| /* |
| * Copyright 2002 Andi Kleen, SuSE Labs. |
| * Thanks to Ben LaHaise for precious feedback. |
| */ |
| #include <linux/highmem.h> |
| #include <linux/bootmem.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| |
| void clflush_cache_range(void *addr, int size) |
| { |
| int i; |
| |
| for (i = 0; i < size; i += boot_cpu_data.x86_clflush_size) |
| clflush(addr+i); |
| } |
| |
| #include <asm/processor.h> |
| #include <asm/tlbflush.h> |
| #include <asm/sections.h> |
| #include <asm/uaccess.h> |
| #include <asm/pgalloc.h> |
| |
| /* |
| * We allow the BIOS range to be executable: |
| */ |
| #define BIOS_BEGIN 0x000a0000 |
| #define BIOS_END 0x00100000 |
| |
| static inline pgprot_t check_exec(pgprot_t prot, unsigned long address) |
| { |
| if (__pa(address) >= BIOS_BEGIN && __pa(address) < BIOS_END) |
| pgprot_val(prot) &= ~_PAGE_NX; |
| /* |
| * Better fail early if someone sets the kernel text to NX. |
| * Does not cover __inittext |
| */ |
| BUG_ON(address >= (unsigned long)&_text && |
| address < (unsigned long)&_etext && |
| (pgprot_val(prot) & _PAGE_NX)); |
| |
| return prot; |
| } |
| |
| pte_t *lookup_address(unsigned long address, int *level) |
| { |
| pgd_t *pgd = pgd_offset_k(address); |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| *level = PG_LEVEL_NONE; |
| |
| if (pgd_none(*pgd)) |
| return NULL; |
| pud = pud_offset(pgd, address); |
| if (pud_none(*pud)) |
| return NULL; |
| pmd = pmd_offset(pud, address); |
| if (pmd_none(*pmd)) |
| return NULL; |
| |
| *level = PG_LEVEL_2M; |
| if (pmd_large(*pmd)) |
| return (pte_t *)pmd; |
| |
| *level = PG_LEVEL_4K; |
| return pte_offset_kernel(pmd, address); |
| } |
| |
| static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) |
| { |
| /* change init_mm */ |
| set_pte_atomic(kpte, pte); |
| #ifdef CONFIG_X86_32 |
| if (!SHARED_KERNEL_PMD) { |
| struct page *page; |
| |
| for (page = pgd_list; page; page = (struct page *)page->index) { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| pgd = (pgd_t *)page_address(page) + pgd_index(address); |
| pud = pud_offset(pgd, address); |
| pmd = pmd_offset(pud, address); |
| set_pte_atomic((pte_t *)pmd, pte); |
| } |
| } |
| #endif |
| } |
| |
| static int split_large_page(pte_t *kpte, unsigned long address) |
| { |
| pgprot_t ref_prot = pte_pgprot(pte_clrhuge(*kpte)); |
| gfp_t gfp_flags = GFP_KERNEL; |
| unsigned long flags; |
| unsigned long addr; |
| pte_t *pbase, *tmp; |
| struct page *base; |
| int i, level; |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| gfp_flags = GFP_ATOMIC; |
| #endif |
| base = alloc_pages(gfp_flags, 0); |
| if (!base) |
| return -ENOMEM; |
| |
| spin_lock_irqsave(&pgd_lock, flags); |
| /* |
| * Check for races, another CPU might have split this page |
| * up for us already: |
| */ |
| tmp = lookup_address(address, &level); |
| if (tmp != kpte) { |
| WARN_ON_ONCE(1); |
| goto out_unlock; |
| } |
| |
| address = __pa(address); |
| addr = address & LARGE_PAGE_MASK; |
| pbase = (pte_t *)page_address(base); |
| #ifdef CONFIG_X86_32 |
| paravirt_alloc_pt(&init_mm, page_to_pfn(base)); |
| #endif |
| |
| for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) |
| set_pte(&pbase[i], pfn_pte(addr >> PAGE_SHIFT, ref_prot)); |
| |
| /* |
| * Install the new, split up pagetable: |
| */ |
| __set_pmd_pte(kpte, address, mk_pte(base, ref_prot)); |
| base = NULL; |
| |
| out_unlock: |
| spin_unlock_irqrestore(&pgd_lock, flags); |
| |
| if (base) |
| __free_pages(base, 0); |
| |
| return 0; |
| } |
| |
| static int |
| __change_page_attr(unsigned long address, unsigned long pfn, pgprot_t prot) |
| { |
| struct page *kpte_page; |
| int level, err = 0; |
| pte_t *kpte; |
| |
| #ifdef CONFIG_X86_32 |
| BUG_ON(pfn > max_low_pfn); |
| #endif |
| |
| repeat: |
| kpte = lookup_address(address, &level); |
| if (!kpte) |
| return -EINVAL; |
| |
| kpte_page = virt_to_page(kpte); |
| BUG_ON(PageLRU(kpte_page)); |
| BUG_ON(PageCompound(kpte_page)); |
| |
| prot = check_exec(prot, address); |
| |
| if (level == PG_LEVEL_4K) { |
