blob: 51094352d952c38ee2d6a0936ed3cd0a8157c198 [file] [log] [blame]
/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* BSD LICENSE
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _ISCI_REMOTE_DEVICE_H_
#define _ISCI_REMOTE_DEVICE_H_
#include <scsi/libsas.h>
#include "sci_status.h"
#include "intel_sas.h"
#include "scu_remote_node_context.h"
#include "remote_node_context.h"
#include "port.h"
enum scic_remote_device_not_ready_reason_code {
SCIC_REMOTE_DEVICE_NOT_READY_START_REQUESTED,
SCIC_REMOTE_DEVICE_NOT_READY_STOP_REQUESTED,
SCIC_REMOTE_DEVICE_NOT_READY_SATA_REQUEST_STARTED,
SCIC_REMOTE_DEVICE_NOT_READY_SATA_SDB_ERROR_FIS_RECEIVED,
SCIC_REMOTE_DEVICE_NOT_READY_SMP_REQUEST_STARTED,
SCIC_REMOTE_DEVICE_NOT_READY_REASON_CODE_MAX
};
struct scic_sds_remote_device {
/**
* This field contains the information for the base remote device state
* machine.
*/
struct sci_base_state_machine state_machine;
/**
* This field is the programmed device port width. This value is
* written to the RCN data structure to tell the SCU how many open
* connections this device can have.
*/
u32 device_port_width;
/**
* This field is the programmed connection rate for this remote device. It is
* used to program the TC with the maximum allowed connection rate.
*/
enum sas_linkrate connection_rate;
/**
* This filed is assinged the value of true if the device is directly
* attached to the port.
*/
bool is_direct_attached;
/**
* This filed contains a pointer back to the port to which this device
* is assigned.
*/
struct scic_sds_port *owning_port;
/**
* This field contains the SCU silicon remote node context specific
* information.
*/
struct scic_sds_remote_node_context rnc;
/**
* This field contains the stated request count for the remote device. The
* device can not reach the SCI_BASE_REMOTE_DEVICE_STATE_STOPPED until all
* requests are complete and the rnc_posted value is false.
*/
u32 started_request_count;
/**
* This field contains a pointer to the working request object. It is only
* used only for SATA requests since the unsolicited frames we get from the
* hardware have no Tag value to look up the io request object.
*/
struct scic_sds_request *working_request;
/**
* This field contains the reason for the remote device going not_ready. It is
* assigned in the state handlers and used in the state transition.
*/
u32 not_ready_reason;
/**
* This field maintains the set of state handlers for the remote device
* object. These are changed each time the remote device enters a new state.
*/
const struct scic_sds_remote_device_state_handler *state_handlers;
};
struct isci_remote_device {
enum isci_status status;
#define IDEV_START_PENDING 0
#define IDEV_STOP_PENDING 1
#define IDEV_ALLOCATED 2
unsigned long flags;
struct isci_port *isci_port;
struct domain_device *domain_dev;
struct list_head node;
struct list_head reqs_in_process;
spinlock_t state_lock;
struct scic_sds_remote_device sci;
};
#define ISCI_REMOTE_DEVICE_START_TIMEOUT 5000
enum sci_status isci_remote_device_stop(struct isci_host *ihost,
struct isci_remote_device *idev);
void isci_remote_device_nuke_requests(struct isci_host *ihost,
struct isci_remote_device *idev);
void isci_remote_device_gone(struct domain_device *domain_dev);
int isci_remote_device_found(struct domain_device *domain_dev);
bool isci_device_is_reset_pending(struct isci_host *ihost,
struct isci_remote_device *idev);
void isci_device_clear_reset_pending(struct isci_host *ihost,
struct isci_remote_device *idev);
void isci_remote_device_change_state(struct isci_remote_device *idev,
enum isci_status status);
/**
* scic_remote_device_stop() - This method will stop both transmission and
* reception of link activity for the supplied remote device. This method
* disables normal IO requests from flowing through to the remote device.
* @remote_device: This parameter specifies the device to be stopped.
* @timeout: This parameter specifies the number of milliseconds in which the
* stop operation should complete.
*
* An indication of whether the device was successfully stopped. SCI_SUCCESS
* This value is returned if the transmission and reception for the device was
* successfully stopped.
