_channel_stop(gsi, endpoint->channel_id); |
| if (ret) |
| dev_err(&ipa->pdev->dev, |
| "error %d attempting to stop endpoint %u\n", ret, |
| endpoint->endpoint_id); |
| } |
| |
| void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint) |
| { |
| struct device *dev = &endpoint->ipa->pdev->dev; |
| struct gsi *gsi = &endpoint->ipa->gsi; |
| bool stop_channel; |
| int ret; |
| |
| if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) |
| return; |
| |
| if (!endpoint->toward_ipa) { |
| ipa_endpoint_replenish_disable(endpoint); |
| (void)ipa_endpoint_program_suspend(endpoint, true); |
| } |
| |
| /* IPA v3.5.1 doesn't use channel stop for suspend */ |
| stop_channel = endpoint->ipa->version != IPA_VERSION_3_5_1; |
| ret = gsi_channel_suspend(gsi, endpoint->channel_id, stop_channel); |
| if (ret) |
| dev_err(dev, "error %d suspending channel %u\n", ret, |
| endpoint->channel_id); |
| } |
| |
| void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint) |
| { |
| struct device *dev = &endpoint->ipa->pdev->dev; |
| struct gsi *gsi = &endpoint->ipa->gsi; |
| bool start_channel; |
| int ret; |
| |
| if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id))) |
| return; |
| |
| if (!endpoint->toward_ipa) |
| (void)ipa_endpoint_program_suspend(endpoint, false); |
| |
| /* IPA v3.5.1 doesn't use channel start for resume */ |
| start_channel = endpoint->ipa->version != IPA_VERSION_3_5_1; |
| ret = gsi_channel_resume(gsi, endpoint->channel_id, start_channel); |
| if (ret) |
| dev_err(dev, "error %d resuming channel %u\n", ret, |
| endpoint->channel_id); |
| else if (!endpoint->toward_ipa) |
| ipa_endpoint_replenish_enable(endpoint); |
| } |
| |
| void ipa_endpoint_suspend(struct ipa *ipa) |
| { |
| if (!ipa->setup_complete) |
| return; |
| |
| if (ipa->modem_netdev) |
| ipa_modem_suspend(ipa->modem_netdev); |
| |
| ipa_cmd_tag_process(ipa); |
| |
| ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); |
| ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); |
| } |
| |
| void ipa_endpoint_resume(struct ipa *ipa) |
| { |
| if (!ipa->setup_complete) |
| return; |
| |
| ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); |
| ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); |
| |
| if (ipa->modem_netdev) |
| ipa_modem_resume(ipa->modem_netdev); |
| } |
| |
| static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint) |
| { |
| struct gsi *gsi = &endpoint->ipa->gsi; |
| u32 channel_id = endpoint->channel_id; |
| |
| /* Only AP endpoints get set up */ |
| if (endpoint->ee_id != GSI_EE_AP) |
| return; |
| |
| endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id); |
| if (!endpoint->toward_ipa) { |
| /* RX transactions require a single TRE, so the maximum |
| * backlog is the same as the maximum outstanding TREs. |
| */ |
| endpoint->replenish_enabled = false; |
| atomic_set(&endpoint->replenish_saved, |
| gsi_channel_tre_max(gsi, endpoint->channel_id)); |
| atomic_set(&endpoint->replenish_backlog, 0); |
| INIT_DELAYED_WORK(&endpoint->replenish_work, |
| ipa_endpoint_replenish_work); |
| } |
| |
| ipa_endpoint_program(endpoint); |
| |
| endpoint->ipa->set_up |= BIT(endpoint->endpoint_id); |
| } |
| |
| static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint) |
| { |
| endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id); |
| |
| if (!endpoint->toward_ipa) |
| cancel_delayed_work_sync(&endpoint->replenish_work); |
| |
| ipa_endpoint_reset(endpoint); |
| } |
| |
| void ipa_endpoint_setup(struct ipa *ipa) |
| { |
| u32 initialized = ipa->initialized; |
| |
| ipa->set_up = 0; |
| while (initialized) { |
| u32 endpoint_id = __ffs(initialized); |
| |
| initialized ^= BIT(endpoint_id); |
| |
| ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]); |
| } |
| } |
| |
| void ipa_endpoint_teardown(struct ipa *ipa) |
| { |
| u32 set_up = ipa->set_up; |
| |
| while (set_up) { |
| u32 endpoint_id = __fls(set_up); |
| |
| set_up ^= BIT(endpoint_id); |
| |
| ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]); |