| set_pte_atomic(kpte, pfn_pte(pfn, canon_pgprot(prot))); |
| } else { |
| err = split_large_page(kpte, address); |
| if (!err) |
| goto repeat; |
| } |
| return err; |
| } |
| |
| /** |
| * change_page_attr_addr - Change page table attributes in linear mapping |
| * @address: Virtual address in linear mapping. |
| * @numpages: Number of pages to change |
| * @prot: New page table attribute (PAGE_*) |
| * |
| * Change page attributes of a page in the direct mapping. This is a variant |
| * of change_page_attr() that also works on memory holes that do not have |
| * mem_map entry (pfn_valid() is false). |
| * |
| * See change_page_attr() documentation for more details. |
| */ |
| |
| int change_page_attr_addr(unsigned long address, int numpages, pgprot_t prot) |
| { |
| int err = 0, kernel_map = 0, i; |
| |
| #ifdef CONFIG_X86_64 |
| if (address >= __START_KERNEL_map && |
| address < __START_KERNEL_map + KERNEL_TEXT_SIZE) { |
| |
| address = (unsigned long)__va(__pa(address)); |
| kernel_map = 1; |
| } |
| #endif |
| |
| for (i = 0; i < numpages; i++, address += PAGE_SIZE) { |
| unsigned long pfn = __pa(address) >> PAGE_SHIFT; |
| |
| if (!kernel_map || pte_present(pfn_pte(0, prot))) { |
| err = __change_page_attr(address, pfn, prot); |
| if (err) |
| break; |
| } |
| #ifdef CONFIG_X86_64 |
| /* |
| * Handle kernel mapping too which aliases part of |
| * lowmem: |
| */ |
| if (__pa(address) < KERNEL_TEXT_SIZE) { |
| unsigned long addr2; |
| pgprot_t prot2; |
| |
| addr2 = __START_KERNEL_map + __pa(address); |
| /* Make sure the kernel mappings stay executable */ |
| prot2 = pte_pgprot(pte_mkexec(pfn_pte(0, prot))); |
| err = __change_page_attr(addr2, pfn, prot2); |
| } |
| #endif |
| } |
| |
| return err; |
| } |
| |
| /** |
| * change_page_attr - Change page table attributes in the linear mapping. |
| * @page: First page to change |
| * @numpages: Number of pages to change |
| * @prot: New protection/caching type (PAGE_*) |
| * |
| * Returns 0 on success, otherwise a negated errno. |
| * |
| * This should be used when a page is mapped with a different caching policy |
| * than write-back somewhere - some CPUs do not like it when mappings with |
| * different caching policies exist. This changes the page attributes of the |
| * in kernel linear mapping too. |
| * |
| * Caller must call global_flush_tlb() later to make the changes active. |
| * |
| * The caller needs to ensure that there are no conflicting mappings elsewhere |
| * (e.g. in user space) * This function only deals with the kernel linear map. |
| * |
| * For MMIO areas without mem_map use change_page_attr_addr() instead. |
| */ |
| int change_page_attr(struct page *page, int numpages, pgprot_t prot) |
| { |
| unsigned long addr = (unsigned long)page_address(page); |
| |
| return change_page_attr_addr(addr, numpages, prot); |
| } |
| EXPORT_SYMBOL(change_page_attr); |
| |
| static void flush_kernel_map(void *arg) |
| { |
| /* |
| * Flush all to work around Errata in early athlons regarding |
| * large page flushing. |
| */ |
| __flush_tlb_all(); |
| |
| if (boot_cpu_data.x86_model >= 4) |
| wbinvd(); |
| } |
| |
| void global_flush_tlb(void) |
| { |
| BUG_ON(irqs_disabled()); |
| |
| on_each_cpu(flush_kernel_map, NULL, 1, 1); |
| } |
| EXPORT_SYMBOL(global_flush_tlb); |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| void kernel_map_pages(struct page *page, int numpages, int enable) |
| { |
| if (PageHighMem(page)) |
| return; |
| if (!enable) { |
| debug_check_no_locks_freed(page_address(page), |
| numpages * PAGE_SIZE); |
| } |
| |
| /* |
| * If page allocator is not up yet then do not call c_p_a(): |
| */ |
| if (!debug_pagealloc_enabled) |
| return; |
| |
| /* |
| * The return value is ignored - the calls cannot fail, |
| * large pages are disabled at boot time: |
| */ |
| change_page_attr(page, numpages, enable ? PAGE_KERNEL : __pgprot(0)); |
| |
| /* |
| * We should perform an IPI and flush all tlbs, |
| * but that can deadlock->flush only current cpu: |
| */ |
| __flush_tlb_all(); |
| } |
| #endif |