*/
enum sci_status scic_remote_device_stop(
struct scic_sds_remote_device *remote_device,
u32 timeout);
/**
* scic_remote_device_reset() - This method will reset the device making it
* ready for operation. This method must be called anytime the device is
* reset either through a SMP phy control or a port hard reset request.
* @remote_device: This parameter specifies the device to be reset.
*
* This method does not actually cause the device hardware to be reset. This
* method resets the software object so that it will be operational after a
* device hardware reset completes. An indication of whether the device reset
* was accepted. SCI_SUCCESS This value is returned if the device reset is
* started.
*/
enum sci_status scic_remote_device_reset(
struct scic_sds_remote_device *remote_device);
/**
* scic_remote_device_reset_complete() - This method informs the device object
* that the reset operation is complete and the device can resume operation
* again.
* @remote_device: This parameter specifies the device which is to be informed
* of the reset complete operation.
*
* An indication that the device is resuming operation. SCI_SUCCESS the device
* is resuming operation.
*/
enum sci_status scic_remote_device_reset_complete(
struct scic_sds_remote_device *remote_device);
#define scic_remote_device_is_atapi(device_handle) false
/**
* enum scic_sds_remote_device_states - This enumeration depicts all the states
* for the common remote device state machine.
*
*
*/
enum scic_sds_remote_device_states {
/**
* Simply the initial state for the base remote device state machine.
*/
SCI_BASE_REMOTE_DEVICE_STATE_INITIAL,
/**
* This state indicates that the remote device has successfully been
* stopped. In this state no new IO operations are permitted.
* This state is entered from the INITIAL state.
* This state is entered from the STOPPING state.
*/
SCI_BASE_REMOTE_DEVICE_STATE_STOPPED,
/**
* This state indicates the the remote device is in the process of
* becoming ready (i.e. starting). In this state no new IO operations
* are permitted.
* This state is entered from the STOPPED state.
*/
SCI_BASE_REMOTE_DEVICE_STATE_STARTING,
/**
* This state indicates the remote device is now ready. Thus, the user
* is able to perform IO operations on the remote device.
* This state is entered from the STARTING state.
*/
SCI_BASE_REMOTE_DEVICE_STATE_READY,
/**
* This is the idle substate for the stp remote device. When there are no
* active IO for the device it is is in this state.
*/
SCIC_SDS_STP_REMOTE_DEVICE_READY_SUBSTATE_IDLE,
/**
* This is the command state for for the STP remote device. This state is
* entered when the device is processing a non-NCQ command. The device object
* will fail any new start IO requests until this command is complete.
*/
SCIC_SDS_STP_REMOTE_DEVICE_READY_SUBSTATE_CMD,
/**
* This is the NCQ state for the STP remote device. This state is entered
* when the device is processing an NCQ reuqest. It will remain in this state
* so long as there is one or more NCQ requests being processed.
*/
SCIC_SDS_STP_REMOTE_DEVICE_READY_SUBSTATE_NCQ,
/**
* This is the NCQ error state for the STP remote device. This state is
* entered when an SDB error FIS is received by the device object while in the
* NCQ state. The device object will only accept a READ LOG command while in
* this state.
*/
SCIC_SDS_STP_REMOTE_DEVICE_READY_SUBSTATE_NCQ_ERROR,
/**
* This is the READY substate indicates the device is waiting for the RESET task
* coming to be recovered from certain hardware specific error.
*/
SCIC_SDS_STP_REMOTE_DEVICE_READY_SUBSTATE_AWAIT_RESET,
/**
* This is the ready operational substate for the remote device. This is the
* normal operational state for a remote device.
*/
SCIC_SDS_SMP_REMOTE_DEVICE_READY_SUBSTATE_IDLE,
/**
* This is the suspended state for the remote device. This is the state that
* the device is placed in when a RNC suspend is received by the SCU hardware.
*/
SCIC_SDS_SMP_REMOTE_DEVICE_READY_SUBSTATE_CMD,
/**
* This state indicates that the remote device is in the process of
* stopping. In this state no new IO operations are permitted, but
* existing IO operations are allowed to complete.
* This state is entered from the READY state.
* This state is entered from the FAILED state.