| } |
| ipa->set_up = 0; |
| } |
| |
| int ipa_endpoint_config(struct ipa *ipa) |
| { |
| struct device *dev = &ipa->pdev->dev; |
| u32 initialized; |
| u32 rx_base; |
| u32 rx_mask; |
| u32 tx_mask; |
| int ret = 0; |
| u32 max; |
| u32 val; |
| |
| /* Find out about the endpoints supplied by the hardware, and ensure |
| * the highest one doesn't exceed the number we support. |
| */ |
| val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET); |
| |
| /* Our RX is an IPA producer */ |
| rx_base = u32_get_bits(val, BAM_PROD_LOWEST_FMASK); |
| max = rx_base + u32_get_bits(val, BAM_MAX_PROD_PIPES_FMASK); |
| if (max > IPA_ENDPOINT_MAX) { |
| dev_err(dev, "too many endpoints (%u > %u)\n", |
| max, IPA_ENDPOINT_MAX); |
| return -EINVAL; |
| } |
| rx_mask = GENMASK(max - 1, rx_base); |
| |
| /* Our TX is an IPA consumer */ |
| max = u32_get_bits(val, BAM_MAX_CONS_PIPES_FMASK); |
| tx_mask = GENMASK(max - 1, 0); |
| |
| ipa->available = rx_mask | tx_mask; |
| |
| /* Check for initialized endpoints not supported by the hardware */ |
| if (ipa->initialized & ~ipa->available) { |
| dev_err(dev, "unavailable endpoint id(s) 0x%08x\n", |
| ipa->initialized & ~ipa->available); |
| ret = -EINVAL; /* Report other errors too */ |
| } |
| |
| initialized = ipa->initialized; |
| while (initialized) { |
| u32 endpoint_id = __ffs(initialized); |
| struct ipa_endpoint *endpoint; |
| |
| initialized ^= BIT(endpoint_id); |
| |
| /* Make sure it's pointing in the right direction */ |
| endpoint = &ipa->endpoint[endpoint_id]; |
| if ((endpoint_id < rx_base) != !!endpoint->toward_ipa) { |
| dev_err(dev, "endpoint id %u wrong direction\n", |
| endpoint_id); |
| ret = -EINVAL; |
| } |
| } |
| |
| return ret; |
| } |
| |
| void ipa_endpoint_deconfig(struct ipa *ipa) |
| { |
| ipa->available = 0; /* Nothing more to do */ |
| } |
| |
| static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name, |
| const struct ipa_gsi_endpoint_data *data) |
| { |
| struct ipa_endpoint *endpoint; |
| |
| endpoint = &ipa->endpoint[data->endpoint_id]; |
| |
| if (data->ee_id == GSI_EE_AP) |
| ipa->channel_map[data->channel_id] = endpoint; |
| ipa->name_map[name] = endpoint; |
| |
| endpoint->ipa = ipa; |
| endpoint->ee_id = data->ee_id; |
| endpoint->seq_type = data->endpoint.seq_type; |
| endpoint->channel_id = data->channel_id; |
| endpoint->endpoint_id = data->endpoint_id; |
| endpoint->toward_ipa = data->toward_ipa; |
| endpoint->data = &data->endpoint.config; |
| |
| ipa->initialized |= BIT(endpoint->endpoint_id); |
| } |
| |
| void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint) |
| { |
| endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id); |
| |
| memset(endpoint, 0, sizeof(*endpoint)); |
| } |
| |
| void ipa_endpoint_exit(struct ipa *ipa) |
| { |
| u32 initialized = ipa->initialized; |
| |
| while (initialized) { |
| u32 endpoint_id = __fls(initialized); |
| |
| initialized ^= BIT(endpoint_id); |
| |
| ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]); |
| } |
| memset(ipa->name_map, 0, sizeof(ipa->name_map)); |
| memset(ipa->channel_map, 0, sizeof(ipa->channel_map)); |
| } |
| |
| /* Returns a bitmask of endpoints that support filtering, or 0 on error */ |
| u32 ipa_endpoint_init(struct ipa *ipa, u32 count, |
| const struct ipa_gsi_endpoint_data *data) |
| { |
| enum ipa_endpoint_name name; |
| u32 filter_map; |
| |
| if (!ipa_endpoint_data_valid(ipa, count, data)) |
| return 0; /* Error */ |
| |
| ipa->initialized = 0; |
| |
| filter_map = 0; |
| for (name = 0; name < count; name++, data++) { |
| if (ipa_gsi_endpoint_data_empty(data)) |
| continue; /* Skip over empty slots */ |
| |
| ipa_endpoint_init_one(ipa, name, data); |
| |
| if (data->endpoint.filter_support) |
| filter_map |= BIT(data->endpoint_id); |
| } |
| |
| if (!ipa_filter_map_valid(ipa, filter_map)) |
| goto err_endpoint_exit; |
| |
| return filter_map; /* Non-zero bitmask */ |
| |
| err_endpoint_exit: |
| ipa_endpoint_exit(ipa); |
| |
| return 0; /* Error */ |
| } |