*/
SCI_BASE_REMOTE_DEVICE_STATE_STOPPING,
/**
* This state indicates that the remote device has failed.
* In this state no new IO operations are permitted.
* This state is entered from the INITIALIZING state.
* This state is entered from the READY state.
*/
SCI_BASE_REMOTE_DEVICE_STATE_FAILED,
/**
* This state indicates the device is being reset.
* In this state no new IO operations are permitted.
* This state is entered from the READY state.
*/
SCI_BASE_REMOTE_DEVICE_STATE_RESETTING,
/**
* Simply the final state for the base remote device state machine.
*/
SCI_BASE_REMOTE_DEVICE_STATE_FINAL,
};
static inline struct scic_sds_remote_device *rnc_to_dev(struct scic_sds_remote_node_context *rnc)
{
struct scic_sds_remote_device *sci_dev;
sci_dev = container_of(rnc, typeof(*sci_dev), rnc);
return sci_dev;
}
static inline struct isci_remote_device *sci_dev_to_idev(struct scic_sds_remote_device *sci_dev)
{
struct isci_remote_device *idev = container_of(sci_dev, typeof(*idev), sci);
return idev;
}
static inline struct domain_device *sci_dev_to_domain(struct scic_sds_remote_device *sci_dev)
{
return sci_dev_to_idev(sci_dev)->domain_dev;
}
static inline bool dev_is_expander(struct domain_device *dev)
{
return dev->dev_type == EDGE_DEV || dev->dev_type == FANOUT_DEV;
}
typedef enum sci_status (*scic_sds_remote_device_request_handler_t)(
struct scic_sds_remote_device *device,
struct scic_sds_request *request);
typedef enum sci_status (*scic_sds_remote_device_high_priority_request_complete_handler_t)(
struct scic_sds_remote_device *device,
struct scic_sds_request *request,
void *,
enum sci_io_status);
typedef enum sci_status (*scic_sds_remote_device_handler_t)(
struct scic_sds_remote_device *sci_dev);
typedef enum sci_status (*scic_sds_remote_device_suspend_handler_t)(
struct scic_sds_remote_device *sci_dev,
u32 suspend_type);
typedef enum sci_status (*scic_sds_remote_device_resume_handler_t)(
struct scic_sds_remote_device *sci_dev);
typedef enum sci_status (*scic_sds_remote_device_frame_handler_t)(
struct scic_sds_remote_device *sci_dev,
u32 frame_index);
typedef enum sci_status (*scic_sds_remote_device_event_handler_t)(
struct scic_sds_remote_device *sci_dev,
u32 event_code);
typedef void (*scic_sds_remote_device_ready_not_ready_handler_t)(
struct scic_sds_remote_device *sci_dev);
/**
* struct scic_sds_remote_device_state_handler - This structure conains the
* state handlers that are needed to process requests for the SCU remote
* device objects.
*
*
*/
struct scic_sds_remote_device_state_handler {
/**
* The start_io_handler specifies the method invoked when a user
* attempts to start an IO request for a remote device.
*/
scic_sds_remote_device_request_handler_t start_io_handler;
/**
* The complete_io_handler specifies the method invoked when a user
* attempts to complete an IO request for a remote device.
*/
scic_sds_remote_device_request_handler_t complete_io_handler;
/**
* The continue_io_handler specifies the method invoked when a user
* attempts to continue an IO request for a remote device.
*/
scic_sds_remote_device_request_handler_t continue_io_handler;
/**
* The start_task_handler specifies the method invoked when a user
* attempts to start a task management request for a remote device.
*/
scic_sds_remote_device_request_handler_t start_task_handler;
/**
* The complete_task_handler specifies the method invoked when a user
* attempts to complete a task management request for a remote device.
*/
scic_sds_remote_device_request_handler_t complete_task_handler;
scic_sds_remote_device_suspend_handler_t suspend_handler;
scic_sds_remote_device_resume_handler_t resume_handler;
scic_sds_remote_device_event_handler_t event_handler;
scic_sds_remote_device_frame_handler_t frame_handler;
};
/**
* scic_sds_remote_device_increment_request_count() -
*
* This macro incrments the request count for this device
*/
#define scic_sds_remote_device_increment_request_count(sci_dev) \
((sci_dev)->started_request_count++)
/**
* scic_sds_remote_device_decrement_request_count() -
*
* This macro decrements the request count for this device. This count will
* never decrment past 0.
*/
#define scic_sds_remote_device_decrement_request_count(sci_dev) \
((sci_dev)->started_request_count > 0 ? \
(sci_dev)->started_request_count-- : 0)
/**
* scic_sds_remote_device_get_request_count() -
*
* This is a helper macro to return the current device request count.
*/
#define scic_sds_remote_device_get_request_count(sci_dev) \
((sci_dev)->started_request_count)
/**
* scic_sds_remote_device_get_port() -
*
* This macro returns the owning port of this remote device obejct.
*/
#define scic_sds_remote_device_get_port(sci_dev) \
((sci_dev)->owning_port)
/**
* scic_sds_remote_device_get_controller() -
*
* This macro returns the controller object that contains this device object
*/
#define scic_sds_remote_device_get_controller(sci_dev) \
scic_sds_port_get_controller(scic_sds_remote_device_get_port(sci_dev))
/**
* scic_sds_remote_device_set_state_handlers() -
*
* This macro sets the remote device state handlers pointer and is set on entry
* to each device state.
*/
#define scic_sds_remote_device_set_state_handlers(sci_dev, handlers) \
((sci_dev)->state_handlers = (handlers))
/**
* scic_sds_remote_device_get_port() -
*
* This macro returns the owning port of this device
*/
#define scic_sds_remote_device_get_port(sci_dev) \
((sci_dev)->owning_port)
/**
* scic_sds_remote_device_get_sequence() -
*
* This macro returns the remote device sequence value
*/
#define scic_sds_remote_device_get_sequence(sci_dev) \
(\
scic_sds_remote_device_get_controller(sci_dev)-> \
remote_device_sequence[(sci_dev)->rnc.remote_node_index] \
)
/**
* scic_sds_remote_device_get_controller_peg() -
*
* This macro returns the controllers protocol engine group
*/
#define scic_sds_remote_device_get_controller_peg(sci_dev) \
(\
scic_sds_controller_get_protocol_engine_group(\
scic_sds_port_get_controller(\
scic_sds_remote_device_get_port(sci_dev) \
) \
) \
)
/**
* scic_sds_remote_device_get_index() -
*
* This macro returns the remote node index for this device object
*/
#define scic_sds_remote_device_get_index(sci_dev) \
((sci_dev)->rnc.remote_node_index)
/**
* scic_sds_remote_device_build_command_context() -
*
* This macro builds a remote device context for the SCU post request operation
*/
#define scic_sds_remote_device_build_command_context(device, command) \
((command) \
| (scic_sds_remote_device_get_controller_peg((device)) << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) \
| ((device)->owning_port->physical_port_index << SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) \
| (scic_sds_remote_device_get_index((device))) \
)
/**
* scic_sds_remote_device_set_working_request() -
*
* This macro makes the working request assingment for the remote device
* object. To clear the working request use this macro with a NULL request
* object.
*/
#define scic_sds_remote_device_set_working_request(device, request) \
((device)->working_request = (request))
enum sci_status scic_sds_remote_device_frame_handler(
struct scic_sds_remote_device *sci_dev,
u32 frame_index);
enum sci_status scic_sds_remote_device_event_handler(
struct scic_sds_remote_device *sci_dev,
u32 event_code);
enum sci_status scic_sds_remote_device_start_io(
struct scic_sds_controller *controller,
struct scic_sds_remote_device *sci_dev,
struct scic_sds_request *io_request);
enum sci_status scic_sds_remote_device_start_task(
struct scic_sds_controller *controller,
struct scic_sds_remote_device *sci_dev,
struct scic_sds_request *io_request);
enum sci_status scic_sds_remote_device_complete_io(
struct scic_sds_controller *controller,
struct scic_sds_remote_device *sci_dev,
struct scic_sds_request *io_request);
enum sci_status scic_sds_remote_device_suspend(
struct scic_sds_remote_device *sci_dev,
u32 suspend_type);
void scic_sds_remote_device_post_request(
struct scic_sds_remote_device *sci_dev,
u32 request);
#define scic_sds_remote_device_is_atapi(sci_dev) false
#endif /* !defined(_ISCI_REMOTE_DEVICE_H_) */